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1. Introduction

Flexible elements (belts, cables, guy ropes, filaments, strings, etc.) are widely used in
machines and devices for various practical purposes (belt and chain transmissions, vibrating
belts of vibromixers, guy ropes for stabilization of motion of vibromachine tool in prescribed
direction, etc) [1, 2]. Lateral parametric vibrations of flexible elements, which can occur
during the operation of machine, are extremely detrimental. They give rise to additional
dynamic loading, which encourages wearing and failure of flexible elements.

Spectrum of resonance lateral oscillations of flexible elements may be sufficiently dense
(simple parametric resonances, combination resonances). Besides, geometrical and physical
nonlinearity of flexible element can result in pulling of resonant oscillations and further
widening of dangerous frequency ranges. In such conditions system’s tuning away from
resonance frequencies remains problematic. Therefore in many cases designer had to come to
a compromise decision, allowing excitation in machine of one or several (the least intensive)
resonance regimes of flexible elements. And therefore it is very important on preliminary
stage of designing to evaluate the failure danger of flexible element in each resonant regime
which can occur in the system under parametric excitation. This evaluation ought to be based
on comparison of different resonant regimes using real criteria (peak values of resonant
displacements and tensile forces in flexible element, width of frequency intervals of resonant
regimes, etc.).

There is no complete theoretical basis for such criteria in scientific literature. Most of known
works on the non-linear oscillations of flexible elements are concerned with the analysis of
free vibrations (e.g., [3-5]). But cases of parametric excitation are usually considered in
application only to the first lower mode of string’s lateral oscillations [6-8]. This paper seeks
to compare non-linear properties of different lateral modes of forced and parametric
oscillations of flexible element (string). Results of this research will make it possible to form
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real criteria for the evaluation of failure danger of flexible element on different parametric
resonant regimes.

2. Dynamic model

Transverse oscillations of taut flexible element (thread) under parametric excitation are
considered (Fig. 1). Parametric excitation is caused by periodic variation in time of axial
tension force of the flexible element.

In forming of differential equation of oscillations some assumptions are made. It is supposed,
that stiffness in bending of flexible element is negligible in comparison with its stiffness in
tension, but weight of flexible element is ignorable in comparison with axial prestressing
force 7). Besides, it is considered that oscillations are performed in one plane, which runs
along the centre line of a non-deformed flexible element.
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Fig. 1. Model considered in dynamic analysis

Taking the direction of the co-ordinate axis z along this centre line, the differential equation
for transverse vibrations of flexible element can be stated as follows [2, 5]:
0.0’y , 0
Ty (1+ psinQO)[1+ £ ()1 +b,—) 2 —b, > —
ot 0z ot 0

o+ <8y)]

where Tj is the prestressing force of flexible element; x and ) are the non-dimensional
amplitude and the frequency of parametric excitation; b; and b, are the coefficients of internal
and external friction; y is the lateral displacement of the flexible element’s cross-section with
the co-ordinate z.

The functional f(e) in Eq. (1) takes into account additional tension caused by elastic
deformation of flexible element during its oscillations (physical non-linearity). The elongation
¢ of flexible element can be determined by formula [5]:
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where / is the length of flexible element.

The relationship between axial stress ¢ in flexible element and its elongation € can be
approximately described by the expression

c=Fe—Pe’, (3)

where E is the elasticity modulus of material; 3 is the coefficient of non-linearity. In this case
the functional f{€) can be expressed in the following form

_ B4 oy
A 2le( yd 8Tz3

where 4 is the cross-section area of flexible element.
Therefore an increment in tension is caused by integral elongation of flexible element and is

1] (ay )2 dz] 4)

independent of co-ordinate z. Non-linear term [I +§(8_y)2] of equation (1) takes into
/A

account geometrical non-linearity of flexible element [5].
In the case studied here the end boundary conditions are as follows:

Wz=0,)=0; y(z=10)=0. 5)

Equation (1), subject to the expressions (2) — (5), was solved on an analogue-digital computer
system predominantly set up for the solution of complex non-linear dynamics problems [2].
The integration of non-linear differential equations is carried out on the high-speed analogue
part of the computer system, but control over the programming of the analogue part and data
processing is executed by the digital part. The methods of mathematical simulation and the
operational principle of the computer system are described in more detail in references [2, 9].
The quantitative estimation of accuracy in analogue-digital simulation was carried out by the
solution of test examples and particular engineering problems [2, 10, 11].

