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1. Introduction 
 

This paper presents a development of the models proposed in papers [1, 2]. It is essential also 

that we process the data already discussed in [3 – 6] revising some conclusions of mentioned papers. 

According to the “traditional” Weibull model the cumulative distribution function of strength is 

defined by 

 ))/(exp(1)( αβssF −−= . (1) 

 

Let the reference length of fiber be equal to 1l  and fiber length equal to L. Then in accordance 

with “linear law” (LW) model the fiber strength cdf is defined by  

 

 ))/()/(exp(1)( 11

αβslLsF −−= . (2) 

 

It should be noted that here parameter 1β corresponds to 1lL = , 1β  changes if 1l  changes. 

The “power law” (PW) Weibull model  

 

 ))/()/(exp(1)( 11

αγ βslLsF −−= , (3) 

which has been intensively studied in literature [3 – 5, 7], while providing a much better empirical fit 

to the strength data of specimens with different length L, lacks the theoretical appeal of the weakest-
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link models. We derive a new weakest link distribution family (WLDF) based on the assumption of a 

two-stage failure process. For modeling purposes we consider a specimen (fiber) as a chain of n 

elements (links) of length l1. First, the damage process develops along the specimen and defects appear 

in K elements. Here K is integer random variable, 0 ≤ K ≤ n. Two types of the second stage will be 

considered in this paper. First type: in every element (containing defect or flaw) the development of 

fracture process takes place and the strength of the weakest item (link) defines the strength of the 

specimen. Second type: development of fracture process in crosswise direction takes place only in one, 

critical element. Then only the probability that the second stage will take place depends on the number 

of elements but the strength distribution of this element (reflecting the process of accumulation of 

elementary damages in crosswise direction up to specimen failure) does not depend on this number. 

We consider two different versions of the first stage also. First version: defects appear before 

the loading and their number does not depend on the subsequent loading. Second version: defects 

appear during loading (instantly or gradually) and their number depends on the load. 

 

2. General description of the model family 
 

2.1. The fracture process takes place in every element 

 

2.1.1. Models of instant fracture. Let K, 0 ≤ K ≤ n, is the number of elements in which defects appear. 

Let KYYY ...,,, 21  be independent random variables which are the strengths of these elements with the 

same cumulative distribution function (cdf) )(xFY ; KnZZZ −...,,, 21 , )(xFZ  are the same for the 

elements without defects. It seems reasonable to assume that the random strength of the specimen is 

the strength of the weakest element 

 

 )...,,,...,,min( 11 KnK ZZYYX −= ,  (4) 

with the corresponding cdf  

 ∑
=

−−=
n

k

k
knZ pxFxF

0
,1

))(1(1)( δ , (5) 

where 

 ))(1/())(1()( xFxFx ZY −−=δ , (6) 

 

 
n

ZnZ xFxF ))(1(1)(
,1

−−= . (7) 

 

Several different assumptions can be made here. First, let us suppose that the defects appear 

before loading (technological defects). It can be assumed that the probability of finding a defect in one 

element, p, is a constant (and a parameter of the model). Then the corresponding binomial probability 

mass function (pmf) is 

 
( )

( ) knk
k pp

knk

n
p −−

−
= 1

!!

!
. (8) 

 

If λ  = np is large enough we can use (as an approximation) the Poisson pmf:  

 

 !/)exp( kp k
k λλ−= . (9) 

 

In this case the (5) (approximately) can be written in the following way 

 

 ))).(1(exp())(1(1)(
,1

xxFxF
nZ δλ −−−−=  (10) 
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If initiation of the defects depends on the applied load then it can be assumed that )(0 xFp = , 

where )(0 xF  is the cdf of defect initiation stress.  

It is worth to note that if δ  = 1 then (2) is a particular case of (5) or (10): the Weibull 

distribution is included in considered WLDF. 

