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Abstract—A novel class of generalization of Haar like discrete 

orthonormal functions is presented. The basics of the class of 
RABOT-Haar transforms (RA-HT) are described. Additionally, 
three novel subclasses of RA-HT are introduced using 
restrictions on the values of angles. The subclasses differ by the 
diversity of values of rotation angles. Examples of shapes of basis 
function(s) (BF) are presented. Basic properties of BFs for two 
subclasses of transforms are described. Certain parts of given 
BFs are invariant to shifting. Recurrent formulas for the 
calculation of BFs are given. An insertion of permutation 
matrices between factorized matrices ensures the ordering of BFs 
by ranks. The rules for the building of permutation matrices are 
formulated. The number of operations for the fast calculation of 
transforms is presented. 
 

Index Terms— Orthonormal Transforms, Parameterization of 
Transforms, Haar Functions, Generalization of Haar Functions 
 

I. INTRODUCTION 
In the reference list in [1] we can find out there are about 300 
papers concerning the signal processing based on the Haar 
functions (or Haar transforms − HT) or HT extensions at least. 
The goal of this paper is not to present a comprehensive 
overview or the analysis of history of Haar functions. Such 
overview is kept for the future. This paper deals only with one 
of the possible generalizations of HT. 

The applications of HT cover a wide range of use, from the 
1D signal de-noising to the edge detection, and from the 
design of digital devices to image processing. Although the 
applications of HT have a long and successful history across 
the last three decades, there are also many very recent works. 
For example, [2] highlights the using of HT for the 
identification of sparse impulse response by adaptive 
algorithm in Haar domain. There are many papers on the using 
of HT or its extensions in adaptive filtering (see, for example, 
[3]). Pogossova et al. [4] apply tree-structured HT (TSHT) to 
de-noising of signal. This indicates that novel research 
approaches dealing with HT may be very welcome. In the 
development of the extensions of classical HT it seems that 
the first trial of generalization of Haar functions is Watari 
functions [5]. B. Falkowski introduced a multi-polarity HT [6] 

that is useful for design of digital devices. [
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7] speaks about the 
multi-valued Vilenkin-Chrenstenson and Galois-Field 
Transforms. Further development of multi-valued Haar-like 
transforms has been continued by Stankovic [8]. K. Egiazarian 
in [9] introduced TSHT. In the context of the current paper, 
the short paper presented by B. Fino and R. Algazi [10] could 
be important. The authors tell about the class of Slant Haar 
transform (SHT) that is derived from the elementary rotation 
matrices by using generalized Kronecker product and some 
sequence of rotation angles. The idea about the rotation of 
planes in the Euclidian space is well known. This approach 
has been used, for example, in the QR-algorithm [11]. 
Unfortunately, the „DSP peoples“ use rotation angles as an 
interpretative instrument not so often. An exception is so 
called „parameterization“, for example, regarding to CORDIC 
based wavelet filters [12]. In [1] there are references to a 
dozen of papers at least about parameterization regarding 
orthogonal transforms. 

In [13] we introduced the class of the Rotation Angle Based 
Orthogonal Transform (RABOT)-Haar-like transforms 
(RA-HT). However, only a very brief description of those 
functions was provided, and, in fact, this class of transforms 
was called the Haar-RABOT transforms. The name changed 
in the scope of this paper is more acceptable because of the 
hierarchy reasons – Haar functions can be treated as a subclass 
of RABOT functions. From the one point of view, we can 
treat defined functions as "damaged" Haar functions, but from 
the other side – as some kind of generalization of HT. Also, a 
further extension of class RA-HT in the current paper 
contributes for the name change. Generalization presented in 
[13] and below differs from the generalizations of HT defined 
in [10] and [8]. It is supposed that the transforms presented 
below are unknown before. The paper does not aim to 
introduce mathematically perfect definitions of functions. This 
task is for the future. Here RA-HT is described from the 
practical point of view only, without invoking serious 
mathematical definitions and investigations. 

II. BASICS OF RA-HAAR TRANSFORMS 
Let’s repeat some formulas from [13] for better 

understanding of the content of the paper presented below. 
The basic expression for the definition of matrix of RABOT 
transforms is given in [13]-(9). Below in formula (1) is 
provided a simplified expression of [13]-(9). For a wide class 
of orthonormal transforms the transform matrix can be 



 

represented by the product of sparse orthonormal matrices: 
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where ϕj – j-th column of the angle matrix: 
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N=2l – the size of transform matrix. Formula (2) is the same as 
[13]-(7) with a slight change of indexes. The matrix B is a 
sparse Stairs-like Orthonormal Generalized Rotation Matrix 
(SOGRM – [13]). The sparseness of B in (1) ensures the 
existence of fast algorithm for the calculation of RABOT 
transform [13]. 