3. Analysis of parametric oscillations of flexible element

As is known [12, 13], parametric resonance of flexible element occur under periodic pulsation
of tensile force T with frequency  which fall in the vicinity of critical frequencies
2m o, To
Q="S o Q=—‘ d k‘ , (6)
e e
where Mg and @; are the natural frequencies with ordinal numbers S and k of lateral

oscillations of flexible element; e = 1, 2, 3 ... is the order of parametric resonance. The first
formula describes the condition of a simple parametric resonance, but the second formula —
condition of a combination parametric resonance.

As an example, Fig. 2 shows the diagram of parametric resonance zones on the plane of
parameters x4 and 77 = Q/m; (zones are section-lined and denoted with symbols 2mg or wg +
). Only main zones (e = 1) corresponding to the three first natural frequencies ®;, ®, and
3 are shown. The diagram is constructed assuming b;m; = 0.003 (it is the rough level of
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(6
losses in real flexible elements). Combination resonances of difference type Tk for

the system under study were not observed.
Objective conclusion on failure danger of flexible element in one or another parametric
regime can be made by comparison of corresponding tensile forces.

3.1. Simple parametric oscillations

Simple parametric oscillations have been analyzed at first. In this case main system’s
parameters reduced to the dimensionless form have been varied within the limits: To/EA =
=(0.5 +5)-10'4; by = 0.002 + 0.018; p = 0 + 0.5. Experimental points have been located
within this space of parameters in accordance with the uniform distribution design [14, 15] (for
each variable parameter ten value levels have been selected). But value of the factor n = Q/w,;
has been chosen during the simulation provided system’s tuning to the resonance frequency of
considered order. Values of other system’s parameters remained constant (plg/E4A = 5.7-10°;
B/E = 0.36). A body of research is limited with resonance regimes corresponding to the three
lowest natural frequencies of flexible element (®;, ®,, ®3).
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Fig. 2. Zones of excitation of parametric lateral oscillations of flexible element

During the simulation peak values of dimensionless displacements u(()S) / [ of flexible
elements (in antinodal point of resonant mode) and corresponding dynamic components of
tensile force T d(S) / T o have been determined for each combination of factors To/EA, by and

4 . The results are presented in Table 1.

It is seen from the analysis of table data that the relationship between peak values of lateral
displacements of flexible element on simple parametric resonances (regardless of numerical
values of system’s parameters) on the average is as follows:
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ul cul? :ul’ =0.023:0.0125:0.008 zl:%:% .

But dynamic components of tensile force (in the three first resonant regimes) change their
values in accordance with the proportion

TV .77 =82:8.8:8.65%1:1.07:1.05 |

Thus, with the rise of the ordinal number S of the mode of parametric regime the tensile
forces in flexible element slightly increase (in spite of sufficient reduction of lateral

displacements u(()S) ).

Table 1. Lateral displacements u* / [ and dynamic components of tensile force 7’ / T,
in simple parametric resonant regimes of flexible element

Ordinal || T, 10° 3 ) ) 2) &) 3) 3
number | EA b 10°| v | ud /1| TO/T, | u /1| TPT, | u )1 | TOT,
1 5 8 0.45 | 0.024 2.30 0.013 2.50 0.008 2.40
2 2 3 0.10 | 0.036 | 12.90 0.019 14.0 | 0.0125 | 13.70
3 1.5 10 0.50 | 0.029 | 11.20 0.015 12.0 0.010 11.80
4 3 14 0.05 | 0.006 0.30 0.003 0.32 0.002 0.31
5 4.5 16 0.25 | 0.011 0.55 0.006 0.57 0.004 0.57
6 0.5 12 0.20 | 0.014 7.80 0.0075 8.50 0.005 8.30
7 1 4 0.40 | 0.042 | 35.20 0.023 38.0 0.015 37.20
8 2.5 18 0.35 | 0.009 0.65 0.005 0.70 0.003 0.68
9 35 2 0.30 | 0.040 9.10 0.021 9.90 0.014 9.60
10 4 6 0.15 | 0.020 2.00 0.011 2.10 0.007 2.10
Average values 0.023 8.20 0.0125 8.80 0.008 8.65

As an illustration of the above-mentioned relationships Fig. 3 shows the amplitude-frequency
characteristic (AFC) of parametric oscillations of flexible element for the case ¢ = 0.1, To/EA
= 2:10" and b, = 0.003. Dimensionless displacements uy/! (in antinodal points of each
resonant mode) and dynamic components of tensile force 7, /T, are projected as amplitudes
on these AFC. As it is seen from the AFC presented, the following relationships between peak
values of lateral displacements and tensile forces in flexible element hold true in simple
parametric resonant regimes:

uS® ul® ul$) =0.036:0.019:0.0125 P
1.85 2.9
and T T T =12.9:14:13.7~1:1.08:1.06 .
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Thus, under the parametric excitation the rise of ordinal number S of the resonant mode
causes a certain increase of tensile forces in flexible element. Therefore a danger of failure of
flexible element on the second and third parametric resonant regimes is slightly higher than
on the first one.