 

2.1.2. Models of gradual accumulation of defects. We consider the process of accumulation of 

defects as an inhomogeneous finite Markov chain (MC) with finite state space 

},...,,,{ 2121 ++= nn iiiiI . MC is in state ki  if there are )1( −k  defects, k = 1,..., n+1. State 2+ni  is an 

absorbing state corresponding to the fracture of specimen. Usually we assume that the Markov chain 

starts in state 1i  but in the general case the initial distribution is represented by a row vector π  given 

by ),...,,,( 2121 ++= nn πππππ . We further assume that the loading (i.e. the process of nominal stress 

increase in the specimen cross section) is described by an ascending (up to infinity) sequence 

...},...,,,{ 21 txxx  and the process of MC state change is described by the transition probabilities 

matrix  
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which at the tth-step is a function of tx , t = 1, 2,.... Let the sequence { tx } be fixed, then P is a 

function of t. Let us note that if ∞=n  then the subscript (n+2) is not a number but only a symbol, 

corresponding to the absorbing state 2+ni .  

In the new model the number of defects, )(tK , and the strength of specimen,  

 

 ),...,,,,...,,min()( )(21)(21 tKntK ZZZYYYtX −= , (11) 

are random functions of time. 

The specimen fracture occurs when the strength of the specimen becomes equal to or less than 

the current load (stress). Ultimate strength 

 

 *T
xX = , (12) 

where  

 ))(:max(*
txtXtT >= . (13) 

 

Cdf of X is defined on the sequence { ,...,...,, 21 mxxx } by  

 

 ∏
=

=
m

j
m ujPxF

1

))(()( π , (14) 

 

where )( jP is the transition matrix for step number j, column vector )'1,0...,,0(=u  where only the 

last component is equal to 1 but all the others are equal to 0. 

 

2.1.3. The specimen strength without defect is very large. For the purpose of specification of the 

models, the general description of which was given in previous section, we additionally have to 
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specify the cdf )(xFY , )(0 xF  (for models with defect number dependence on load), )(xFZ , and, 

additionally, for 'Markov' models, an initial distribution ),...,,,( 2121 ++= nn πππππ , which, of 

course, in general case can differ from binomial or Poisson distribution. For ‘Markov’ models we need 

to specify also the matrix P as function of current stress, tx , and a sequence }{ tx  as well. 

In this paper we assume that )(xFY  and 0F (x) are the smallest extreme value (sev) 

distributions. For the case when location parameter 0θ  = 0 and scale parameter 1θ  = 1 it is assumed 

that 

 ))exp(exp(1)( xxFY −−= , (15) 

 

 )()( 00 δ−= xFxF Y , (16) 

where in following )log(sx = , s is the strength (expressed in MPa). If 0δ  > 0 then at the same 

probability of events the stress required for new defect initiation is larger than the stress required for 

the failure of an element with defect.  

For )(xFZ  we consider two assumptions in this paper. First, sev distribution can be assumed 

again: 

 )()( ZYZ xFxF δ−= . (17) 

 

Again we can see that if Zδ  > 0 then )()( xFxF YZ < . 

But the simplest is the assumption that  
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where C is a very large constant. 

Then instead of (4) we have 
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Now Equation (5) can be written in the form 
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where  

 )(1 xFY−=δ . (21) 

 

Then equation (10) takes the following form 
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)(
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 (22) 

 

In [1, 2] it was shown that the cdf 

 }))(1(1{)( 1

0

+
∞

=

−−= ∑ k
Y

k
k xFpxF  (23) 

or 



 

330 

 ))(exp())(1(1)( xFxFxF YY λ−−−=  (24) 

 

where kp  is defined by (7), λ  = np, )(xFp Y= , )(xFY  is sev cdf, provides a good empirical fit to 

the strength data of specimens with different length, L. Equation (24) can be considered as 

modification of (8): )(xFY  is used here instead of )(
,1

xF
nZ . And it is not only an approximation of the 

“binomial” model. Now we can consider the specimen as continuous and define λ  by 

 

 11 / lLλλ = , (25) 

where L is the specimen length, 1λ  is the intensity of defects (the defect number per length 1l ; 1l  is 

some constant ). Then function )(xFY can be regarded as an element-length-independent cdf of 

strength distribution in the cross section with a defect, where the number of defective cross sections 
has the corresponding Poisson distribution. 

