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1. Introduction 
 

Experimentation and approximation are essential for efficiency and effectiveness in 

engineering analyses of complex systems in which designers have to deal with multi-

disciplinary and multi-objective analysis using very complicated and expensive-to-run 

computer analysis codes. This process of experimentation and approximation is called 

metamodeling, in which we need: (a) choosing an experimental design for generating data, (b) 

choosing a model to represent the data, (c) fitting the model to the data, and (d) solving the 

constrained optimization problem. The datasets may include both computer experiments (with 

or without deterministic noise) and natural experiments made under uncertainty. For the 

analysis of deterministic computer experiments the use of classical D, A, I-optimal designs of 

experiments (DOE), which need repeated runs, is not effective. In the past decades the Latin 

Hypercube (LH) experimental designs [1, 24] and non-parametric approximation methods 

(Kriging, Radial Basis Functions, Local Polynomial Methods) [6, 15, 16, 17, 21, 22, 23] have 

been generally recognized. However the LHs must be completely designed before the 

experimentation begins. At this time the optimal number of runs for metamodel building is 

unknown, but the adding of additional runs damages the uniformity of LHs. The classical 

hierarchical quasi-random sequences which allow adding new sample points (experimental 

runs, trials), like Halton [11] and Sobol [30] sequences, give highly correlated components for 

4, 5 or more dimensions. Good results are given by adaptive experimental designs, in which 

the approximation or optimization information obtained from previous experimental runs is 

used for the choice of additional runs [17]. And yet this approach loses effectiveness in the 

practical engineering case when several responses must be simultaneously observed and used 
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in optimization for quality criterion and constraint functions. In this work a new approach for 

the creation of hierarchical DOEs and the modification of local polynomial approximation 

method is proposed, which gives almost the same or better accuracy of prediction than the 

metamodels built with adaptive sampling methods and Kriging or RBF approximations.  

 

2. Space and sub-space filling uniformity measures 
 

For the analysis of deterministic computer experiments, V. Eglajs [1] proposed the principle 

that the number of levels for each factor is equal to the number of runs and each level is used 

only once. In the situation when the response depends mainly on one factor (the number of 

which is unknown before experimentation) this principle provides the maximum amount of 

information about this dependency. Later McKay et al. [24] introduced the name “Latin 

Hypercube” for DOEs of this type and showed that random LHs give better accuracy for the 

Monte Carlo integration than pseudo-random samples. The second principle proposed in [1] 

was that the experiments must fill the area of interest as uniformly as possible. For the 

measure of the uniformity Eglajs [1] introduced the first space filling criterion – the potential 

energy criterion 
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where N is the number of experimental points (runs) and dij is the Euclidean distance between 

points i and j. The LH designs with minimal value of the criterion Eq. (1) have good space-

filling properties, however the experimental points tend to spread out to the corners of the unit 

cube. Eglajs also proposed the first coordinate exchange algorithm for construction of LHs 

with minimal value of potential energy criterion. The other category of designs are 

constructed by algorithmic approaches under certain optimality criteria, such as Minimax and 

Maximin designs [19], maximum entropy designs [7, 29], integrated mean squared-error 

(IMSE) designs [28], Mean Square Error (MSE) and uniform designs [10]. Morris and 

Mitchell [25] introduced a generalization of Eglajs criterion: 
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Park [26] introduced optimal LHDs based on either the maximum entropy criterion or the 

IMSE criterion; Fang, et al [8, 9] introduced optimal LHDs based on the Centered L2 

discrepancy criterion and wrap-around discrepancy criterion. Searching the optimal LH 

design of experiments according to any criterion is very difficult and can be realized with 

methods of discrete optimization – coordinate exchange, multistart, threshold and simulated 

annealing methods [2, 16, 176, 20, 23]. The author disagrees with the opinion of authors of 

work [16] that the optimization of LH designs is more tractable than searching in the entire 

sample space without any restrictions. Our practice shows, that the optimization of DOE 

without any level restrictions is much easier [2], furthermore for the optimization of DOE in 

the whole space the methods for optimization of LHs (for example coordinate exchange) can 

also be used and optimized LHs can be utilized as the initial design for optimization. In this 

regard, the question arises whether it is necessary to strictly follow the principle of LH– 

absolute uniformity of one-dimensional projections. Especially since in most cases with a  
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Fig. 1. Plane x1-x2 of 111-runs 6-factor wrap-around-optimal LH design 

