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1. Introduction

This paper presents a development of the models proposed in papers [1, 2]. It is essential also
that we process the data already discussed in [3 — 6] revising some conclusions of mentioned papers.
According to the “traditional” Weibull model the cumulative distribution function of strength is
defined by

F(s)=1—-exp(=(s/B)"). (M

Let the reference length of fiber be equal to /; and fiber length equal to L. Then in accordance
with “linear law” (LW) model the fiber strength cdf is defined by

F(s)=1=exp((L/}) (s/B)"). )

It should be noted that here parameter S, corresponds to L =/, [, changes if /, changes.
The “power law” (PW) Weibull model

F(s)=1-exp(=(L/1)"(s/ B))"), (€)
which has been intensively studied in literature [3 — 5, 7], while providing a much better empirical fit
to the strength data of specimens with different length L, lacks the theoretical appeal of the weakest-
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link models. We derive a new weakest link distribution family (WLDF) based on the assumption of a
two-stage failure process. For modeling purposes we consider a specimen (fiber) as a chain of n
elements (links) of length /;. First, the damage process develops along the specimen and defects appear
in K elements. Here K is integer random variable, 0 <K <n. Two types of the second stage will be
considered in this paper. First type: in every element (containing defect or flaw) the development of
fracture process takes place and the strength of the weakest item (link) defines the strength of the
specimen. Second type: development of fracture process in crosswise direction takes place only in one,
critical element. Then only the probability that the second stage will take place depends on the number
of elements but the strength distribution of this element (reflecting the process of accumulation of
elementary damages in crosswise direction up to specimen failure) does not depend on this number.

We consider two different versions of the first stage also. First version: defects appear before
the loading and their number does not depend on the subsequent loading. Second version: defects
appear during loading (instantly or gradually) and their number depends on the load.

2. General description of the model family
2.1. The fracture process takes place in every element

2.1.1. Models of instant fracture. Let K, 0 < K <n, is the number of elements in which defects appear.
Let ¥, 7Y,, ..., Y, be independent random variables which are the strengths of these elements with the
same cumulative distribution function (cdf) Fy(x); Z,,Z,,....Z, , F,(x) are the same for the

elements without defects. It seems reasonable to assume that the random strength of the specimen is
the strength of the weakest element

X=minY,,...Y,Z,,....Z, ), 4)
with the corresponding cdf
F(x)=1-(1=Fz (). pd*, (5)
k=0
where
0(x) = (1= Fy (x))/(1-F5(x)), (6)
Fy @) =1= (1= F,(x))". )

Several different assumptions can be made here. First, let us suppose that the defects appear
before loading (technological defects). It can be assumed that the probability of finding a defect in one
element, p, is a constant (and a parameter of the model). Then the corresponding binomial probability
mass function (pmf) is

|
pp = g ®)

k\(n—k
If A =np is large enough we can use (as an approximation) the Poisson pmf:

p, =exp(-=) A"/ k! )
In this case the (5) (approximately) can be written in the following way

F(x)=1-(1-F; (x))exp(-A(l1-3(x))). (10)
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If initiation of the defects depends on the applied load then it can be assumed that p = F(x),
where F;,(x) is the cdf of defect initiation stress.

It is worth to note that if & =1 then (2) is a particular case of (5) or (10): the Weibull
distribution is included in considered WLDF.

2.1.2. Models of gradual accumulation of defects. We consider the process of accumulation of
defects as an inhomogeneous finite Markov chain (MC) with finite state space

I={i,i,, . i i, }.MCisinstate i, if there are (k—1) defects, k= 1,..., n+1. State i, , is an
absorbing state corresponding to the fracture of specimen. Usually we assume that the Markov chain
starts in state i; but in the general case the initial distribution is represented by a row vector 7 given

by 7 =(7,, Ty, T4y T,.,) . We further assume that the loading (i.e. the process of nominal stress

increase in the specimen cross section) is described by an ascending (up to infinity) sequence
{x,, x5, ..., Xx,, ...} and the process of MC state change is described by the transition probabilities

matrix
_pu P Piz Pxu - Piasy Pins2) ]
0 Pn P Pu o Pawy  Paed)
p= 0 0 py Py - Py Pinsay |,
0 0 0 0 o Pl Plstymner)
i . 0 |

which at the rth-step is a function of x,, =1, 2,.... Let the sequence {x, } be fixed, then P is a
function of ¢. Let us note that if n =00 then the subscript (n+2) is not a number but only a symbol,
corresponding to the absorbing state 7., .