For Markov models we should specify the matrix P. In the case when parameter C is very large 
(the 'theoretical' strength is much higher than the real strength) the probability that in some element a 

defect appears at the stress tx  under the condition that it has not appeared at the stress 1−tx  is 

 

))(1/())()(()( )1(0)1(00 −− −−= ttt xFxFxFtb . 

 

If there are s defects already the probability that r new defects appear, snkr −=≤≤0 , and 
the total number of defects will be equal to m = s+r 
 

)!(!/!))(1())(()(~ rkrktbtbtp rkr
sm −−= −

. 

 

Conditional probability of element fracture at the nominal stress tx   

 

))(1/())()(()( )1()1( −− −−= tYtYtY xFxFxFtq . 

 
Corresponding probability that none of the elements fail when there are defects in m elements is 

 
m

m tqtu ))(1()( −= . 

 
The probability of coincidence of these events, which we consider as independent, is the 

probability of transition from state i = s+1 to state j = i+r 
 

)()(~)( 1)1)(1( tutptp jjiij −−−= , 

where )1( +≤≤ nji . 

Conditional fracture probability at state i 

)(1)(
1

)2( tptp
n

ij
ijni ∑

+

=
+ −= . 

 

Of course, 0)( =tpij , if ij < , and 1)()2)(2( =++ tp nn . 

 
2.2. The fracture process takes place only in one element 
 
2.2.1. The models of instantaneous failure. In previous models it has been assumed that defects are 
uniformly distributed along the specimen length. But it is plausible that such uniformity is retained 
only at the initial stage of loading. More precisely, it can be assumed that upon formation of a weakest 
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link in a chain, the development of failure proceeds only in this link, and the specimen length is of no 
importance any more. The simplest variant of such a model corresponds to the assumption that the law 
of strength distribution in the element where this process proceeds (in the cross section where the 
critical defect is formed) is independent of specimen length, which determines only the probability of 
formation of an element with defect. The mathematical formulation of this hypothesis is as follows 
 

 




=

>
=

.0,

,0,

KZ

KY
X  (26) 

 

Here, Y  and Z  are random variables, which are the strength of element where the failure 
process proceeds with or without defect, correspondingly. 
In this case 

 )())(1()(}))(1(1{)( 00 xFxFxFxFxF Z
n

Y
n −+−−= . (27) 

 

If )(xFZ  is defined by (18) then for the case C = ∞  
 

 )(}))(1(1{)( 0 xFxFxF Y
n−−= . (28) 

 
2.2.2. Model of successive formation of at least one defect. The corresponding Markov chain has only 
three states. The first state corresponds to the absence of defective elements; the second one means the 
presence of at least one defective element, and the third, absorbing one, means failure of the specimen. 
The corresponding probabilities at an tth step are determined by the formulae 
 

,)](1[)(11

ntbtp −=  ))(1))((1()( 1112 tqtptp −−= , )())(1()( 1113 tqtptp −= , 

 

0)(21 =tp , )(1)(22 tqtp −= , )()(23 tqtp = , 0)()( 3231 == tptp , 1)(33 =tp . 

 
In this case  
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Specification of the cdf and of elements of the matrix P (equations for )(tb  and )(tq ) can be 

made in the same manner as in section 2.1.3. 
 