 

number of factors m>2 the two-dimensional projections of optimized LHs are far from 

uniformity. The second reason to give up on absolute uniformity of one-level projections is 

that we can’t add new experimental runs to the existing design without damaging this 

property.  

The criterion of wrap-around Lp discrepancy [8, 12, 20] is claimed to deal with uniformity 

over the unit cube P and all the projections of P over C
u
, but the two-dimensional projections 

of wrap-around-optimized 111-runs 6-factor LH shows middling uniformity, see Fig. 1.  

 

3. Average projection criterion 
 

Due to unsatisfactory projection uniformity of LH designs and known sequential quasi-

random sequences it seems reasonable to make the compromise between the space-uniformity 

and subspace uniformity, including the uniformity of one-dimensional projections. The 

combined criterion can be built for any known criterion as the weighted sum of criterion for 

entire space and subspaces. For example, when we are interested in the uniformity of space 

filling of entire space, all one-dimensional projections and all two-dimensional subspaces, we 

can build the combined criterion 
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where Φk, Φkj – filling quality criterions for one-dimensional and two-dimensional subspaces, 

a, b – weighting coefficients for one and two-dimensional uniformity respectively.  

For example, using the criterion Eq. (2), Eq. (3), we can build the complex average projection 

criterion 
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The problem is the choice of the weighting coefficients. Using large values of weighting 

coefficients a we can obtain Latin hypercubes (with the level distribution nearly to uniform). 

Santner et al [35] used the largest diagonal size 
p

d of d-dimensional unit cube for scaling the 

uniformity criteria in different dimensions. Here another approach was used. The analysis of 

the problem could be facilitated by an approximate expression which describes the  
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Fig. 2. Optimal values of criterion Eq. (2), Eq. (3) 

 

dependency of the optimal criterion Eq. (2), Eq. (3) values on the number of runs N and the 

number of factors m. The Fig. 3. shows this dependence graphically for p=50, t=1, 20≤N≤200 

and 1≤ m≤6. The optimal values of criterion were found using the program Relax [2]. 

Good approximation of the dependency of optimal criterion values on the number of runs N 

and number of factors (variables) m gives the expression 

 ( )( )( )( ) ( )1000422.004778.011 11 −+−+= mpOptimal

p NNmNmΦ . (6) 

This equation can be used for the control of the choice of the weighting coefficients a, b in the 

complex criterion Eq. (5) 

 

4. Sequential designs obtained from fixed-size DOEs 
 

The complex criterion Eq. (5) can be used for optimization of both fixed-size and sequential 

DOEs. Figures 3-5 show the 41-run 2-factor fixed-size designs, optimized according to 

complex criterion using various values of weighting coefficient.  All designs were optimized 

using improved multistart relaxation and exchange method and the program code Relax [2]. 
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Fig. 3. Fixed-size Latin Hypercubes optimized according to Eq. (2), Eq. (3), p=50 
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Fig. 4. 2-factor 41-run design optimized according to Eq. (5), a=0.01, b=0, p=50. Left – plane 

x1-x2, right – plane x1-x1 
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Fig. 5. 2-factor 41-run design optimized according to Eq. (5), a=0.001, b=0, p=50. Left – 

plane x1-x2, right – plane x1-x1 

 

To obtain the sequential design from a fixed-size design, we use the point arranging method. 

According to this method, the point which gives the minimal worsening of optimality 

criterion by its elimination is moved out from the N-run design to build a N-1-run design. 
 