In the new model the number of defects, K(¢), and the strength of specimen,

X(t) = l’l’lll’l(Yl,Yz,..,YK(t),Zl,Zz,.,anK(t)), (1 1)

are random functions of time.
The specimen fracture occurs when the strength of the specimen becomes equal to or less than
the current load (stress). Ultimate strength

X:xT*, (12)

where
T’ =max(t: X(t)>x,). (13)

Cdf of Xis defined on the sequence { x,,x,,...,X,,,... } by
Fx,) =m([ [ PG, (14)
J=1

where P(j)is the transition matrix for step number j, column vector u = (0, ..., 0, 1)' where only the
last component is equal to 1 but all the others are equal to 0.

2.1.3. The specimen strength without defect is very large. For the purpose of specification of the
models, the general description of which was given in previous section, we additionally have to
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specify the cdf Fy (x), Fy(x) (for models with defect number dependence on load), F,(x), and,

additionally, for 'Markov' models, an initial distribution = =(~z,, 7,,...,7,,,, 7,,,), wWhich, of

n+l>

course, in general case can differ from binomial or Poisson distribution. For ‘Markov’ models we need
to specify also the matrix P as function of current stress, x, , and a sequence {x,} as well.

In this paper we assume that Fy(x) andFj(x) are the smallest extreme value (sev)

distributions. For the case when location parameter 6, =0 and scale parameter @, =1 it is assumed
that
£y (x) =1-exp(=exp(x)), (15)

Fy(x)=Fy(x=9,), (16)
where in following x =log(s), s is the strength (expressed in MPa). If J, >0 then at the same

probability of events the stress required for new defect initiation is larger than the stress required for
the failure of an element with defect.

For F,(x) we consider two assumptions in this paper. First, sev distribution can be assumed
again:
F,(x)=F,(x-0,). (17)

Again we can see that if 0, >0 then F,(x) < F,(x).
But the simplest is the assumption that

F(x) 0,x<C, (18)
X)=
‘ Lx>C,
where Cis a very large constant.
Then instead of (4) we have
min(Y;,....Y, ), K >0,
x = | min- ) (19)
C, K=0.

Now Equation (5) can be written in the form

l—ip,ﬁk, x<C,

F(x) = k=0 (20)
1, x=>C,
where
0=1-F(x). (21)

Then equation (10) takes the following form

1 —exp(—AF, (x)), x<C,

F(X)={1 >0 (22)

In [1, 2] it was shown that the cdf
F(x)= p{l=(=F )™ (23)
k=0

or

329



F(x) =1-(1-F (x))exp(=AF; (x)) (24)

where p, is defined by (7), A =np, p =F,(x), F,(x) is sev cdf, provides a good empirical fit to
the strength data of specimens with different length, L. Equation (24) can be considered as
modification of (8): F), (x) is used here instead of F’ 7 (x). And it is not only an approximation of the

“binomial” model. Now we can consider the specimen as continuous and define 4 by

A=A4L/1, (25)
where L is the specimen length, A, is the intensity of defects (the defect number per length / ;1 is

some constant ). Then function Fj (x)can be regarded as an element-length-independent cdf of

strength distribution in the cross section with a defect, where the number of defective cross sections
has the corresponding Poisson distribution.

For Markov models we should specify the matrix P. In the case when parameter C is very large
(the 'theoretical' strength is much higher than the real strength) the probability that in some element a

defect appears at the stress x, under the condition that it has not appeared at the stress x,_; is

b(t) = (Fy(x,) - F, (x(z—1) )/(1-F, (x(t—l) )

If there are s defects already the probability that » new defects appear, 0 <r <k =n—s, and
the total number of defects will be equal to m = s+r

Pon () = (b(@)" (1 =b()) " K/ F1(k = r)!.

Conditional probability of element fracture at the nominal stress x,

q(t) = (Fy (x,) = Fy (x(y)) /(1= Fy (x ;1)) -

Corresponding probability that none of the elements fail when there are defects in m elements is

u, (1) =(1-q@®)".

The probability of coincidence of these events, which we consider as independent, is the
probability of transition from state i = s+1 to state j = i+r

Pii (1) = Doy joy (Du ;1 (1),
where i < j<(n+1).