3.2. Combination parametric resonances

Combination parametric resonance earlier has been analysed in application to rod structures
[16, 17]. It was shown that peak values of displacements on combination and simple
parametric resonances are comparable. On this base the conclusion on approximately equal
danger extent of combination and simple parametric oscillation in rod structures has been
made (in spite of relative narrowness of zones of combination parametric resonances).
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Fig. 3. AFC of parametric oscillations of flexible element (for lateral displacements u, /! and
tensile forces T,/T))

Therefore it has been found expedient to evaluate a danger extent of combination parametric
oscillations of flexible elements. At first conditions of excitation of combination parametric
resonances are considered. As it is follows from the diagram of parametric instability zones
(see Fig. 2), zones of combination resonance are sufficiently more narrow (by excitation
frequency Q) than zones of simple parametric resonance. For example, under p = 0.2 the

width of zones 2w; and 2w; is equal to An(l) =0.42 and An(z) = (.83 correspondingly. But at
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the same time the width of combination parametric zone (®; + ;) is about only An(Hz) =0.1.
Besides, excitation of combination parametric oscillations is possible only under more high
pulsation parameter u of tensile force 7 than it is necessary for excitation of simple parametric
resonances. For example, under the given value of b;®; the threshold of parametric excitation

for the zone 2a; is equal to (Y =0.0064 , but for the zone (o+wy) - P> =0.07

(approximately is ten times higher).

Nevertheless, conclusion on real danger of combination parametric oscillations of flexible
element can be made only on the base of evaluation of its lateral displacements and
corresponding values of tensile forces. These data are given in Table 2.

Table 2. Lateral displacements u.*** / [ and dynamic components of tensile force 7°* / T,
in combination parametric resonant regimes of flexible element

Ordinal | T, 10* 3 (1+2) (1+2) (243) (243)
number | EA b, 10 H wl™ 1| T T | w1V,

1 5 8 0.45 0.014 1.90 0.008 1.90

2 2 3 0.10 0.020 10.50 0.011 11.0

3 1.5 10 0.50 0.016 9.80 0.009 9.10

4 3 14 0.05 0.004 0.25 0.002 0.24

5 4.5 16 0.25 0.006 0.41 0.003 0.43

6 0.5 12 0.20 0.008 6.30 0.0045 6.20

7 1 4 0.40 0.024 28.50 0.013 28.40

8 2.5 18 0.35 0.005 0.50 0.003 0.50

9 3.5 2 0.30 0.021 7.40 0.012 7.50

10 4 6 0.15 0.012 1.50 0.007 1.50

Average values 0.013 6.60 0.007 6.65

As it is seen from the analysis of table data, the relationships between lateral displacements
and tensile forces in flexible element on combination parametric resonances are as follows:

ud® u{* =0.013:0.007 ~1.86:1
and T T3 —6.6:6.65%1:1.007.

Moreover, numerical values of tensile forces 7 ;Hk) are about on 25 — 30% smaller than that

ones realized on simple parametric resonances. These characteristic properties of oscillations
are presented graphically on the AFC (see Fig. 3).

Thus, the results of mathematical simulation show that combination parametric resonance of
flexible element is less dangerous than simple parametric ones. This is caused by the more
narrow frequency interval and higher threshold of parametric excitation as well by the lower
level of tensile stresses on combination resonances.
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The practicability of the results obtained by the analogue-digital simulation was verified by
experiments. As an object of study a uniform rubber cord with the length / = 1.5 m and linear
density p = 0.0415 kg/m (in unloaded condition) was used. Parametric oscillations of the cord
are excited with the aid of electrodynamic vibration-testing machine (model BOJIC-10A).
Parameters of oscillations of flexible element are measured by vibration meter (model SDM—
162) using standard and specialized piezoelectric transducers.

During the experiments the rates of changing of peak values of lateral displacements of
flexible element and tensile forces under the sequential excitation of parametric resonant
oscillations corresponding to natural frequencies with more and more high order (®;, ®;, ®3)
were studied. Experimental relationships between lateral displacements and tensile forces
have shown close agreement with the results of mathematical simulation.

4. Conclusions

Characteristic properties of resonant lateral oscillations of flexible element under parametric
excitation are studied. As the result of this research an evaluation of failure danger of flexible
element in different resonant regimes is made. The main conclusions are as follows.