10.50

1

0.5

0

10.50

1

0.5

0

10.50

1

0.5

0

10.50

1

0.5

0

 
Fig. 6. 2-factor 25-run design obtained from a 41-run design. Left – plane x1-x2, right – plane 

x1-x1 

 

It can be seen that the sequential designs obtained in this way are similar to PLS sequential 

designs [27], see Fig. 7. 
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Fig. 7. 2-factor 41-run PLS design [27]. Left – plane x1-x2, right – plane x1-x1 

 

5. Sequential DOEs created by adding one point at time 
 

Sequential designs can be obtained in a traditional way – by adding new experimental points 

to the existing design. The designs are called “adaptive”, when the information about 

responses in previously created experimental points is used. In the work [17], the cross 

validation approach is used in which a point with the largest prediction error is selected as the 

new sample point. The problem is to find good assessment for the prediction error and the fact 

that in usual engineering optimization tasks several responses must be simultaneously 
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approximated. We also tried to add direct the point in which the largest prediction error 

occurs for some test functions (Six Hump Camel, Branin) and found that only the maximal  
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Fig. 8. 41-run sequential design. Left – plane x1-x2, middle – plane x1-x1, right – plane x2-x2 

prediction error measure was better than by using fixed-size experimental designs or 

sequential designs without adaptation. Therefore in this work the non-adaptive sequential 

designs are used. Figure 8. shows the 2-factor 41-run design, obtained by adding one point at 

time according to criterion Eq. (5), beginning from a 9-run optimal LH design. This design is 

hierarchical – new points can be added. 

 

6. Approximation test problem 
 

The proposed method of DOE was tested on many common test problems, both for 

approximation and for unconstrained and constrained global optimization. Only few of the 

calculated problems will be shown here. First we will look only at the metamodel building 

problem. The measures for the prediction accuracy assessment of metamodels are listed in 

Table 1. 

Table 1. Error measures for accuracy assessment 

Name Equation 

Max. Absolute Error 
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Here n is the number of confirmation points over the domain, in which the values of exact 

function Fi and its prediction iF̂  are calculated. F stands for the mean of exact function values 

in confirmation points. Usually a large number of randomly selected LH sample points was 

used (1000-100000), which give 3-4 correct decimal digits of global average error measures. 
 

The two-dimensional test problem is taken from the work [27]. 
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Fig. 9. Exact function Eq. (7) 
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Table 2. shows the approximation results, using several experimental designs and 

approximation methods. 

Table 2. Results of approximation using 41 runs 

Method Moving 

Least 

Squares 

[27] 

Local quadratic with Gaussian weighting 

coefficient 

Local cubic with 

Gaussian weighting 

coefficient 

Exp. 

Design 

CVT PLS PLS MSE 

LH 

Sobol Halto

n 

New 1 New 

2 

New 

1 

New 2 MSE 

LH 

AAE 0.01

33 

0.019

1 

0.006

48 

0.006

17 

0.008

41 

0.008

71 

0.006

26 

0.005

98 

0.004

13 

0.0038

7 

0.00360 

 

Here CVT is the Central Voronoi Tessellation design [27], PLS is the Progressive Lattice 

Sampling [27], MSE LH is the LH design optimized according the Mean Square Error [2, 10], 

New 1 is the design Fig. 5., New 2 is the design Fig. 8. 

It can be seen that Local quadratic approximation gives better results than Moving Least 

Square [27]. The new sequential designs give the prediction error approximately equivalent to 

the error obtained by using fixed-size MSE-optimal Latin Hypercube. The best results for this 

function can be obtained using local cubic approximation.  