Conditional fracture probability at state i
n+l

Pignsny (@) =1— zpij (@).
j=i
Of course, p; (1) =0,if j <i,and p(, )2 (@) =1.

2.2. The fracture process takes place only in one element
2.2.1. The models of instantaneous failure. In previous models it has been assumed that defects are

uniformly distributed along the specimen length. But it is plausible that such uniformity is retained
only at the initial stage of loading. More precisely, it can be assumed that upon formation of a weakest
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link in a chain, the development of failure proceeds only in this link, and the specimen length is of no
importance any more. The simplest variant of such a model corresponds to the assumption that the law
of strength distribution in the element where this process proceeds (in the cross section where the
critical defect is formed) is independent of specimen length, which determines only the probability of
formation of an element with defect. The mathematical formulation of this hypothesis is as follows

Y, K>0,
X = (26)
{Z,K =0.

Here, Y and Z are random variables, which are the strength of element where the failure
process proceeds with or without defect, correspondingly.
In this case

F(x)={1-(1-F(x)" 1 Fy (x) + (1= F (x)" F (x) . 27)
If F,(x) is defined by (18) then for the case C = o

F(x)={1-(1=F(x)"}Fy(x) . (28)

2.2.2. Model of successive formation of at least one defect. The corresponding Markov chain has only
three states. The first state corresponds to the absence of defective elements; the second one means the
presence of at least one defective element, and the third, absorbing one, means failure of the specimen.
The corresponding probabilities at an tth step are determined by the formulae

@) =[1-001", p,®=>0-p,O)1-q(0), p;@)=10-p,()q(@),

Pu(®) =0, py(t)=1-q(t), py()=q@), ps(t) = p(1) =0, py; (1) =1.

In this case

v KO0, 2
0= Z,K(t)=0. (29)

Specification of the cdf and of elements of the matrix P (equations for b(¢) and ¢(¢)) can be
made in the same manner as in section 2.1.3.

3. Test data. The processing of test data
3.1. Carbon fiber bundles

We consider the data obtained by Bader and Priest [6] and present the description of these data
as given in [4]:

“There are sixteen samples, consisting of four types of bundles each tested at four different
gauge lengths. The four types are (a) single carbon fibres, (b) dry bundles of parallel carbon fibres,
(c) impregnated tows of parallel carbon fibres in an epoxy resin matrix, (d) hybrid bundles consisting
of tows of carbon embedded in a glass-fibre/epoxy laminate. In each case the failure load under
tension was measured in Instron testing machine, and the failure stress computed from that. For types
(a)-(c), the tests were repeated independently with fibres of different length. For type (d), the tests
were carried out on single specimens of length 200 mm, and these specimens notionally divided up to
obtain data for shorter gauge length.”
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Summary (mean values and standard deviations for every sample) of these data is given in [4] in
the Table 1. The strength of every specimen for single fibers and for impregnated bundles is given in
[3]. We consider the processing of the latter data only.

3.2. Parameter estimation. Linear regression analysis

So we consider the strength data of carbon fibers (four samples with specimen lengths
(L, L,, Ly L;)=(1, 10, 20, 50 mm), sample sizes (n,, n,, ns, n,)=(57, 64, 70, 66)) and the
strength of impregnated bundles (four samples with specimen lengths (L,, L,, L;, L,) = (20, 50, 150,

300 mm), sample sizes (7n,, n,, ny, n,) = (28, 30, 32, 29)). In [4] the authors consider fitting of these

data by LW (equation (1)) and PW (equation (2)) models. However, it appears more important to
consider the accuracy of prediction of the strength of fibres with length that differs from the length of
the sample used for model parameter estimation.

In the following, we perform the prediction of strength for L =L, while estimating model

parameters using data with L =L, or with L =L, and L = L,. The maximum likelihood method is

very labour-consuming for the case when cdf is defined by Equation (14) so linear regression analysis
(LR) was used for parameter estimation.