A subclass of RA-HT is defined in [13]. Some limitations 
on rotation angles ([13]–(10)) and the structure of angle 
matrix (2) are used. In [13] we operate only with two values 
of angles and the stair-like structure of angle matrix. In the 
present paper we limit the value of angle φ2 to zero but allow 
arbitrary and different values of φ1 for each SOGRM matrix in 
(1): 
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where φ∈[0, 2π] in general case. The choice of zero angles is 
explained by some similarity of shapes of RA-HT BFs to the 
shapes of classical Haar functions in zero-valued segments. 
The extension when instead of zero value angle a nonzero 
value angle is used we keep for further investigations. The 
mutual exchange of places of angles between the second and 
the third row in (3) leads to reordering of rows (i.e. BFs) in 
transform matrix Φ, comparing (3) in this paper and (10) in 
[13]. A significant property of angle matrix (2) for RA-HT is a 
decreased number of nonzero angles across the columns of 
this matrix. For each next column, when moving from left to 
right, this number decreases twice. 

Example 1: For N=8 we have: 
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In the case when all nonzero angles φi j=π/4, it is the classical 
HT. 

RA-HT (and classical orthonormal HT also) can be 
presented by the product of three sparse matrices: 

)()()()( 1828388 φBφBφBφΦ ⋅⋅=  (5) 

where: 
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Here sij, cij – shortcuts for sin(φij) and cos(φij), respectively. 
BB8(ϕ1) (SOGRM) matrix is built like the elementary rotation 
structures in [ ] called as R13 + elementary rotation matrices. 

For the leftward terms in (5) more simplified structures of 
SOGRMs may be used. The simplification is caused by using 
zero values for certain angles. The most leftward term BB8(ϕ3) 
contains only one rotation structure (bolded in formula). 

Example 2: For N=4 we obtain (7). It shows that the 
structure of RA-HT matrix is the same as for the classical HT, 
ignoring the ordering of matrix rows. The transform matrix (7) 
represents the set of orthonormal BFs. By varying of angles an 
infinite number of transforms with HT-like structures can be 
obtained (in the sense of zero value segments). 
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III. ORDERING OF BASIS FUNCTIONS 
Describing angle-based transforms by the product of 



 

SOGRM matrices simplifies many things from the methodical 
point of view but it is not sufficient in some particular cases. 
For example, trying to compare conventional Haar functions 
with RA-HT functions we meet with some difficulties because 
of different ordering of BFs in the transform matrix. 

We should reorder the rows of each factorized matrix B in 
(1) to get the by-rank-ordered RA-HT matrix: 

)(...)(...)()( 1φBφBφBφΦ rjrlrr ⋅⋅⋅⋅=  (8) 

where index r indicates "ordering by ranks". It is well known 
that a permutation of rows of matrix can be presented as a 
multiplication by the permutation matrix on the left: 

)()( kkrkr φBPφB ⋅=  (9) 

The matrix Pr k must be ordered in a way to move all ‘1’s of 
B to the diagonal of factorized matrix B Br. From the theory of 
fast HT it is well known that factorized matrices have the 
structure with a SOGRM like sub-matrix in the left-upper 
corner and a unit matrix like structure in the right-upper 
corner. 
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The sizes of the mentioned substructures depend on the index 
of the used factorized matrix. 

The main goal of the use of permutation matrix is the 
transformation of SOGRM structure to the structure shown in 
(10). In the next example we try to reorder BB8(ϕ2)  to the 
matrix like . 

(6)
(10)

Example 3: For example, for N=8, k=2 the following 
permutation matrix is used: 
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After permutation of rows of B
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A. Rules for the Building of Permutation Matrix 
Proof of the rules for the building of permutation matrices 

can be missed because of clear evidence. These rules follow 
directly from the stair-like structure of SOGRM matrix and 
from the restrictions (19), (29), and (33) on the angle matrices 
presented below. Additionally, we have an experimental proof 
of rules listed below for N up to 8192. The textual 
explanations given below are brief and have some 
intersections. A reader should use formulas (not the textual 
formulations) for accurate applications (for example, 
programming). 

