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Abstract: A new approach for the global bifurcation
analysis of strongly nonlinear dynamical systems is under
consideration. The main idea of the approach is a concept
of complete bifurcation groups and periodic branch
continuation along stable and unstable solutions, named
as a method of complete bifurcation groups (MCBG). In
this paper it is shown that using MCBG allows to find new
nonlinear effects and unknown before periodic (rare
attractors) and chaotic regimes in archetypal dynamical
systems with one- and two-degrees-of-freedom: bilinear,
pendulum, rotor dynamics, with several equilibrium
positions, negative damping.

Introduction

The method of complete bifurcation groups is
worked out in the Institute of Mechanics of Riga
Technical University by the scientific group
working on Nonlinear Dynamics, Chaos,
Catastrophes and Control. The method consists in
direct numerical modeling of original nonlinear
model, that is, without its simplification. Under
the method of complete bifurcation groups we
understand the complex of approaches to analysis
of dynamic systems, which involves the
following procedures: at fixed system parameters
— searching of all periodic stable and unstable
regimes and bifurcation subgroups with unstable
periodic infinitiums (UPI) on plane of states,
constructing of regimes’ basins of attraction on
plane of states; at varied system parameters —
constructing of Dbifurcation diagrams (one
parameter is varied) and bifurcation maps (two
parameters are varied). Special importance in the
method is the continuation of parameter solution
(in one-parameter task) along a solution branch
of definite regime (not along parameter) [16-19].
That allows to find new unknown before stable

regimes in broadly used dynamical models of
strongly nonlinear oscillatory systems [1-15].

In the present paper it will be demonstrated
that using of the method of complete bifurcation
groups allows to implement a global bifurcation
analysis of strongly nonlinear oscillating and
vibro-impact systems, and to find new nonlinear
effects, unknown before periodic and chaotic
regimes. This will be shown on typical nonlinear
systems with one and two degrees-of-freedom:
bilinear, pendulum, rotor dynamics, with several
equilibrium positions, negative damping. New
obtained results have practical importance in
nonlinear vibroengineering: vibromoving,
vibromixing, vibro-polishing, vibrowelding etc.
All results were obtained numerically, using
software NLO and SPRING, created by this
paper authors [20-22].

Models and results

The first model under consideration is a model of
valve system. The valve system has the simplest
nonlinear model — bilinear restoring force, linear
damping and harmonical excitation. The bilinear
models are widely and long time used for
dynamics investigation of many mechanical
engineering systems, such as vibro-impact
equipment, offshore structures, suspended
bridges, air valves and switches. This model can
be described by following differential equation

mx +bx+ f,(x) =h,cosat, (1)
B c,x if x<d
fl(x)_{czx—(cz—cl)d if x>d



where: m — mass; b — coefficient of linear
dissipation; ¢;, ¢, and d — stiffness coefficients
and break point of bilinear restoring force; 4, @
— amplitude and frequency of excitation.
Some important results for this model are
represented in Figs.1-3. New rare regular (RA)
and chaotic (ChA) attractors were found (Fig.1).
These attractors exist in rather small range of
parameter, but as it is shown in Fig.2, have rather
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Fig. 1. Complicated bifurcation group 1T, which
has rare chaotic attractor in parameter range
marked UPI-1. Complete bifurcation diagram for
valve system with bilinear elastic characteristic
and linear dissipation at harmonic excitation [23].
Amplitude of oscillations Am of periodic regimes
vs. frequency of excitation w. Parameters: m = 1,
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Fig. 2. Bassins of attraction of two attractors:
regular resonant P1 and chaotic ChA-1. Cross-
section of bifurcation diagram from Fig. 1 at w =
3.75 [23]. Valve system with bilinear elastic
characteristic and linear dissipation at harmonic
excitation. Parameters: m =1,¢,=50,¢c,=1,d=
0.01,6=0.5,h=0.5 0=3.75¢0,=0

big basins of attraction. Else, using MCBG we
can see such phenomenon like two different
bifurcation groups integrate into one bifurcation
group (Fig.3).