 
3. Test data. The processing of test data 
 

3.1. Carbon fiber bundles 
 

We consider the data obtained by Bader and Priest [6] and present the description of these data 
as given in [4]: 

“There are sixteen samples, consisting of four types of bundles each tested at four different 
gauge lengths. The four types are (a) single carbon fibres, (b) dry bundles of parallel carbon fibres, 
(c) impregnated tows of parallel carbon fibres in an epoxy resin matrix, (d) hybrid bundles consisting 
of tows of carbon embedded in a glass-fibre/epoxy laminate. In each case the failure load under 
tension was measured in Instron testing machine, and the failure stress computed from that. For types 
(a)-(c), the tests were repeated independently with fibres of different length. For type (d), the tests 
were carried out on single specimens of length 200 mm, and these specimens notionally divided up to 
obtain data for shorter gauge length.” 
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Summary (mean values and standard deviations for every sample) of these data is given in [4] in 
the Table 1. The strength of every specimen for single fibers and for impregnated bundles is given in 
[3]. We consider the processing of the latter data only. 
 
3.2. Parameter estimation. Linear regression analysis  
 

So we consider the strength data of carbon fibers (four samples with specimen lengths 

( 4,321 ,, LLLL ) = (1, 10, 20, 50 mm), sample sizes ( 4321 ,,, nnnn ) = (57, 64, 70, 66)) and the 

strength of impregnated bundles (four samples with specimen lengths ( 4321 ,,, LLLL ) = (20, 50, 150, 

300 mm), sample sizes ( 4321 ,,, nnnn ) = (28, 30, 32, 29)). In [4] the authors consider fitting of these 

data by LW (equation (1)) and PW (equation (2)) models. However, it appears more important to 

consider the accuracy of prediction of the strength of fibres with length that differs from the length of 

the sample used for model parameter estimation. 

In the following, we perform the prediction of strength for 4LL =  while estimating model 

parameters using data with 1LL =  or with 1LL =  and 2LL = . The maximum likelihood method is 

very labour-consuming for the case when cdf is defined by Equation (14) so linear regression analysis 

(LR) was used for parameter estimation.  

Let ijx  be jth order statistic, inj L...,,2,1= , in  is the number of specimens with iLL = , 

Lki ...,,2,1= , Lk  is number of different Li, )( ijXE  is the expected value of random order statistic 

ijX , )(
0

ijXE  is the same but for 0θ  = 0 and 1θ  = 1. Then we have the following linear regression 

model 

 ijXE( ) = 0θ + 1θ )(
0

ijXE ,  (30) 

where )(
0

ijXE  is a function of Li, in  and j. 

Equation (30) can be used for estimation of 0θ  and 1θ  if all the other parameters are fixed. We 

compare above-mentioned model with both the LW and PW models. If S is random strength of 

specimen with cdf defined by (3) then for )log(SX =  the cdf )(xFX  is defined by  

 

 ))/)exp((exp(1)( 10 θθ−−−= xxFX  (31) 

with 

 0θ  = )/log()/()log( 11 lLαγβ − , 1θ  = 1/α . (32) 

 

So for PW model we have three unknown parameters 00θ  = )log( 1β , 01θ  = − αγ /  and 1θ  

 

 ijXE( ) = 00θ  + 01θ  log ( 1/ lLi ) + 1θ )(
0

ijXE  (33) 

 

For LW model we have two unknown parameters 0θ  and 1θ  

 ijXE( ) = 0θ  + 1θ (- log ( 1/ lLi ) + )(
0

ijXE ).  (34) 

In (33) and (34) the value of )(
0

ijXE  is the expected value of j-th order statistic for sample 

from sev distribution with sample size in , 0θ  = 0 and 1θ  = 1. It is assumed that roughly 

( )( )ijij xFFXE ˆ)(
100 −

= , where ( ) ( ) ( )4.0/3.0ˆ +−= lij kjxF  is an estimate of )( ijxF . 
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As the measure of data set fitting the statistic  

 

 
2/12 )1( RRLR −= , (35) 

 

was chosen. Here 
2R  is standard statistic of LR analysis (the coefficient of determination). 

As nonlinear parameter estimates, the values of the parameters which correspond to the 

minimum of statistic LRR  are taken. 