(1) Under the parametric excitation the rise of ordinal number S of simple parametric regime
causes a certain increase of tensile forces and dynamic stress in flexible element. Therefore a
danger of failure of flexible element on the second and third parametric resonant regimes is
slightly higher than on the first one.

(2) Combination parametric oscillations of flexible element are less dangerous than simple
parametric ones. This is caused by the more narrow frequency interval and higher threshold of
parametric excitation as well by the lower level of tensile stresses on combination resonances.
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Beresnevics V. Lokano elementu nelinearo parametrisko svarstibu ipatnibas

Aplikoti masinu un mehanismu lokano elementu (siksnu, kabelu, tauvu, stigu u.c.) Skérssvarstibas pie
parametriskas ierosmes. Matematiski uzdevums ir formuléts ka lokana elementa parametrisko svarstibu
parcialais diferencialvienadojums, turklat tiek nemta vera lokana elementa geometriska, statiska un fiziska
nelinearitate. Apskatamaja sistema tiek noverteta dazadu iespéjamo rezonanses rezimu (parastas parametriskas
rezonanses, kombinacionalds rezonanses) bistamibas pakape, izmantojot matematiskas modelésanas metodes.
Sis noveértésanas pamatd ir rezimu salidzindSana péc ierosmes frekvencu intervalu platuma, transversalo
parvietojumu un stiepéjspéku maksimalajiem lielumiem u.c. Paradits, ka lokano elementu kombinacionalas
parametriskas svarstibas ir mazak bistamas par svarstibam parastos parametriskos rezonanses rezimos.
Teoreétiskas analizes rezultati apstiprinati eksperimentali.

Beresnevich V. Characteristic Properties of Nonlinear Parametric Oscillations of Flexible Elements

Lateral oscillations of flexible elements (belts, cables, guy ropes, strings, etc.) in machines and devices under
parametric excitation are studied. Mathematically the problem is presented as a partial differential equation
describing parametric oscillations of flexible element with due account of its geometrical, static and physical
nonlinearities. By the mathematical simulation the evaluation of danger extent of different resonant regimes
which can occur in the system (simple parametric resonances, combination resonances) is made. This evaluation
is based on comparison of excitation frequency intervals of resonant regimes, peak values of resonant
displacements and tensile forces in going from lower to higher vibration mode, etc. It is shown that combination
parametric oscillations of flexible element are less dangerous than simple parametric ones. The results of
theoretical study are confirmed by experiments with a physical model.

bepecneeuu B. Ocobennocmu nHenunenblx napamempuieckux Koaeoanuii ZuOKux 31emMeHmos
Paccmompenvt nonepeunvle konrebanus 2UOKUX 371eMEHMO8 MAWUH U MEXAHUIMOS (DEMHEL, MPOCO8, PACMANCEK,
cmpyh u  Op.) npu  napamempuyeckom  6030yocoenuu. Mamemamuuecku  3adava  c600umcs K
oupgepenyuanvromy ypagHeHulo 8 HACMHbBIX NPOU3BOOHBIX, ONUCHLIBAIOWEMY Napamempuyeckue KoaebaHusl
2UOK020 2NIeMEHMA C YYemoM €20 2e0Mempuieckoll, cmamu4eckol u Qusuyeckoll neaunetnocmeu. Ha ocrnose
MaAMeEMAMuYecko20 MoO0eIupoBanUs Koaebanuti 0ana OyenKa cmeneHu ONnaAcHOCMU DA3IUYHBIX PEe30HAHCHbIX
pedcumos  (npocmoeie  napamempudecKue  pPe3OHAHCbl, KOMOUHAYUOHHLIE — PE30HAHCHL), NOMEHYUATbHO
BO3MOJICHBIX 8 paccMampusaemol cucmeme. B ocnose maxou oyenku — CONOCMAgIeHue PasiuiHblX PeiCUmMos
nO WUPUHE YACMOMHBIX UHMEPBANO8 UX BO30VICOCHUsl, NUKOGLIM 3HAYEHUSM NONEPEYHbIX NepeMeujeHuti u
pacmseugarowux ycunuil 6 2ubkom snemenme. Ilokazano, ymo npu npodux paeHvIX YCIOBUSX KOMOUHAYUOHHbIE
napamempuieckue KoaeOanusi 2ubKo20 J1eMeHma MeHee ONACHbL NPOCbIX NAPAMEMPUYECKUX KoaeOaHuil.
Peszynomamer meopemuueckoeo ananuza noomeepicoeHvl IKCHEPUMEHMAbHO.
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