Next two models under consideration are
models of pendulum systems: one is 1 DOF
model with linear restoring moment and with the
periodically vibrating in both directions point of
suspension (Fig.4a); another is 2 DOF model
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Fig. 3. Two different bifurcation groups, 1T and
subharmonic isle 2T, integrate into one
bifurcation group 1T. Complete bifurcation
diagram for valve system with bilinear elastic
characteristic and linear dissipation at harmonic
excitation: amplitude of oscillations Am of
periodic regimes vs. frequency of excitation .
Parameters: ¢; =50, ¢, =1,d=0.01, b=0.5,
hy=0.95 (a) and &, = 1.0 (b), w = var.
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Fig. 4. Models of pendulum systems: a) with
linear restoring moment and with the periodically
vibrating point of suspension in both directions
(see Eq.2, results in Fig.5-7); b) with external
periodically excited moment (see Eq.3, results in
Fig.g8,9).
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Fig. 5. Bifurcation diagrams of driven damped
pendulum (see Fig.4a) with rare attractors.
System has linear restoring moment and the
periodically vibrating in both directions point of
suspension. There are three 1T and one 2T (in
Fig.5a) or one 6T (in Fig.5b) bifurcation groups
with several symmetry breakings, period
doublings, folds and tip type rare attractors. a)
Amplitudes of oscillations vs. vertical external
force amplitude 4, (4, = 0.5, 4, = var.); b)
amplitudes of oscillations versus horizontal
external force amplitude 4, (4, = 1, 4, = var.).
Parameters: m=1,L=1,6=0.2,c=1,u=9.81,
o =1.5,4,=var., A, = var. (see Eq.2).

with the external periodically excited moment

(Fig.4b).
The

equation

first model is described by following

Error! Objects cannot be created from editing
field codes. (2)

where: m — pendulum mass; L — pendulum
length; 4 — gravitational constant; ¢ — angle
of rotation; ¢ -—angular velocity, ¢ =d¢/dt;
b - linear damping moment; b — damping
coefficient; cp — linear restoring moment; ¢ —

stiffnes  coefficient;  ¥(w¢) =—4,0° cosat,

J(w,t)=—-Aw’sinet - suspension  point
acceleration in horizontal and vertical direction
due to external axcitation.

Investigation results for model from Fig.4a
are represented in Figs.5-7. The model has three
different bifurcation groups 1T. Two of these
groups are topologically similar and have rare
attractors P1; RA and P1; RA (Fig.5a). Some
cross-sections of bifurcation diagrams from Fig.5
are represented in Figs.6,7. Each 1T group has its
own UPI (Unstable Periodic Infinitium) with
corresponding chaotic attractors.

Equations of motion for the mathematical
pendulum with additional linear mass moving
along pendulum length (Fig. 4b)

[mlz2 +m, (-1, +y)2]¢+bl¢+ 2my (I~ 1y + v +

+ mlylsin(/)+m2y(l -1, +y)sin(p =M(wt)
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Fig. 6. Coexistence of P1 stable solutions and P1
RA rare attractors (see Fig.5a): a) time histories
and phase trajectories for cross-section A4, =
0.526; b) for cross-section A, = 0.44
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Fig. 7. Phase trajectories for coexisting periodic
regimes P1,, P1, and ChA-1; chaotic attractor for
cross-section 4; = 3.95 (see Fig.5b)

where ¢ — angle of rotation, read-out from a
vertical line; ¢ — angular velocity; y -

displacement of the additional mass, read-out
from a quiescent state; y— velocity of the

second mass; m; — mass of the pendulum, / —
length of the pendulum; m, — second mass, [, —
quiescent state of the second mass; u -—
gravitational constant; b¢, b,y — linear

dissipative forces (moments) of the pendulum
and the second mass; b, b, — damping
coefficients; c;y — linear restoring force of the
second mass; ¢, — stiffness coefficient;
M(wt)=h, coswt — external periodically excited
moment; 4; and w; — amplitude and frequency of
excitation.
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Fig. 8. Bifurcation diagram of 1T and 5T
bifurcation groups with several symmetry
breakings, period doublings, Andronov-Hopf
bifurcations and tip type rare attractor P5 RA for
pendulum system (see Fig.4b) with two degrees
of freedom and the external periodically excited
moment. Pendulum oscillation amplitudes vs.
excitation frequency w;. Parameters: m; =1, m,
=0.1,/=1,1,=025,b,=0.2, b, =0.1, Cy =
2,u=10, hy =4, w, = var. (see Eq.3).
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Fig. 9. Bifurcation diagram of 1T and 2T
bifurcation groups with several symmetry
breakings, period doublings, folds and tip type
rare attractors for the pendulum system (see
Fig.4b) with two degrees of freedom and the
external periodically excited moment. Pendulum
oscillation amplitudes vs. excitation amplitude 4;.
Parameters: m; = 1, my; =0.1, /=1, ly =
025, b,=02,b,=0.1, ¢, =2, u =10, o = 2,
hy = var. (see Eq.3).
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Fig. 10. Physical model of two body chained system

Results for this system are represented in
Figs.8, 9. These Figs. show that method of
complete bifurcation groups allows to find new
unnoticed before regimes also in the system with
two degrees-of-freedom. Thus, the application of
the method of complete bifurcation groups for
global analysis of forced oscillations is also
possible for systems with several degrees-of-
freedom.