Let’s the size of permutation matrix to be N-by-N and the 
index k∈[1, log2(N)]. Each permutation matrix can be built-up 
if we follow the rules listed below. 

Rule 1.: The indexes of first N/2k nonzero elements are 
equal. For example, these elements are diagonal elements: 
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where i – row index, j – column index. 
Rule 2.: Nonzero elements in the left-half of permutation 

matrix have the following row column indexes: 
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Rule 3.: Nonzero elements in the upper-half of permutation 
matrix have the following row and column indexes: 
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Rule 4.: Nonzero elements in the right-half of permutation 
matrix have the following row and column indexes: 
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matrix . (12)

A reader should also remember that the basic property of 
permutation matrix is – "one nonzero element per row or 
column only". It is important when programming (13)–(16). 

Example 4: For N=4 (see Example 2, Formula (7)) only 



 

one permutation of the leftward term is needed. A permutation 
of rightward matrix is not performed at all because the 
permutation matrix P1 is a unit matrix. That follows from Rule 
1. In such a way we have a rank-ordered RA-Haar transform 
matrix in the contrast to example (7). 
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IV. NOVEL SUBCLASSES OF RA-HAAR TRANSFORMS 
We see here a freedom for the variety of limitations on the 

diversity of rotation angles. Each specific restriction can lead 
to the definition of a novel class of transforms. Some of these 
limitations are analyzed below. 

A. Subclass of RA-HT with Constant Rotation Angle 
The transform has been introduced in [13] as Haar-RABOT 

transform but the description presented there is very brief. 
A typical limitation on the values of nonzero angles follows 

from accepting equal angles in (3). For example, if N=16, the 
size of angle matrix is 8x4 with the following structure (note 
that we present the transposed version of matrix): 
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Or, in the general case, more correct condition for the angles 
used in context with (3) is: 
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By varying of angle it is possible to obtain an infinite 
number of transforms. Further we call this class of transforms 
the RA-HT with Constant Rotation Angle (CRA-HT). The 
term "constant" here means the "mutual" constancy of nonzero 
angles inside the angle matrix. 

The CRA-HT transform should not be confused with 
CRAFOT transform (introduced in [14]) that operates with 
one angle only. The transform introduced now uses an 
additional zero angle (except for BB1), and the structures of 
angle matrix for both mentioned transforms differ. 

Example 5: For φ=π/4 it gives the simplest member of 
CRA-HT class – the well-known orthonormal HT. Here a 
permutation matrix is applied for the reordering of BFs. In the 

case of classical HT corresponding scaling factors should be 
used in (20). Here we ignore these terms. 
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where 
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Each of Haar BFs can be presented by three or less values. 
Other members of CRA-HT (for φ≠π/4) have more 
complicated amplitude structure. 

Example 6: Next figure presents first four CRA-HT BFs 
(ordered by ranks) in the stairs-like graphical interpretation. 

 
Fig. 1. Shapes of the first four discrete CRA-HT BFs for 

certain values of rotation angles and N=8 



 

This shows that for the rotation angle φ=45° the CRA-HT 
class of transforms give the well-known set of orthonormal 
Haar BFs (solid line). By decreasing the angle value toward 
zero we observe the change of shapes to the well-known 
orthogonal unit pulses.

1) Basic Properties of CRA-HT 
We observe here several differences in comparison with the 

classical Haar functions. First of all the first BF is not a pure 
DC component but has some oscillations. Other BFs contain 
both the DC and the oscillating component. Additionally, 
there is a more wide diversity of function values for each BF.

A common property of classical HT and CRA-HT is the 
existence of segments with zero-values.

Property 1. CRA-HT matrix rows (i.e. BFs) with indexes
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For example, for BF Φ (6, x) there are nonzero values for 
x∈[5, 6] (k=2, m=6

8 r

–4=2).
Further we will use the term "primary basis function". We 

will call the first BF from the subset of BFs defined by the 
indexes (22) as the primary BF (PBF). This means that PBFs 
have indexes:
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The nonzero parts of BFs shapes with indexes p∈[3,4] in Fig. 
1 show the full equivalence. A similar mutual equality for the 
shapes of BFs with indexes p∈[5,8] can be observed also. In 
other words, we can declare the property of 
"invariance-to-shifting".

Property 2. CRA-HT matrix rows (i.e. BFs) with indexes 
(22) for a chosen k have equivalent nonzero parts of shapes of 
BFs. Any BF for p>2 +1 can be derived by simple right 
shifting of PBF so that
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The invariance of nonzero part of shape of BF to shifting is a 
well-known property of HT and wavelets. 