 

As the measure of the mean prediction error the statistic 
 

 
L Lk k

2 2 1/2

1 i i i
i 1 i 1

ˆQ ( (x x ) / (x x) )
= =

= − −∑ ∑ , (36) 

 

but as the measure of the prediction error for L = L4 the statistic OSPPt-4 (Order Statistic 

Probability Plot Test statistic, see [2]) were used 

 

 OSPPt-4 = 
4 4n n

2 2 1/2

4j 4j 4j 4
j 1 j 1

ˆ( (x x ) / (x x ) )
= =

− −∑ ∑ . (37) 

Here 
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i ij i
j 1

x x /n
=

= ∑ ; predicted 
in

i ij i
i 1

ˆ ˆx x /n
=

= ∑ ; predicted 
o

i.jij 0 1
ˆ ˆx̂ E(X )= θ + θ ; 0θ̂ and 1θ̂ are 

LR estimates of 0θ  and 1θ , 
Lk

i L
i 1

x x / k
=

= ∑ , 

 

3.3. Specifying the models 

 

For the convenience of subsequent reference let us list the full number of specifications and 

assumptions which define each model in the considered family. We have to specify 

1. The conditions under which the initiation of defects takes place. The process of initiation of 

defects can be a function of technology only ( p or λ  does not depend on load), or this initiation 

depends on load ( )(0 sFp =  or )(0 snF=λ ); see (8) and (10). 

2. A distribution of defect number. The binomial or Poisson distributions are considered as the 

most appropriate. The defect number cannot exceed the number of elements, so if the finite 

Markov chains theory is used then the Poisson distribution should be “truncated”. 

Remark. We say that a (discrete) distribution is “truncated” in m  if instead of discrete rv X we 

consider the rv  





>

≤
=

. if  ,

, if  ,

mXm

mXX
Xm  

 

In this paper m is equal to the number of elements n . 

3. An initial state distribution, π , for the models in which Markov chains theory is used. In this 

paper ).0,...,0,1(=π  

4. CDF of strength of elements without defects, ZF , the cdf of strength of elements with defects, 

YF , and the cdf of defect initiation stress, 0F  (if the process of defect initiation is assumed to be 

a function of load).  

5. The sequence of loads (stresses) }{ tx  if the finite Markov chains theory is used. In this paper, as 

a rule, }{ tx  is a sequence of numbers uniformly distributed in some interval. 
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There is a great deal of variations of the models from WLDF. In this paper we consider four 

basic models with )(xFY , )(0 xF and )(xFZ  defined by (15 – 18), with binomial (for “Markov’s” 

model) or Poisson distribution of defect number : 

A. The structure of the process is defined by (4); the cdf is specified by (6 – 10). 

B. The structure of the process is defined by (26); the cdf is defined by (28). 

MA. The structure of the process is defined by (11-13); the cdf is defined by (14), the matrix P 
is described in 2.1.2.  

MB. The structure of the process is defined by (29); cdf is defined by (14), the matrix P is 

described in 2.2.2.  

Simultaneously the calculation for both LW and PW (if possible) was done. 

For prediction stability it is very important to minimize the number of unknown parameters. For 

this purpose in this paper for all models and materials we set 1l  = 1L . 

For basic model A we have considered four versions: 

1. AL with )(0 xnF=λ ; )(xFZ is defined by (17). 

2. AT with 1λλ n= , where 1λ  is technological defect intensity for L = 1L ; )(xFZ is defined by (17). 

3. ALmod with cdf defined by (24) with )(0 xnF=λ ; 

4. ATmod with cdf defined by (24) with 1λλ n= , where 1λ  is technological defect intensity for 

L = 1L . 

Note that ALmod model ( PS model in[1], p-sev-sev in [2]) corresponds to the following 

substitution: 

))exp(exp(1)( xxFY −−=  is used instead of ))exp(exp(1)(
,1 ZZ xnxF
n

δ−−−= . 

 

3.4. Comparison of the models when parameters are estimated from the sample 1LL =  

 

For this case only the models with two unknown parameters can be used. So we cannot use PW 

model but when for model A we set 0δ  and zδ  are equal to 0 then this model coincides with the LW 

model. From the remaining models for carbon fiber data the MB-model provides the minimum of 

LRR  = 0.0866 (for LW model this value is equal to 0.1135). But LW model provides much better 

prediction for L  = 4L : OSPPt-4 = 0.1953. The model MA provides nearly the same result (see Fig. 