The next model where unusual phenomenon is
discovered is a model of chained system with two
degrees-of-freedom with three equilibrium
positions of second mass, linear dissipations, and
harmonic excitation (see Fig.10).

Equations of motion are

{mljc'1 +bX, +cx, —b,X —cy X — X’ = hy cos(ot + @)

. . 3
my%, + byX +c, x+cpyx” =0

“



where x;, x, — generalized coordinates (x = x, —
x1); my, my — mass of oscillating bodies; b,
b, — linear dissipation coefficients; ¢; — stiffness
coefficient of the first linear elastic constrain; c,;,
¢y - stiffness coefficients of the second nonlinear
elastic constrain; 4, @, ¢y — amplitude, frequency
and phase of excitation.

In the Fig. 11 there is presented a unusual
bifurcation group of sub-harmonic isle P2.
Unusual is that all branches of solutions related
to particular group are unstable, that is, at least
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Fig. 11. New bifurcation group of completely
unstable subharmonic twin isles 2T. Bifurcation
diagrams for driven chain system with two
degrees-of-freedom with three equilibrium
positions of the second mass m, and linear
dissipation at harmonic excitation [24].
Amplitude of oscillations of the first mass vs. 4;.
Parameters: my=my,=1,b,=5,=0.2,¢, =1, ¢y

=-1, cpx=1,w=1,00=0, h; = var.
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Fig. 12. Appearance of stable regimes — rare
attractors — on the fully unstable subharmonic
isles 2T (Fig. 11) at varying the first mass m;.
Bifurcation diagrams for driven chained system
with two degrees-of-freedom with three
equilibrium positions of the second mass m, and
linear dissipation at harmonic excitation [24].
Amplitude of oscillations of the first mass vs. m;.
Parameters: m, =1, b, =5,=02,¢c;, =1, ¢;; = -1,
Cyp = 1,]’[1: l,a)= 1,;00=0,k=7,m1=var.

one of indicators of stability (multiplier) is
always out of unit circle borders. But varying
system parameters, for example, mass of
oscillating bodies, or linear dissipation
coefficients, or particular stiffness coefficients, or
excitation frequency, leads to appearance of
stable periodic regimes (rare attractors), and as a
result chaotic behavior, on previously unstable
branches (Fig.12).

Topologically subharmonic isles with chaotic
behavior have form of closed shell for on two
parameters plane 1DOF systems (Fig.13): narrow
band (rare attractor) of stable period nT regime
on shell border (near the fold bifurcation) and
Unstable Periodic Infinitium inside the shell. It is
typical, presence of narrow coat of chaotic
attractors inside the shell.

The next case is piece-wise linear system with
negative damping and harmonic excitation

i+ @)+ F Y =heos@t+p)  (5)

where x — generalized coordinate; F(x), Fy(x,
x) — nonlinear restoring and dissipative forces
(see Fig.14); hy, w, ¢y — amplitude, frequency and
phase of excitation.

In this system we observe rare attractors and
bifurcations usual for system with several DOF:
unstable fold, symmetri lost, Andronov-Hopf.

Rare attractors exist also in the nonlinear rotor
dynamics [19]. In particular, in Fig.15 it is shown
that RA are born on the unstable branch of the
amplitude-frequency response when introduce
small asymmetry into the parameters of a
nonlinear suspension

hy
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Fig. 13. Bifurcation map (w-#;) of subharmonic
isle 3T with tip type rare attractors P3 and chaotic
coat ChA-3. Trilinear symmetrical system with
linear damping and harmonic excitation [25].
Parameters: m=1,¢,=1, ¢ =5,d=05,b=
0.1, po=0, w = var., h;= var
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Fig. 14. Rare attractor, unstable symmetry lost
and unstable fold bifurcation. Bifurcation
diagram for piece-wise linear system with
negative damping and harmonic excitation. a)
fixed point coordinate vs. excitation amplitude
hyi; b) amplitudes of oscillations vs. 4.
Parameters: m=1,¢c;=1,¢,=9,d=1, b,=0.2,
b,=-0.2, =0, =1, h=var.

i+ 1+ k)[clx + c3x(x2 +y° )]+ bi = ew” cos(wt)
Ve y+ c3y(x2 + y2)+ by = ew’ sin(a)t)

(6)

where x, y — generalized coordinates; b —

linear dissipation coefficient; ¢, ¢; — stiffness

coefficients of suspension; k — coefficient of

asymmetry; e — eccentricity, w — frequency of
excitation.