 

7. The optimization examples 
 

Here we show two optimization examples – with two and with six variables. Similar to other 

authors, the optimization approach is based on the sequential metamodeling. At each stage the 

metamodel is built, the optimum of metamodel function is found and the search region is 

reduced. The metamodels are built using first, second or third order local polynomial 

approximation with Gaussian weighting function [2]. The best type of approximation is 

chosen using leave-one-out cross-validation. Because this cross-validation method suggests 

increased bandwidth value (decreased coefficient in the exponential weighting function 
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respectively), the suggested value was corrected using a multiplier which was found by 

analysis of great number of approximation examples for various numbers of variables, runs 

and level of noise [2]. The optimization of the metamodel was carried out using a simple 

multistart random search method, which needs a large number of approximated function 

evaluations but gives a good reliability of search results [14]. Using the iteration method for 

solving a system of linear algebraic equations, the calculation of approximated functions is 

very fast and allows 10
5
-10

6
 function evaluations in a few seconds for number of variables 

m≤12. Only the use of local cubic approximation becomes unpractical for problems with m>5. 

We did not carry out research to achieve optimization with the minimal possible number of 

experimental runs (evaluations of exact function). For each next stage the range of each 

variable was decreased two times, values calculated in the previous stages were not used. 

The relative error of minimum found is defined as 

  
exact

exact

F

FF
E

min

minmin
%100

−
=  . (8) 

 

7.1. Two-dimensional example 
 

Here we show a simple very well-known optimization example – Six Hump Camelback 

function which was used for metamodel and optimization testing in [5, 21, 22, 31, 32, 33].  

It is defined as: 
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This function has six local optima with the global optimum equal to −1.031628 at (0.0898 

−0.7127) and (−0.0898 0.7127).  

Let us assume that the function is unknown to the designer and that the function value can 

only be obtained through computation-intensive analysis. Therefore, the goal is to identify the 

global design optimum with a small number of function evaluations. We use the design space 

reduction in three stages. 

 

 
Fig. 10. Camel Back function. Left – exact function, right – the first approximation stage (25 

sample points) 
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Fig. 11. Contour plot of first stage metamodel with experimental points and second stage 

search region shown 

 

The second stage was executed in the region x1∈[-0.5, 0.5], x2∈[-0.9, 0.9], the four points 

from the first stage, which fall in the reduced region, are not used. The cubic local 

approximation with Gaussian weighting function was used, RMSE=0.059064, 

RRMSE=12.51%. Two optima at points (0.0945584, -0.708366), (-0.0945565, 0.7083668), 

exact function value at those points  

 

 
Fig. 12. Contour plot of second stage metamodel 

 

F=-1.03137, approximated values 008363.1ˆ −=F . 

The third stage should be made at two subregions to specify two optima points, but it is not 

necessary because the found minimal value -1.03137 differs from exact minimum -1.0316 by 

0.025%, which is more than sufficient in usual engineering practice. 

In the third stage over the region x1∈[0, 0.2], x2∈[-0.8, -0.6], 12 experimental points are 

added, previously created points were not used. Local cubic approximation, RMSE=4.16E-5, 

MAE=0.00015, optima at point (0.08984, -0.71265), F=-1.0316284. 

Table 3. Comparison of the results of Camel Back function optimization 

 NEW NEW PCK 
Prev. 

ARSM 

Impr 

ARSM 

I 

Impr 

ARSM 

II 

WHDSRO SA 

Evalu-

ations 
51 63 45 100 39 44 97* 11276 

E (%) 0.025 <0.001 0.16 16 0.54 0.25 <0.01 <0.01 

 

In the Table 3., NEW is the proposed method, PCK – Polynomial–Clustering–Kriging , the 

result is taken from  [32], Prev. ARSM, Impr ARSM I, Impr ARSM II  are the results taken 

from [31],  WHDSRO – Working-Hotelling Domain Spanning Robust Optimization [5], 

result with 98% successful convergence, SA – Simulated Annealing, result taken from [33]. 
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It can be seen that the proposed method gives very good results – high precision and a low 

number of function evaluations. 