1): OSPPt-4 = 0.2292 (with somewhat better fitting: LRR  = 0.091). The prediction of the model MB for 

L  = 4L  is very poor: OSPPt-4 = 2.0494.  

The model B provides the minimum of LRR  = 0.1717 and the best prediction for L  = 2L  and 

L  = 3L for bundles of 1000 impregnated carbon fibers. The model LW fits the experimental data 

somewhat worse: LRR  = 0.213 but this model provides better prediction OSPPt-4 (OSPPt-4 = 0.4412) 

(see Fig. 2). The model MA provides OSPPt-4 = 0.5375 (see Fig. 3).  

 

3.5. Comparison of the models when parameters are estimated from two samples, with 1LL =  and 

2LL =  

 

This time we can compare all 7 models. The best fitting of single carbon fiber experimental 

data is provided by model PW: LRR  = 0.1705. Close result is yielded by the model MA: LRR  = 0.1737 

(see Fig. 4). For model LW LRR  = 0.1803 but it provides the best prediction: OSPPt-4 = 0.2769. 

Model PW performs somewhat worse: OSPPt-4 = 0.4026. It is worth mentioning again that model A 
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coincides with the model LW if 0δ  and zδ  are equal to 0. The attempt to minimize LRR  using 

different values of zδ  (at 0δ  = 0) has was not successful. 

For impregnated bundle data PW model provides the best fitting: LRR  = 0.2109 (with OSPPt-

4 = 1.1647). LW model provides best prediction (see Fig. 5): OSPPt-4 = 0.5386 (with LRR  = 0.3680). 

MA model provides similar results: OSPPt-4 = 0.6981 (with LRR  = 0.4218). MB model provides some 

better fitting ( LRR  = 0.2845) but worse prediction (OSPPt-4 = 0.8835). But there is suspicion that the 

test of impregnated bundles was not faultless. 

 

 

Fig. 1. Single fiber test data (+); predictions 1jx̂ , 4jx̂  and jx  using MA-model (*) ( LRR  = 0.091, 

OSPPt-4 = 0.2292, 1Q  = 0.1833) and LW model (□) ( LRR  = 0.1135, OSPPt-4 = 0.1953, 1Q  = 0.1526). 

Initial data – sample with L = L1 

 

 
Fig. 2. Data of bundles of 1000 impregnated carbon fibers (+); predictions 1jx̂ , 4jx̂  and jx  using B-

model (*) ( LRR  = 0.1717, OSPPt-4 = 0.8568, 1Q  = 0.8381 ) and LW model (□) ( LRR  = 0.2130, 

OSPPt-4 = 0.4412, 1Q  = 0.5436). Initial data – sample with L = L1 



 

336 

 
Fig. 3. Data of bundles of 1000 impregnated carbon fibers (+); predictions 1jx̂ , 4jx̂  and jx  using 

MA-model (*) ( LRR  = 0.1793, OSPPt-4 = 0.5375, 1Q  = 0.4283) and LW model (□) ( LRR  = 0.2130, 

OSPPt-4 = 0.4412, 1Q  = 0.5436). Initial data – sample with L = L1 

 

 
Fig. 4. Single carbon fiber test data (+) ; predictions 1jx̂ , 2jx̂ ; 4jx̂ ; jx  using MA-model (*) 

( LRR  = 0.1737, OSPPt-4 = 0.3863, 1Q  = 0.2549), LW model (□) ( LRR  = 0.1803, OSPPt-4 = 0.278, 

1Q  = 0.2268 ) and PW model (o) ( LRR  = 0.1705, OSPPt-4 = 0.4026, 1Q  = 0.2809 ). Initial data – 

samples with L = L1 and L = L2. 
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Fig. 5. Data of bundles of 1000 impregnated carbon fibers (+); predictions 1jx̂ , 2jx̂ ; 4jx̂ ; jx  using 

MA-model (*) ( LRR  = 0.4218, OSPPt-4 = 0.6981, 1Q  = 0.4890), LW model (□) ( LRR  = 0.368, 

OSPPt-4 = 0.5386, 1Q  = 0.4890) and PW model (o) ( LRR  = 0.2109, OSPPt-4 = 1.1647, 1Q  = 1.1228). 