Let x; be jth order statistic, j =1,2,...,---n,, n, is the number of specimens with L =L,

i=1,2,..,k, , k, is number of different L, E(X l]) is the expected value of random order statistic

0
X, E(Xjj) is the same but for 6, =0 and 6, = 1. Then we have the following linear regression

model

0
E(X;)=0,+6, E(Xy), (30)

0
where E(X ;) is a function of L, n, and}.
Equation (30) can be used for estimation of @, and 6, if all the other parameters are fixed. We

compare above-mentioned model with both the LW and PW models. If S is random strength of
specimen with cdf defined by (3) then for X = log(§) the cdf F, (x) is defined by

Fy(x)=1-exp(-exp((x - 6,)/6)) (3D
with
6, = log(B)—(y/a)log(L/l), 6, =1/ c. (32)

So for PW model we have three unknown parameters 8., = log(f,), 6, =—y /o and 6,

0
E(X ;)= 0y + Oy log (L, /1)) +6, E(X ) (33)
For LW model we have two unknown parameters 6, and &,
0
E(Xij):90+91('10g(Li/11)+E(Xij))~ (34)

0
In (33) and (34) the value of E(X ;) is the expected value of j-th order statistic for sample

from sev distribution with sample size n,, 6,=0 and 6 =1. It is assumed that roughly

E()O(g,-) = ;7_1 (F(xy )), where ﬁ(xl.j): (j - 0.3)/(/(] + 0.4) is an estimate of F'(x;).
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As the measure of data set fitting the statistic
/2
Rz =(1-R*)"2, (35)

was chosen. Here R? is standard statistic of LR analysis (the coefficient of determination).
As nonlinear parameter estimates, the values of the parameters which correspond to the

minimum of statistic R, are taken.

As the measure of the mean prediction error the statistic
ko W
Q1 = (Z(Xi - Xi)2 / Z(Xi - X)2)1/2’ (36)
i=1 i=1

but as the measure of the prediction error for L =L, the statistic OSPPt-4 (Order Statistic
Probability Plot Test statistic, see [2]) were used

OSPPt-4 = (Z(x4J X45)? / Z(x4J =X, )2 (37

j=1

Here X, = ZXU /n,; predicted X, = ZXU /n.; predicted X = 9 +0 E(X.]) 9 and 9 are
j=1

K,
LR estimates of 6, and 6,, X = Z
i1

3.3. Specifying the models

For the convenience of subsequent reference let us list the full number of specifications and

assumptions which define each model in the considered family. We have to specify

1. The conditions under which the initiation of defects takes place. The process of initiation of
defects can be a function of technology only ( p or A does not depend on load), or this initiation
depends on load ( p = F(s) or A =nF,(s)); see (8) and (10).

2. A distribution of defect number. The binomial or Poisson distributions are considered as the
most appropriate. The defect number cannot exceed the number of elements, so if the finite
Markov chains theory is used then the Poisson distribution should be “truncated”.

Remark. We say that a (discrete) distribution is “truncated” in m if instead of discrete rv X we
consider the rv

X, if X <m,
m, if X >m.

In this paper m is equal to the number of elements 7 .

3. An initial state distribution, 7, for the models in which Markov chains theory is used. In this
paper 7 = (1,0,...,0).

4. CDF of strength of elements without defects, ', , the cdf of strength of elements with defects,
Fy, and the cdf of defect initiation stress, /|, (if the process of defect initiation is assumed to be
a function of load).

5. The sequence of loads (stresses) {x,} if the finite Markov chains theory is used. In this paper, as

arule, {x,} is a sequence of numbers uniformly distributed in some interval.
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There is a great deal of variations of the models from WLDF. In this paper we consider four
basic models with F} (x), F,(x)and F,(x) defined by (15 — 18), with binomial (for “Markov’s”

model) or Poisson distribution of defect number :

A. The structure of the process is defined by (4); the cdf is specified by (6 — 10).

B. The structure of the process is defined by (26); the cdf is defined by (28).

MA. The structure of the process is defined by (11-13); the cdf is defined by (14), the matrix P
is described in 2.1.2.

MB. The structure of the process is defined by (29); cdf is defined by (14), the matrix P is
described in 2.2.2.

Simultaneously the calculation for both LW and PW (if possible) was done.

For prediction stability it is very important to minimize the number of unknown parameters. For

this purpose in this paper for all models and materials we set /, = L, .
For basic model A we have considered four versions:
1. AL with A =nF (x); F,(x)is defined by (17).
2. AT with A =nA,, where 4, is technological defect intensity for L = L, ; F,(x)is defined by (17).
3. ALmod with cdf defined by (24) with 4 = nF(x);
4. ATmod with cdf defined by (24) with A =nA,, where A, is technological defect intensity for
L=1,.

Note that ALmod model ( PS model in[1], p-sev-sev in [2]) corresponds to the following
substitution:

Fy(x) =1—exp(—exp(x)) is used instead of F, (x)=1-exp(-nexp(x—5,)).

