
 

 

 

ISSN 1407-8015 
TRANSPORT AND ENGINEERING 

2008-8015 
MAŠĪNZINĀTNE UN TRANSPORTS 

   
 ANNIVERSARY EDITION  
 JUBILEJAS KRĀJUMS  
 
 
 
METHOD OF COMPLETE BIFURCATION GROUPS AND ITS APPLICATION IN  
NONLINEAR DYNAMICS 
 
PILNO BIFURKĀCIJU GRUPU METODE UN TAS PIELIETOJUMS NELINEĀRĀ 
DINAMIKĀ  
 
Mikhail Zakrzhevsky was born in 1937 (Leningrad, Russia). In 1960 he graduated from Riga Technical 
University (RTU), academic degree – mechanical engineer. Doctor of Science in Mechanical Engineering 
(Nonlinear Oscillations) since 1975, Habilitate Doctor of Science since 1992 (Dr. habil. sc. ing.). From 1985 till 
the present time – professor of the Institute of Mechanics, Transport and Mechanical Engineering faculty, RTU. 
Field of specialisation: Nonlinear Dynamics, Chaos, Catastrophes and Control.   
Raisa Smirnova was born in 1965 (Latvia, Daugavpils). She graduated from the Faculty of automation and 
computer sciences of Riga Technical University (Riga Polytechnic institute) in 1988, Doctor of Science in 
Mechanics and Nonlinear Dynamics since 2002. Now she is Docent of Daugavpils Branch of Riga Technical 
University. 
 
Igor Schukin was born in 1970 (Latvia, Daugavpils). He graduated from the Faculty of automation and 
computer sciences of Riga Technical University (Riga Polytechnic institute) in 1993, Doctor of Science in 
Mechanics and Nonlinear Dynamics since 2005. Now he is Docent of Daugavpils Branch of Riga Technical 
University. 
 
Vladislav Yevstignejev was born in 1974 (Latvia, Jelgava). He graduated from the Faculty of Mechanics of 
Riga Technical University in 1995, Doctor of Science in Mechanics since 2008. Now he is Docent of Riga 
Technical University. 
 
Viktor Kugelevich was born in 1953 (Braslava region, Belarus). He graduated from the Faculty of Mechanics of 
Riga Technical University (Riga Polytechnic institute) in 1975, Doctor of Science in Mechanics since 1986. 
Now he is Docent of Daugavpils University. 
 
Valentin Frolov was born in 1967 (Leningrad, Russia). He graduated from the Faculty of Mechanics of Riga 
Technical University (Riga Polytechnic institute) in 1991, Doctor of Science in Mechanics since 1997. Now he 
is businessman. 
 
Alexey Klokov was born in 1985 (Latvia, Daugavpils). He graduated from the Faculty of Mechanics of Riga 
Technical University in 2009. Now he is PhD candidate of Riga Technical University. 
 
Eduard Shilvan was born in 1986 (Latvia, Daugavpils). He graduated Bachelor of Science from the Faculty of 
Mechanics of Riga Technical University in 2009. Now he is MSc candidate of Riga Technical University. 
 



 

 

 
METHOD OF COMPLETE BIFURCATION GROUPS AND ITS APPLICATION IN  
NONLINEAR DYNAMICS 
 
PILNO BIFURKĀCIJU GRUPU METODE UN TAS PIELIETOJUMS NELINEĀRĀ 
DINAMIKĀ  
 
 
M. Zakrzhevsky, R. Smirnova, I. Schukin, V. Yevstignejev, V. Kugelevich, V. Frolov, A. Klokov, E. 
Shilvan  
 
 
Keywords: nonlinear dynamics, method of complete bifurcation groups, rare attractors, chaos, archetypal 

dynamical systems with one- and two-degrees-of-freedom 
 

 

Abstract: A new approach for the global bifurcation 

analysis of strongly nonlinear dynamical systems is under 

consideration. The main idea of the approach is a concept 

of complete bifurcation groups and periodic branch 

continuation along stable and unstable solutions, named 

as a method of complete bifurcation groups (MCBG). In 

this paper it is shown that using MCBG allows to find new 

nonlinear effects and unknown before periodic (rare 

attractors) and chaotic regimes in archetypal dynamical 

systems with one- and two-degrees-of-freedom: bilinear, 

pendulum, rotor dynamics, with several equilibrium 

positions, negative damping.  