Initial data – samples with L = L1 and L = L2 

 
Summary  
 

A new description of extended WLDF is offered. As distinct from our previous publications, the 

strength of items without defects is taken into account; two types of defects (“technological”, i.e. 

independent on load and dependent on load) and two types of the influence of defect number on the 

specimen strength are introduced. In previous publications it was assumed that “theoretical“ strength 

was equal to infinity. A more general case is discussed in this paper.  

We have considered four basic models from WLDF which are defined by the following four 

structures: 
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Here K has binomial, ),;( pnkb , (for finite n), or (“truncated” for finite “Markov’s” models) 

Poisson  pmf, );( λkp , (if ∞=n ). 

Parameters p and λ  can be independent of load (“technological” defects) or )(0 xFp = , 

λ  = )(0 xnF , where )(0 xF is some cdf of defect initiation stress. The random process )(tK is defined 

as a Markov chain. 

In this paper for numerical examples of prediction of strength-length dependence we have used 

the data set of single carbon fibers and of impregnated bundles. 

The comparison with LW or, if possible (if for parameter estimation there are at least two 

samples with different lengths), with both LW and PW models was made for every considered model 

from WLDF. It turned out that there is no best model for each material and each set of length, 

{ kLLL ,...,, 21 }. For single fiber data, LW model is appropriate, but MA model gives the most stable 
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prediction nearly in all considered examples. If it is applicable, the PW model provides, as a rule, the 

best fitting of test data but not necessarily the best prediction (see Fig. 5). For considered data, as a 

rule, LW or MA models provide the best prediction. It is an unexpected result, because in [4] and [7] 

PW model was suggested as being superior to LW model. However, note that PW parameter for single 

carbon fiber data is  γ = 0.90 [3], i.e. quite close to the limiting value of  γ = 1 at which PW and LW 

distributions coincide. This is likely to be the reason of the relative closeness of LW and PW model 

performance, while a more dramatic deviation of size effect from LW (e.g. γ = 0.58 for glass [8] and 

γ = 0.46 for flax fibers [9]) could also allow to better discriminate the predictive capacity of WLDF 

models. 

It seems reasonable that PW model provides better fitting of experimental data than LW model 

mainly because it has an additional parameter (in comparison with LW model) and a very universal 

Taylor’s-series-type (see Equation (33)) description of strength-length dependence. Obviously, much 

better fitting can be obtained if, for example, the number of terms in Equation (33) is increased. The 

PW model is widely used to describe experimental data, but, in our opinion, its theoretical 

substantiation (for example, in [4]) is not convincing enough. The models from WLDF preserve the 

main idea of the weakest-link model upon changes in the specimen length. It seems that this family 

has great potential (for example, there is a wide choice of )(xFZ , )(  ),( 0 xFxFY ,…) and deserves to 

be studied much more thoroughly using much more test data. 

We should mention also that the considered distribution family can be applied not only to the 

fiber strength analysis but to analysis of reliability of any series system with two types of elements. 
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Paramonovs Ju., Andersons J. Vājākā posma varbūtības sadalījumu kopas paplašinājums. OglekĜa šėiedras 