Conclusion

It is shown that using of the method of complete
bifurcation groups allows to implement a global
bifurcation analysis of strongly nonlinear
oscillating and vibro-impact systems, and to find
new nonlinear effects, unknown before periodic
and chaotic regimes. This was shown on typical
nonlinear systems with one and two degrees-of-
freedom: bilinear, pendulum, rotor dynamics,

with several equilibrium positions, negative
damping. Obtained results have practical
importance in nonlinear vibroengineering:

vibromoving,
vibrowelding etc.

vibromixing,  vibropolishing,
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Fig. 15. The birth of the unusual period-1 rare
attractor (P1 RA) on the ‘unstable’ branch of the
driven damped slightly asymmetric rotor system
with the cubic elastic nonlinearity. Parameters: ¢,
=1l,c3=1,b=0.2, w =var.; (a) k=0.141,
(b) £=0.200 [19].

References

1. Poincaré H. Mémoire sur les courbes
definies par les équations différentielles I-VI,
Oecuvre I, Gauthier-Villar, Paris, 1880-1890.

2. Poincaré H. Sur les équations de la
dynamique et le probléme des trois corps,
Acta Math., 13, 1-270, 1890.

3. Poincaré H. Les Méthodes Nouvelles de la
Meécanique Celeste, 3 Vols, Gauthier-Villars,
Paris, 1899.

4. Birkhoff G.D. Dynamical Systems, A.M.S.
Publications, Providence, 1927.

5. Andronov A.A., Leontovich E.A., Gordon
LI, and Maier A.G. Theory of Bifurcations
of Dynamic Systems on a Plane, Israel
Program  of  Scientific = Translations,
Jerusalem, 1971.

6. Andronov A.A., Leontovich E.A., Gordon
LI, and Maier A.G. Theory of Dynamic



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Systems on a Plane, Israel Program of
Scientific Translations, Jerusalem, 1973.
Andronov A.A., Pontryagin L. Systémes
Grossiers, Dokl. Akad. Nauk. SSSR, 14, 247-
251, 1937.

Andronov A.A., Vitt E.A., and Khaiken S.E.
Theory of Oscillators, Pergamon Press,
Oxford, 1966.

Blekhman I. Vibrational mechanics. — World
Scientific, Singapore at al, 2000, 509 p.
Thomsen J.J. Vibrations and Stability.
Advanced Theory, Analysis, and Tools, 2nd
Edition, Springer, 2003.

Blekhman 1., Kuznetsova L. Rare events —
rare attractors; formalization and examples —
Journal of  Vibroengineering, 2008
December, Volume 10, Issue 4, ISSN 1392-
8716, p. 418-420.

Landa P.S. Reular and Chaotic Oscillations,
Springer-Verlag Berlin, 2001.

Stephenson A. On a new type of dynamic
stability. Memoirs and Proceedings of the
Manchester Literary and Philosophical
Society 52(8): 1-10, 1908a.
Kapitza P.L. Dynamic
pendulum with an oscilating point

stability of a
of

suspension, Zurnal eksperimentalnoj i
Teoreticeskoj Fiziki 21(5): 588-597 (in
Russian), 1951.

Strizak T. Methods of dynamical

“pendulum” type systems research — Alma-
Ata: Science KazSSR, 1981, p. 256 (in
Russian).

Zakrzhevsky M., Typical bifurcation groups
in a nonlinear oscillation theory, XV
Symposium DY VIS-06, RAS, Moscow,
2006, p.116-122 (in Russian).

Zakrzhevsky M. The theory of rare
phenomena and rare attractors. — St.
Peterburg, XXIX Summer Scholl “Advanced
Problems in Mechanics”, June 21-30, 2001.
Zakrzhevsky M. New concepts of nonlinear
dynamics: complete bifurcation groups,
protuberances, unstable periodic infinitiums
and rare attractors, Journal of
Vibroengineering JVE, December 2008, Vol.
10, Issue 4, p. 421-441.

Zakrzhevsky M. Global Nonlinear Dynamics
Based on the Method of Complete
Bifurcation Groups and Rare Attractors,
Proceedings of the ASME 2009 (IDETC/CIE
2009), San Diego, USA, 2009.

20.

21.

22.

23.

24.

25.