3.4. Comparison of the models when parameters are estimated from the sample L = L,

For this case only the models with two unknown parameters can be used. So we cannot use PW
model but when for model A we set §, and O, are equal to 0 then this model coincides with the LW

model. From the remaining models for carbon fiber data the MB-model provides the minimum of

R, =0.0866 (for LW model this value is equal to 0.1135). But LW model provides much better
prediction for L = L,: OSPPt-4 =0.1953. The model MA provides nearly the same result (see Fig.
1): OSPPt-4 = 0.2292 (with somewhat better fitting: EL z =0.091). The prediction of the model MB for
L = L, is very poor: OSPPt-4 = 2.0494.

The model B provides the minimum of R,, =0.1717 and the best prediction for L = L, and
L = L, for bundles of 1000 impregnated carbon fibers. The model LW fits the experimental data

somewhat worse: EL r = 0.213 but this model provides better prediction OSPPt-4 (OSPPt-4 = 0.4412)
(see Fig. 2). The model MA provides OSPPt-4 = 0.5375 (see Fig. 3).

3.5. Comparison of the models when parameters are estimated from two samples, with L = L, and

L=1L,

This time we can compare all 7 models. The best fitting of single carbon fiber experimental
data is provided by model PW: R,, = 0.1705. Close result is yielded by the model MA: R,, = 0.1737

(see Fig. 4). For model LW ELR =0.1803 but it provides the best prediction: OSPPt-4 =0.2769.
Model PW performs somewhat worse: OSPPt-4 = 0.4026. It is worth mentioning again that model A
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coincides with the model LW if &, and o, are equal to 0. The attempt to minimize R,, using

different values of &, (at o, = 0) has was not successful.

For impregnated bundle data PW model provides the best fitting: ELR =0.2109 (with OSPPt-
4 =1.1647). LW model provides best prediction (see Fig. 5): OSPPt-4 = 0.5386 (with ELR =0.3680).
MA model provides similar results: OSPPt-4 = 0.6981 (with EL r = 0.4218). MB model provides some

better fitting (R, 1z = 0.2845) but worse prediction (OSPPt-4 = 0.8835). But there is suspicion that the
test of impregnated bundles was not faultless.
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Fig. 1. Single fiber test data (+); predictions X,;,X,; and X, using MA-model (*) (R,, =0.091,
OSPPt-4 = 0.2292, O, = 0.1833) and LW model () ( R,, = 0.1135, OSPPt-4 = 0.1953, O, = 0.1526).

Initial data — sample with L = L,
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Fig. 2. Data of bundles of 1000 impregnated carbon fibers (+); predictions 3(1j , 3(4j and X; using B-

model (*) (ELR =0.1717, OSPPt-4 = 0.8568, O, = 0.8381 ) and LW model (o) (ELR =0.2130,
OSPPt-4 = 0.4412, O, = 0.5436). Initial data — sample with L = L,
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MA-model (*) (ELR =0.1793, OSPPt-4 = 0.5375, O, = 0.4283) and LW model (0) (ELR =0.2130,
OSPPt-4 = 0.4412, O, = 0.5436). Initial data — sample with L = L,
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Fig. 4. Single carbon fiber test data (+) ; predictions X,;, X,;;X,;; X, using MA-model (*)
(R,, =0.1737, OSPPt-4 = 0.3863, O, = 0.2549), LW model (o) (R, = 0.1803, OSPPt-4 = 0.278,

0O, =0.2268 ) and PW model (o) (ELR =0.1705, OSPPt-4 = 0.4026, O, = 0.2809 ). Initial data —
samples with L = L, and L = L,.
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Fig. 5. Data of bundles of 1000 impregnated carbon fibers (+); predictions X,;, X,;;X,;; X, using

MA-model (*) (R,, = 0.4218, OSPPt-4 = 0.6981, O, = 0.4890), LW model (o) (R,, = 0.368,

OSPPt-4 = 0.5386, O, = 0.4890) and PW model (o) (ELR =0.2109, OSPPt-4 = 1.1647, O, = 1.1228).
Initial data — samples with L = L; and L = L,

Summary

A new description of extended WLDF is offered. As distinct from our previous publications, the
strength of items without defects is taken into account; two types of defects (“technological”, i.e.
independent on load and dependent on load) and two types of the influence of defect number on the
specimen strength are introduced. In previous publications it was assumed that “theoretical” strength
was equal to infinity. A more general case is discussed in this paper.

