Bacteria and RNA Virus Inactivation with a High-Irradiance UV-A Source
Photochemical & Photobiological Sciences 2024
Karina Spunde, Žanna Rudēvica, Ksenija Korotkaja, Atis Skudra, Rolands Gudermanis, Anna Zajakina, Gita Rēvalde

Disinfection with LED lamps is a promising ecological and economical substitute for mercury lamps. However, the optimal time/dose relationship needs to be established. Pathogen inactivation by UV-A primarily relies on induced reactive oxygen species (ROS) formation and subsequent oxidative damage. While effective against bacteria and enveloped viruses, non-enveloped viruses are less sensitive. In this study, we explored the disinfection properties of 10 W UV-A LED, emitting in the 365–375 nm range. UV-A at high values of irradiance (~ 0.46 W/cm2) can potentially induce ROS formation and direct photochemical damage of the pathogen nucleic acids, thus improving the disinfection. The UV-A inactivation was evaluated for the bacterium Escherichia coli (E. coli), non-enveloped RNA bacteriophage MS2, and enveloped mammalian RNA virus—Semliki Forest virus (SFV). The 4 log10 reduction doses for E. coli and SFV were 268 and 241 J/cm2, respectively. Furthermore, in irradiated E. coli, ROS production positively correlated with the inactivation rate. In the case of MS2 bacteriophage, the 2.5 log10 inactivation was achieved by 679 J/cm2 within 30 min of irradiation. The results demonstrate significant disinfection efficiency of non-enveloped virus MS2 using high-irradiance UV-A. This suggests a potential strategy for improving the inactivation of UV-A-unsusceptible pathogens, particularly non-enveloped viruses. Additionally, the direct UV-A irradiation of self-replicating viral RNA from SFV led to a significant loss of viral gene expression in cells transfected with the irradiated RNA. Therefore, the virus inactivation mechanism of high-irradiance UV-A LED can be partially determined by the direct damage of viral RNA.


Keywords
UV disinfection, UV-A, inactivation, bacteria, RNA virus, Escherichia coli, Semliki Forest
DOI
10.1007/s43630-024-00634-2
Hyperlink
https://link.springer.com/article/10.1007/s43630-024-00634-2#citeas

Spunde, K., Rudēvica, Ž., Korotkaja, K., Skudra, A., Gudermanis, R., Zajakina, A., Rēvalde, G. Bacteria and RNA Virus Inactivation with a High-Irradiance UV-A Source. Photochemical & Photobiological Sciences, 2024, Vol. 23, pp.1841-1856. ISSN 1474-905X. e-ISSN 1474-9092. Available from: doi:10.1007/s43630-024-00634-2

Publication language
English (en)
The Scientific Library of the Riga Technical University.
E-mail: uzzinas@rtu.lv; Phone: +371 28399196