The next important property of CRA-HT concerns the 
recurrent relations between PBFs (p=2 +1k ).

Property 3. CRA-HT rows with indexes p  for 
k∈[1,log (N)]

k

2  (i.e. PBFs) satisfy the following recurrent 
relation: 
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if c≠0. But, for p∈[1, 2]: 
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B. Subclass of RA-HT with Constant Rotation Angle in 
Factorized Matrix 
The next step in the extension of angle matrix (18) is the 

requirement for the constancy of angle within a row or a 
column of (2): 
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A more accurate definition follows from (3): 
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Further we will call this transform the RA-HT with 
Constant Rotation Angle In Matrix (CRAIM-HT). There is 
some formal similarity to the CRAIMOT transform [13]. In 
the CRAIMOT transform we operate with the same angle 
within each of factorized matrices B. CRAIM-HT is based 
only on two angles (one of them has zero value) inside each of 
B matrices, except BB1. 

Example 7: In next figure we present first three 
CRAIM-HT BFs (ordered by ranks). 

 
Fig. 2. Shapes of the first three discrete CRAIM-HT BFs for certain 



 

values of rotation angles and N=8 

From the results got by playing with the CRAIM-HT BFs 
generator, it is evident that although there are some common 
similarities with previous class of functions we have also 
some new features. The present functions are more 
"oscillative". Now we can get a more broad diversity of 
shapes in comparison with the CRA-HT class of functions. 

1) Basic Properties of CRAIM-HT 
For CRAIM-HT the first two properties (including 

expressions (22)-(25)) of CRA-HT apply also. The recurrent 
relations between PBFs (p=2 +1k ) differ from the way it is for 
Property 3 of CRA-HT. That is because of extended diversity 
of angles used. 

Next picture shows a simplified scheme to build up the 
current PBF from the previous PBF by the "cross-copying" of 
the halves of corresponding rows of transform matrix. 

  pk
the left half of nonzero 

part 
the right half of nonzero 

part 

  pk+1 -xxxxxxxxxxxxxxxx -xxxxxxxxxxxxxxxx 

Fig. 3. Simplified rule for the building of PBF 

The copying includes the change of sign and multiplication 
of taken parts of row by a constant (see below). 

Property 4. CRAIM-HT rows with indexes p  for 
k∈[0,log (N)]

k

2  (i.e. PBFs) satisfy the following recurrent 
relation: 
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if c≠0. But, for p∈[1, 2]; 
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C. RA-HT with Reduced Sequences of Rotation Angles in 
Factorized Matrix 
In the further generalization step we fill the columns of 

angle matrix by reduced (to half) angle sequences: 
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The corresponding definition of the column of angle matrix 
is as follows: 
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We will call this transform the RA-HT with Reduced 
Sequences of Rotation Angles (RSA-HT). Here some formal 
and small similarity to the CRMOT [13] can be found in the 
definition of values of angles. But anyway – these transforms 
(RSA-HT and CRMOT) are very different. 

Example 8: Next figure presents two of RSA-HT BFs. 

 
Fig. 4. Shapes of two discrete RSA-HT BFs (p=3,4) for certain 

values of rotation angles and N=8 

Comparing the shapes of BFs to the corresponding BFs 
from the sets of functions defined in previous subsections, one 
principal difference appears – the nonzero parts of BFs with 
indexes p=2 and p=3 differ (non-invariant to shifting). We 
keep the investigations of RSA-HT properties for the future. 

V. NUMBER OF OPERATIONS FOR THE 
CALCULATION OF RA-HAAR TRANSFORMS 

For the direct calculation of transform the RA-HT matrix 
can be used: 

XΦY ⋅= r  (34) 

where X – input signal vector, Y – RA-Haar spectrum vector. 
As an alternative, for the fast calculation of spectrum a 
factorized form of (34) can be used: 

XφBφBφBY ⋅⋅⋅⋅⋅= )(...)(...)( 1rjrlr  (35) 

Since the transform matrix Φr contains a large number of 
zeros (>50% for N≥8), we need to compare the number of 
operations spent for the calculation of spectrum Y by (34) and 
the number got by (35). 