 

7.2. Six-dimensional optimization example 
 

This example is the Hartman 6 function Eq. (10). This function was also optimized in [3, 31, 

32, 33, 34]. In the region 0≤ xi≤1, i=1,..., 6 the function has global minimum: fH6(0.201690, 

0.150011, 0.476874, 0.275332, 0.311652, 0.657300) = -3.32237. 
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with coefficients given in Table 4. 

 

Table 4. Coefficients for Hartman 6 function 

i αi ci pi 

1 (10, 3, 17, 3.5, 

1.7, 8) 

1.0 (0.1312, 01696, 0.5569, 0.0124, 

0.8283, 0.5886) 

2 (0.05, 10, 17, 0.1, 

8, 14) 

1.2 (0.2329, 0.4135, 0.8307, 0.3736, 

0.1004, 0.9991) 

3 (3, 3.5, 1.7, 10, 

17, 8) 

3.0 (0.2348, 0.1451, 0.3522, 0.2883, 

0.3047, 0.6650) 

4 (17, 8, 0.05, 10, 

0.1, 14) 

3.2 (0.4047, 0.8828, 0.8732, 0.5743, 

0.1091, 0.0381) 

 

 
Fig. 13. Hartman 6 function. Left – exact function, right – local quadratic approximation. All 

the variables that are not used for plotting are fixed at 0.5 
 

For the approximation of this function the first 54 runs from fixed-size 111-run experimental 

design were used. The 111-run design was optimized according to complex criterion Eq. (5) 

with the coefficients a=0.001, b=0.1. The projections of the 111-run design and the 54-run 

design are shown in Fig. 14. 15. 
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Fig. 14. Projections of 6-factor 111-run design. Left – plane x1-x2, right – plane x1-x1 
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Fig. 15. Projections of first 54 runs from 6-factor 111-run design. Left – plane x1-x2, right – 

plane x1-x1 

 

The optimization was provided in four sequential stages, at each next stage the search region 

was reduced two times at each dimension. The local quadratic approximation with Gaussian 

weight function was used for metamodel building. 

Table 5. The convergence history 

 1-stage 2-stage 3-stage 4-stage 

RMSE of 

prediction 
0.2977 0.1617 0.0350 0.002746 

Fmin -0.0806 -2.6436 -3.31678 -3.32233 

Error of 

minimum found 
92% 20% 0.17% 0.001% 

Total number of 

function 

evaluations 

 

54 

 

108 

 

162 

 

216 

 

Table 6. shows the comparison with results obtained by other authors. 

Table 6. Comparison of the results of Hartman function optimization 

 New New 
rbf-

Solve 

DIR-

ECT 
MCS 

Prev. 

ARSM 

Impr 

ARSM 

I 

Impr 

ARSM 

II 

WHD

SRO 
WSN SA 

Eva-

luati-

ons 

163 217 87 213 74 1248 158 105 591 82 11081 

E (%) <1 <0.01 <1 <1 <1 <0.1 20 26 <0.01 <1 95 

 

In the Table 6., ARSM, Impr ARSM I, Impr ARSM II  are the results taken from [31], 

rbfSolve is taken from [3]. DIRECT is an algorithm developed in [18] for finding the global 

minimum of a multi-variate function subject to simple bounds, using no derivative 

information. The result is taken from [3]. MCS (Multilevel Coordinate Search) by Huyer and 

Neumaier [13] is a Matlab program for bound constrained global optimization using function 

values only, results are taken from [3]. WHDSRO – Working-Hotelling Domain Spanning 

Robust Optimization [5], result with 78% successful convergence. WSN – result taken from 

[34]. SA – Simulated Annealing, result taken from [33] 

It can be seen from Table 6. that the proposed method gives the minimal number of function 

evaluations for finding the optimum with E<0.01%, as well as a good performance for finding 

the optimum with E<1%. 