 
 
Introduction 
 

The method of complete bifurcation groups is 
worked out in the Institute of Mechanics of Riga 
Technical University by the scientific group 
working on Nonlinear Dynamics, Chaos, 
Catastrophes and Control. The method consists in 
direct numerical modeling of original nonlinear 
model, that is, without its simplification. Under 
the method of complete bifurcation groups we 
understand the complex of approaches to analysis 
of dynamic systems, which involves the 
following procedures: at fixed system parameters 
– searching of all periodic stable and unstable 
regimes and bifurcation subgroups with unstable 
periodic infinitiums (UPI) on plane of states, 
constructing of regimes’ basins of attraction on 
plane of states; at varied system parameters – 
constructing of bifurcation diagrams (one 
parameter is varied) and bifurcation maps (two 
parameters are varied). Special importance in the 
method is the continuation of parameter solution 
(in one-parameter task) along a solution branch 
of definite regime (not along parameter) [16-19]. 
That allows to find new unknown before stable 

regimes in broadly used dynamical models of 
strongly nonlinear oscillatory systems [1-15]. 

In the present paper it will be demonstrated 
that using of the method of complete bifurcation 
groups allows to implement a global bifurcation 
analysis of strongly nonlinear oscillating and 
vibro-impact systems, and to find new nonlinear 
effects, unknown before periodic and chaotic 
regimes. This will be shown on typical nonlinear 
systems with one and two degrees-of-freedom: 
bilinear, pendulum, rotor dynamics, with several 
equilibrium positions, negative damping. New 
obtained results have practical importance in 
nonlinear vibroengineering: vibromoving, 
vibromixing, vibro-polishing, vibrowelding etc. 
All results were obtained numerically, using 
software NLO and SPRING, created by this 
paper authors [20-22].  
 
 
Models and results 
 
The first model under consideration is a model of 
valve system. The valve system has the simplest 
nonlinear model – bilinear restoring force, linear 
damping and harmonical excitation. The bilinear 
models are widely and long time used for 
dynamics investigation of many mechanical 
engineering systems, such as vibro-impact 
equipment, offshore structures, suspended 
bridges, air valves and switches. This model can 
be described by following differential equation 
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where: m – mass; b – coefficient of linear 
dissipation; с1, с2 and d – stiffness coefficients 
and break point of bilinear restoring force; h1, ω 
– amplitude and frequency of excitation. 
Some important results for this model are 
represented in Figs.1-3. New rare regular (RA) 
and chaotic (ChA) attractors were found (Fig.1). 
These attractors exist in rather small range of 
parameter, but as it is shown in Fig.2, have rather 

big basins of attraction. Else, using MCBG we 
can see such phenomenon like two different 
bifurcation groups integrate into one bifurcation 
group (Fig.3). 

Next two models under consideration are 
models of pendulum systems: one is 1 DOF 
model with linear restoring moment and with the 
periodically vibrating in both directions point of 
suspension   (Fig.4a);  another  is  2  DOF  model  
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Fig. 1. Complicated bifurcation group 1T, which 
has rare chaotic attractor in parameter range 
marked UPI-1.  Complete bifurcation diagram for 
valve system with bilinear elastic characteristic 
and linear dissipation at harmonic excitation [23]. 
Amplitude of oscillations Am of periodic regimes 
vs. frequency of excitation ω. Parameters: m = 1, 
c1 = 50, c2 = 1, d = 0.01, b = 0.5,    h1 = 0.5, φ0 = 
0, ω = var.  
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Fig. 2. Bassins of attraction of two attractors: 
regular resonant P1 and chaotic ChA-1. Cross-
section of bifurcation diagram from Fig. 1 at ω = 
3.75 [23]. Valve system with bilinear elastic 
characteristic and linear dissipation at harmonic 
excitation. Parameters: m = 1, c1 = 50, c2 = 1, d = 
0.01, b = 0.5, h1 = 0.5, ω = 3.75, φ0 = 0 
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Fig. 3. Two different bifurcation groups, 1T and 
subharmonic isle 2T, integrate into one 
bifurcation group 1T. Complete bifurcation 
diagram for valve system with bilinear elastic 
characteristic and linear dissipation at harmonic 
excitation: amplitude of oscillations Am of 
periodic regimes vs. frequency of excitation ω. 
Parameters: c1 = 50, c2 = 1, d = 0.01,        b = 0.5, 
h1 = 0.95 (a) and h1 = 1.0 (b), ω = var. 



 

 

 
with the external periodically excited moment 
(Fig.4b).  

The first model is described by following 
equation 
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field codes.      (2) 

where: m – pendulum mass; L – pendulum 
length;        µ – gravitational constant; φ – angle 
of rotation; ϕ&  –angular velocity, dt/dϕϕ =& ; 

ϕ&b  - linear damping  moment; b – damping 
coefficient; cφ – linear restoring moment; с – 
stiffnes coefficient; tAtx ωωω cos)( 2

21 −=&& , 

tAty ωωω sin)( 2
12 −=&&  - suspension point 

acceleration in horizontal and vertical direction 
due to external axcitation. 