We have considered four basic models from WLDF which are defined by the following four
structures:

A X =min(Y,,...,Y¢,Z,,nZ, ¢ ): B. X = {Y’K >0,
Z,K =0;
MA. X (1) =min(¥,, Y, ... Vg (ys Z1:Zy s Z,y g (1)) s MB. X (2) = {Y’K(t) >0
Z,K(t)=0.
Here K has binomial, b(k;n, p), (for finite n), or (“truncated” for finite “Markov’s” models)
Poisson pmf, p(k;A), (if n=0o0).
Parameters pandA can be independent of load (“technological” defects) or p = F(x),
A = nF,(x), where F,(x)is some cdf of defect initiation stress. The random process K () is defined

as a Markov chain.

In this paper for numerical examples of prediction of strength-length dependence we have used
the data set of single carbon fibers and of impregnated bundles.

The comparison with LW or, if possible (if for parameter estimation there are at least two
samples with different lengths), with both LW and PW models was made for every considered model
from WLDF. It turned out that there is no best model for each material and each set of length,

{L,L,,...,L, }. For single fiber data, LW model is appropriate, but MA model gives the most stable
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prediction nearly in all considered examples. If it is applicable, the PW model provides, as a rule, the
best fitting of test data but not necessarily the best prediction (see Fig. 5). For considered data, as a
rule, LW or MA models provide the best prediction. It is an unexpected result, because in [4] and [7]
PW model was suggested as being superior to LW model. However, note that PW parameter for single
carbon fiber data is y=0.90 [3], i.e. quite close to the limiting value of y=1 at which PW and LW
distributions coincide. This is likely to be the reason of the relative closeness of LW and PW model
performance, while a more dramatic deviation of size effect from LW (e.g. = 0.58 for glass [8] and
y=0.46 for flax fibers [9]) could also allow to better discriminate the predictive capacity of WLDF
models.

It seems reasonable that PW model provides better fitting of experimental data than LW model
mainly because it has an additional parameter (in comparison with LW model) and a very universal
Taylor’s-series-type (see Equation (33)) description of strength-length dependence. Obviously, much
better fitting can be obtained if, for example, the number of terms in Equation (33) is increased. The
PW model is widely used to describe experimental data, but, in our opinion, its theoretical
substantiation (for example, in [4]) is not convincing enough. The models from WLDF preserve the
main idea of the weakest-link model upon changes in the specimen length. It seems that this family

has great potential (for example, there is a wide choice of F,(x), Fy (x), F(x),...) and deserves to

be studied much more thoroughly using much more test data.
We should mention also that the considered distribution family can be applied not only to the
fiber strength analysis but to analysis of reliability of any series system with two types of elements.
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Paramonovs Ju., Andersons J. Vajaka posma varbiitibas sadaltjumu kopas paplaSinajums. Oglekla Skiedras
stipribas atkartbas no garuma prognozésana

Vajaka posma varbitibas sadalijumu kopa (VLSK) tika aprakstita autoru darbos. Saja raksta ir izstradats $is
kopas paplasindjums un apstradati dati par stipribas atkaribu no oglekla sSkiedras garuma. Atskirtba no
ieprieksejiem petijumiem, tika ieverota ari elementu bez sakotnéjiem defektiem stipriba. Aplikoti divi defektu
tipi — tie, kas paradas neatkarigi no slodzes (,,tehnologiskie”), un tie, ka paradas slogoSanas procesa, ka art divi
veidi, kados defektu skaits ietekmé parauga stipribu. Modelu parametru vértéjumi veikti, izmantojot Badera un
Priesta eksperimentalos datus, kuri jau agrak tika izmantoti vairakos rakstos un minéti literatiiras saraksta. Tika
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apstradatas astonas  statistiskas izlases, kas attiecinamas uz divu veidu eksperimentalu paraugu
izmégindjumiem: brivas oglekja Skiedras un 1000 Skiedru kiili, kuri bija impregneti ar epoksidsvekiem. Katra
veida paraugi bija izméginati pie cetriem dazadiem garumiem. Katra gadijuma sagrisanas slodze tika fikséta ar
parbauzu iekartas Instron merisanas sistému. Paradits, ka dazi VLSK modeli un tradicionalais linearais Veibula
modelis nodrosina precizaku oglekla skiedras stipribas atkaribas no garuma prognozi neka pakapes likuma
Veibula modelis, kurs, savukart, dazreiz tomér sniedz vislabako visu eksperimentalo datu kopuma aprakstu.