 



36 

 

8. Conclusions 
 

The proposed complex space filling criterion approach allows creating designs of experiments 

with good space filling properties over the whole domain and all its one- and two-dimensional 

subspaces. This approach allows to construct both fixed-size and sequential experimental 

designs. Sequential designs can be obtained by adding new points to the existing design or by 

arranging the points of a large optimized fixed-size design. 

Optimized LHDs can be used as the initial design for the search of optimal designs without 

level restrictions. 

The accuracy of metamodels which are built using proposed sequential experimental designs 

is comparable to the accuracy of metamodels built by using fixed-size optimal designs or 

adaptive-sequential designs with the same number of runs. Kriging gives the average best 

accuracy of metamodels which are built using deterministic experiments, but local polynomial 

approximations with Gaussian weighting function give almost the same accuracy and may be 

the most effective for approximation of functions with noise. 

Future research will be directed at the development of a method for the optimal choice of 

weighting coefficients of complex space-filling quality criterion in dependence of the sample 

size and the number of input variables.  
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AuziĦš J., Januševskis J. Jauni secīgie eksperimentu plāni metamodelēšanai un optimizācijai 

Darbā piedāvātas jaunas secīgo iztvērumu pieejas eksperimentu plānu veidošanai. Galvenā ideja ir jaunu 

eksperimentu plāna punktu pievienošana vai eksistējoša plāna punktu sakārtošana, izmantojot kritēriju, kas ir 

sava veida kompromiss starp telpas aizpildes vienmērīguma kritēriju visā eksperimentālajā apgabalā un tā maza 

dimensiju skaita projekciju apakštelpās. 

Secīgie iztvērumi var tikt lietoti gan metamodeĜu veidošanai, gan uz metamodeĜiem balstītai optimizācijai. 

Darbā lietotas lokāli svērto polinomu aproksimācijas metodes un rezultāti salīdzināti ar citu autoru rezultātiem, 

kas iegūti ar radiālo bāzes funkciju un Kriginga metodi, pielietojot tās labi zināmiem aproksimācijas un 

optimizācijas testa uzdevumiem. Vairumā gadījumu jaunie datoreksperimentu plāni rada mazāku prognozes 

kĜūdu, salīdzinājumā ar zināmajiem secīgajiem plāniem. 

 

Auzins J., Janushevskis J. New Sequential Designs of Experiments for Metamodeling and Optimization 

In this work, a new sequential sampling approach for creating designs of experiments is proposed, the main idea 

of which is the adding of new experimental points or arranging points in existing experimental design according 

to a criterion, which achieves a compromise between the space filling quality in whole space and low-

dimensional subspaces. Sequential samplings can be used both for global metamodeling and metamodel-based 

design optimization. The authors use locally weighted polynomial approximation method and compare results 

with the results of other authors, obtained by using RBF and Kriging methods on a number of well-known 

common approximation and optimization test problems. Kriging gives the average best accuracy of metamodels 

which are built using deterministic experiments, but local polynomial approximations with Gaussian weighting 

function give almost the same accuracy. In most cases the new designs for computer experiments give smaller 

prediction errors when compared with existing sequential designs. 

 

Аузиньш Я., Янушевскис Я. Новые последовательные планы эксперимента для метамоделирования 

и оптимизации 

Предложен новый подход к образованию последовательных экспериментальных выборок. Основная идея 

состоит в добавлении новых экспериментальных точек или упорядочивании точек существующего 

плана эксперимента согласно критерию, который представляет собой компромисс между критерием 

равномерности заполнения всего экспериментального пространства и ее подпространств 

низкоразмерных проекций. Последовательные планы могут использоваться как для создания 

метамоделей, так и для оптимизации на базе метамоделирования. В работе использованы методы 

локально взвешенных полиномиальных аппроксимаций для хорошо известных тестовых задач 

аппроксимации и оптимизации, и результаты сравнены с результатами других авторов, полученными 

методами Радиальных базовых функций и Кригинга. В большинстве случаев новые планы компьютерных 

экспериментов дают меньшую ошибку прогноза. 