A. Number of Operations for the Direct Calculation 
For the transform matrix of size N-by-N, N2 multiplications 

and N⋅(N-1) additions are needed to calculate the spectrum in 
a general case. Property 1 (declared above) allows a 



 

significant reduction of the number of operations. In such a 
way, if we take into account zero values, we obtain: 
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nmult – the number of multiplications, nsum – the number of 
additions. The total number of operations is: 

)12( +⋅⋅=+= ΦΦΦ nNnnn summultop . (37) 

B. Number of Operations for the Fast Calculation 
As mentioned above, the sparseness of BBr in  ensures a 

fast algorithm for the calculation of RA-HT. The total number 
of mathematical operations for the calculation of fast 
transforms by  may be easily found. Matrices Br

(35)

(35) B  contain 
mainly zeros. There are usually only two elements per column 
and per row which are not equal to zero (see, for example, 
(6)). The RA-HT is a special case because of the annihilation 
of part of rotation structures within Br matrix (see, for 
example, (10)). The cause of annihilation is zero value angles. 
A single elementary rotation takes four multiplications and 
two summations in general case. If we go leftward through the 
factorized matrices, the number of operations reduces twice 
per each matrix. This means that the total number of 
operations can be expressed as: 

)1(6 −⋅=+= Nnnn FTsumFTmultFTop  (38) 

where 
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nmult FT – the number of multiplications for FT,  
nsum FT – the number of additions for FT. 

Further reduction of the number of operations for 
CRAIM-HT and RSA-HT is obtained using some angles with 
values π/4 and corresponding scaling factors. It is also 
possible to avoid any multiplications, for example, in the case 
of rationalized HT (BFs have values +1, –1, and 0 only). 

1) Efficiency Rate 
We will use efficiency rate to compare the number of 

operations needed for the calculation of RA-HT by (34) and 
the number got by (35). For the practical estimation of rate 
asymptotic formulas may be used: 
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In the case the rationalized HT is used the number of 
multiplications is zero and the ratio is higher: 
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Next figure shows the efficiency rate in dependence on the 
logarithm of N. The present curves reflect the accurate 
versions of (40) and (41). Practically linear dependencies 
appear for the large values of N as follows from the 
asymptotic formulas (most rightward formulas in (40) and 
(41)). 

 
Fig. 5. Efficiency rate for the fast RA-HT and rationalized HT 

The curves may be treated as the upper and lower limits for 
the efficiency rate. 

VI. CONCLUSION 
• The paper introduces a novel class of transforms with the 

Haar like structure of transform matrix. A formal similarity 
between the transforms introduced and the classical Haar 
transform appears as the equality to zero for the same 
segments of basis functions. The definition of presented 
transforms is based on the rotation angle approach 
described in [13]. 

• Three subclasses of Haar like transforms introduced here 
differ by the number of nonzero rotation angles used, and 
they have the same structure of angle matrix with zero 
value angles in certain parts of the matrix. The simplest is 
the CRA-HT which uses one nonzero angle only. The 
CRAIM-HT operates with log2(N) nonzero angles. The 
Slant Haar transform may be treated as the special case of 
CRAIM-HT for some relations between angles. For the 
RSA-HT N/2 angles are used. 

• For the CRA-HT and the CRAIM-HT so called primary 
basis functions are defined. The recurrent relations occur 
in primary basis functions. Nonzero segments for some 
basis functions can be formed by easily shifting nonzero 
segments of primary basis functions rightward. 

• The rules for permutation of rows of factorized matrices 
are defined. The permutation of rows of SOGRM matrices 
ensures the ordering of basis functions by ranks. 

• All defined transforms have fast algorithms. Efficiency 
rate is practically a linear function dependent on log2(N) 



 

for large N. For N=4096 the fast algorithm needs four 
times less number of operations than the direct calculation 
of transform. 

A. At This Moment And for the Future 
This paper must be treated as introductory. We see a lot of 

work related to the present subject still. The first two years of 
experience with angle based transforms are very promising. 
While this paper was waiting for publication we presented the 
initial versions of RA-HT filters [16]. There we demonstrated 
that RA-HT could be very promising, for example, in edge 
detection. Our recent activities in the development of 
CRAIMOT based devices are reflected in [17]-[19]. We are 
working on the applications of RA-HT transforms and we 
have started with FPGA implementation of RA-HT functions. 
These functions could be concurrent to wavelets, for example, 
in image processing. It seems to be more beneficial as Haar 
functions. There is a lot of space for the special investigation 
and comparison of CRAIM-HT and Slant HT [10], and, for 
the comparison to wavelets, of course. 
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