Paramonov Yu., Andersons J. Extended weakest link distribution family. Prediction of strength-length
dependence for carbon fibers

An extension of the weakest link distribution family (WLDF), developed in [1, 2], and its application to the
carbon fiber strength-length data are presented in this paper. As distinct from our previous publications, the
strength of items without defects is taken into account; two types of defects (independent on load
(“technological”’) and dependent on load) and two types of the influence of defect number on the specimen
strength are considered.Estimation of the model parameters was made using the data obtained by Bader and
Priest which was already discussed in referenced papers. Results of testing of eight samples, consisting of two
types of specimens each tested at four different gauge lengths, was studied. The two types are (a) single carbon
fibres, (b) bundles of 1000 parallel carbon fibers impregnated in an epoxy resin matrix. In each case the failure
load under tension was measured in Instron testing machine. It is shown that for carbon fiber material some
models from WLDF and linear law (LW) traditional Weibull model provide a better prediction of strength-length
dependence than power law Weibull model which sometimes provides better fitting of experimental data.

Hapamonoes IO., Anoepconc A. Pacuupennoe cemeiicmeo pacnpedenenuii crabeinmezo 36ena. Ilpeockazanue
HPOUHOCHb-0SIUHA 3A6UCUMOCU 013 Y2TIEPOOHBIX 80JI0KOH

Jlano onucanue pacuupennoco cemelicmea pacnpeoenenuti ciabetiuteco 3eena (CPC3), panee npedcmagneniozo
6 pabomax [1, 2] u pesyrbmamog e2o ucnoib3o6anus 0si 00padomKu OAHHLIX 0 3A6UCUMOCU NPOUHOCTNU OM
ONUMBL  Y2NlepOOHbIX GONOKOH. B omuuuue om npedwecmeylowux nyonukayuii NPuHsma 60 GHUMAHue U
NPOUHOCMb DNIEMEHMO08, 6 KOMOPbIX OMCYMCMBYIONM HaydabHble nogpedcoenus. Paccmompeno 0ea muna
Oehekmos  (NOAGNAIOWUXCS  HE3A6UCUMO OM  NPOYecca HapyjiceHust (mexHonoeuueckue oOeghexmol) U
NOABNAIOWUXCA 8 NPOYECCe HASPYIHCEHUs) U 08d MUNA GIUAHUSL YUCIA 0epeKmOos8 Ha 3a6UCUMOCTIL NPOUHOCU
obpaszya om Onunsl. Oyenxu napamempog mooeiel Obiiu cOeanbl, UCNOIb3YL OaHHble, noyuenuvle Badepom u
Ilpuecmom, yoce obcyscoasuiuecss 6 HEKOMOPbIX CMAMbAX, YHNOMAHYMbIX 6 NPUBCOEHHOM CHUCKE
UCHONBb30BAHHBIX TUMEPAMYPHLIX UCMOYHUKOS. Bbliu npoananuzuposanvl 6ocemb Cmamucmu4eckux 8bl00pok,
OMHOCAWUXCA K UCHLIMAHUSIM 08YX MUNO8 00pazyos: ce0O00Hblie yenepoonvie 60710KHa u nyuku uz 1000
B0JI0KOH, NPONUMAHHBIX INOKCUOHOU cMONOU. Kascovlil mun 06pasyos ObLl UCNbIMAH NPU YeMbIPEX PA3TUYHBIX
onunax. B xasicoom cuyuae paspyuaiowas HA2pysKa 3aMepsiiach UsMEPUmenbHoU CUCIeMOU UCHbIMAMeNbHOl
Mmawunvt muna HUncmpon. Ilokazano, umo unexomopwvie modeau uz CPC3 u mpaduyuonnas nuneinas mooeisb
Beuibyina  oatom  nyuwee  npocHO3upogamue  3A6UCUMOCTU — NPOYHOCMb-ONUHA,  HedCelu  CMenenHas
Betibynnosckas  mooen», komopas, oO0Haxo, uHo20a 0aém Hauiyyuiee onucanue (‘‘gvipagrusanue’”’)
IKCNEPUMEHNATLHBIX OAHHDIX.
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