stiprības atkarības no garuma prognozēšana 

Vājākā posma varbūtības sadalījumu kopa (VLSK) tika aprakstīta autoru darbos. Šajā rakstā ir izstrādāts šīs 
kopas paplašinājums un apstrādāti dati par stiprības atkarību no oglekĜa šėiedras garuma. Atšėirībā no 
iepriekšējiem pētījumiem, tika ievērota arī elementu bez sākotnējiem defektiem stiprība. Aplūkoti divi defektu 
tipi – tie, kas parādās neatkarīgi no slodzes („tehnoloăiskie”), un tie, kā parādās slogošanas procesā, kā arī divi 
veidi, kādos defektu skaits ietekmē parauga stiprību. ModeĜu parametru vērtējumi veikti, izmantojot Badera un 
Priesta eksperimentālos datus, kuri jau agrāk tika izmantoti vairākos rakstos un minēti literatūras sarakstā. Tika 
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apstrādātas astoĦas statistiskās izlases, kas attiecināmas uz divu veidu eksperimentālu paraugu 
izmēăinājumiem: brīvās oglekĜa šėiedras un 1000 šėiedru kūĜi, kuri bija impregnēti ar epoksīdsveėiem. Katra 
veida paraugi bija izmēăināti pie četriem dažādiem garumiem. Katra gadījumā sagrūšanas slodze tika fiksēta ar 
pārbaužu iekārtas Instron mērīšanas sistēmu. Parādīts, ka daži VLSK modeĜi un tradicionālais lineārais Veibula 
modelis nodrošina precīzāku oglekĜa šėiedras stiprības atkarības no garuma prognozi nekā pakāpes likuma 
Veibula modelis, kurš, savukārt, dažreiz tomēr sniedz vislabāko visu eksperimentālo datu kopuma aprakstu. 
 
Paramonov Yu., Andersons J. Extended weakest link distribution family. Prediction of strength-length 

dependence for carbon fibers 

An extension of the weakest link distribution family (WLDF), developed in [1, 2], and its application to the 
carbon fiber strength-length data are presented in this paper. As distinct from our previous publications, the 
strength of items without defects is taken into account; two types of defects (independent on load 
(“technological”) and dependent on load) and two types of the influence of defect number on the specimen 
strength are considered.Estimation of the model parameters was made using the data obtained by Bader and 
Priest which was already discussed in referenced papers. Results of testing of eight samples, consisting of two 
types of specimens each tested at four different gauge lengths, was studied. The two types are (a) single carbon 
fibres, (b) bundles of 1000 parallel carbon fibers impregnated in an epoxy resin matrix. In each case the failure 
load under tension was measured in Instron testing machine. It is shown that for carbon fiber material some 
models from WLDF and linear law (LW) traditional Weibull model provide a better prediction of strength-length 
dependence than power law Weibull model which sometimes provides better fitting of experimental data. 
 
Парамонов Ю., Андерсонс Я. Расширенное семейство распределений слабейшего звена. Предсказание 

прочность-длина зависимости для углеродных волокон 

Дано описание расширенного семейства распределений слабейшего звена (СРСЗ), ранее представленного 
в работах [1, 2] и результатов его использования для обработки данных о зависимости прочности от 
длины углеродных волокон. В отличие от предшествующих публикаций принята во внимание и 
прочность элементов, в которых отсутствуют начальные повреждения. Рассмотрено два типа 
дефектов (появляющихся независимо от процесса нагружения (технологические дефекты) и 
появляющихся в процессе нагружения) и два типа влияния числа дефектов на зависимость прочности 
образца от длины. Оценки параметров моделей были сделаны, используя данные, полученные Бадером и 
Приестом, уже обсуждавшиеся в некоторых статьях, упомянутых в приведенном списке 
использованных литературных источников. Были проанализированы восемь статистических выборок, 
относящихся к испытаниям двух типов образцов: свободные углеродные волокна и пучки из 1000 
волокон, пропитанных эпоксидной смолой. Каждый тип образцов был испытан при четырёх различных 
длинах. В каждом случае разрушающая нагрузка замерялась измерительной системой испытательной 
машины типа Инстрон. Показано, что некоторые модели из СРСЗ и традиционная линейная модель 
Вейбулла дают лучшее прогнозирование зависимости прочность-длина, нежели степенная 
Вейбулловская модель, которая, однако, иногда даёт наилучшее описание (“выравнивание”) 
экспериментальных данных. 