Zakrzhevsky M., Ivanov Yu., Frolov V.
NLO: Universal Software for Global
Analysis of Nonlinear Dynamics and Chaos.
In Proceeding of the 2nd European Nonlinear
Oscillations Conference, Prague 1996. v.2.,
p-261-264.

Zakrzhevsky M., Ivanov Yu., Frolov V.,
Shchukin 1., Smirnova R. NLO: Software for
Local and Global Analysis of Nonlinear
Oscillations. In Proceedings of International
Symposium Analysis and Synthesis of
Nonlinear Dynamical Systems in Mechanics.
Riga, 1996. p.172-179.

Schukin L.T. Development of the methods
and algorithms of simulation of nonlinear
dynamics problems. Bifurcations, chaos and
rare attractors, PhD Thesis, Riga -
Daugavpils, 2005, 205 p. (in Russian)
Yevstignejev V., Zakrzhevsky M., Shchukin
I., Smirnova R., Frolov V., Shilvan E. Rare
Chaotic and Regular Attractors and
Unknown Multiplicity in the Typical Driven
Oscillators, Proceedings of the International
Conference on Nonlinear Science and
Complexity NSC-2009, Porto, Portugal,
2008.

Yevstignejev V.Yu., Zakrzhevsky M.V,
Schukin L.T., Bifurcation Analysis by
Method of Complete Bifurcation Groups of
the Driven System with two Degrees of
Freedom with Three Equilibrium Positions //
J. of Vibroengineering, Volume 10, Issue 4,
pp- 519-528, 2008

Yevstignejev V.Yu., Zakrzhevsky M.V,
Schukin L.T., Smirnova R.S. Chaotic Coats
with Rare Attractors, in V.K.Astashev,
V.L Krupenin and E.B.Semenova (eds.) The
Dynamics of  Vibroimpact (Strongly
Nonlinear) Systems, Russian Academy of
Sciences, Moscow-Zvenigorod, 2009, pp.
147-154. (in Russian)



M. Zakrievskis, R. Smirnova, I Stukins, V.
Jevstignejevs, V. Kugelevi¢s, V. Frolovs, A. Klokovs, E.
Silvans. Pilno bifurkiciju grupu metode un tas
pielietojums nelineara dinamika

Darba ir aplikota jauna pieeja biitiski nelinearo dinamisko
sistemu globalai bifurkaciju analizei. Pieejas pamatideja
balstas uz pilno bifurkaciju grupu koncepcijas un periodisko
rezimu turpindjuma pa parametru gar stabiliem un
nestabiliem risinajumiem, un saucas par pilno bifurkacijas
grupu metodi (MPBG). Dotaja darba paradits, ka MPBG
pielietojums Jauj atrast jaunus nelinearos efektus un
nezinamus agrak periodiskus (retie atraktori) un haotiskus
rezimus tipveida dinamiskas sistémas ar vienu un ar divam
brivibas pakapem: bilineards, svarstu, rotoru, ar daziem
lidzsvara stavokliem, sistémas ar negativo berzi.
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IIunaan. Meroa moJaHBIX OM(YPKALMOHHBIX TpPynn M
€ro NpuMeHeHHe B HeTMHeiHol TnHaMuKe

B cmamve paccmampusaemcs  Hoblli  n00X00 K
enobanvHomMy — OUPYPKAYUOHHOMY — AHAAU3Y — CUTLHO
Heaunelnvlx  Ounamuyeckux cucmem. OcHosHas —uodesi
nooxo0a  OcCHOGbI6AemMCsl — HA — KOHYenyuu  NOJHbIX
OUDYPKAYUOHHBIX 2PYAN U HPOOOJINCEHUU NO NApamempy
NnepuooUyecKuUx — pexcumosg  800AbL  YCHMOUYUBbLIX U
HeYyCMoUUBLIX pelenull, HA36aHHbIX MemoOOM HNONHbIX
ougyprayuonnvix epynn  (MIIBI). B oOaunoui cmamve
nokasano, ymo npumenenue MIIBI" nozeonsem Haxooums
HOBble HenuHelinble dgekmbl U HeuzsecmHvle pauee
nepuoouyeckue (pedkue ammpakmopvl) u Xaomuueckue
PedAcUMbl 8 MUNOBLIX OUHAMUYECKUX CUCIEMAX ¢ OOHOU U
08yMA cmenensmMu c8oO00bl: OUNUHEUHOU, MAAMHUKOBOL,
POMOPHOU, ¢ HECKONbKUMU NOTOACEHUAMU PABHOBECUS, 6
cucmemax ¢ OmpuyamensHolM mpeHuem.