Investigation results for model from Fig.4a 
are represented in Figs.5-7. The model has three 
different bifurcation groups 1T. Two of these 
groups are topologically similar and have rare 
attractors Р11 RA and Р13 RA (Fig.5a). Some 
cross-sections of bifurcation diagrams from Fig.5 
are represented in Figs.6,7. Each 1T group has its 
own UPI (Unstable Periodic Infinitium) with 
corresponding chaotic attractors. 

 

Equations of motion for the mathematical 
pendulum with additional linear mass moving 
along pendulum length (Fig. 4b) 
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Fig. 4. Models of pendulum systems: a) with 
linear restoring moment and with the periodically 
vibrating point of suspension in both directions 
(see Eq.2, results in Fig.5-7); b) with external 
periodically excited moment (see Eq.3, results in 
Fig.8, 9). 
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Fig. 5. Bifurcation diagrams of driven damped 
pendulum (see Fig.4a) with rare attractors. 
System  has linear restoring moment and the 
periodically vibrating in both directions point of 
suspension. There are three 1T and one 2T (in 
Fig.5a) or one 6T (in Fig.5b) bifurcation groups 
with several symmetry breakings, period 
doublings, folds and tip type rare attractors. a) 
Amplitudes of oscillations vs. vertical external 
force amplitude A2 (A1 = 0.5, A2 = var.); b) 
amplitudes of oscillations versus horizontal 
external force amplitude A1 (A2 = 1, A1 = var.). 
Parameters: m = 1, L = 1, b = 0.2, c = 1, µ = 9.81, 
ω = 1.5, A1 = var., A2 = var. (see Eq.2). 
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Fig. 6. Coexistence of P1 stable solutions and P1 
RA rare attractors (see Fig.5a): а) time histories 
and phase trajectories for cross-section A2 = 
0.526; b) for cross-section А2 = 0.44 



 

 

 

where φ – angle of rotation, read-out from a 
vertical line; ϕ&  – angular velocity; y – 
displacement of the additional mass, read-out 
from a quiescent state; y& – velocity of  the 
second mass; m1 – mass of the pendulum, l – 
length of the pendulum; m2 – second mass, l0 – 
quiescent state of the second mass; µ – 
gravitational constant; ϕ&1b , yb &2  – linear 
dissipative forces (moments) of the pendulum 
and the second mass; b1, b2 – damping 
coefficients; c2y – linear restoring force of the 
second mass; с2 – stiffness coefficient; 

thtM 111 cos)( ωω =  – external periodically excited 
moment; h1 and ω1 – amplitude and frequency of 
excitation. 
 

Results for this system are represented in 
Figs.8, 9. These Figs. show that method of 
complete bifurcation groups allows to find new 
unnoticed before regimes also in the system with 
two degrees-of-freedom. Thus, the application of 
the method of complete bifurcation groups for 
global analysis of forced oscillations is also 
possible for systems with several degrees-of-
freedom.  

The next model where unusual phenomenon is 
discovered is a model of chained system with two 
degrees-of-freedom with three equilibrium 
positions of second mass, linear dissipations, and 
harmonic excitation (see Fig.10). 

Equations of motion are 
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Fig. 7. Phase trajectories for coexisting periodic 
regimes P11, P12 and ChA-13 chaotic attractor for 
cross-section А1 = 3.95 (see Fig.5b) 

 

 

Fig. 8. Bifurcation diagram of 1T and 5T 
bifurcation groups with several symmetry 
breakings, period doublings, Andronov-Hopf 
bifurcations and tip type rare attractor P5 RA for 
pendulum system (see Fig.4b) with two degrees 
of freedom and the external periodically excited 
moment. Pendulum oscillation amplitudes vs. 
excitation frequency ω1. Parameters:    m1 = 1, m2

= 0.1, l = 1, l0 = 0.25, b1 = 0.2, b2 = 0.1,       c2 = 
2, µ = 10, h1 = 4, ω1 = var. (see Eq.3). 

 

Fig. 9. Bifurcation diagram of 1T and 2T 
bifurcation groups with several symmetry 
breakings, period doublings, folds and tip type 
rare attractors for the pendulum system (see 
Fig.4b) with two degrees of freedom and the 
external periodically excited moment. Pendulum 
oscillation amplitudes vs. excitation amplitude h1. 
Parameters: m1 = 1, m2 = 0.1, l = 1,           l0 = 
0.25, b1 = 0.2, b2 = 0.1, c2 = 2, µ = 10, ω1 = 2,        
h1 = var. (see Eq.3). 
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Fig. 10.  Physical model of two body chained system 



 

 

where x1, x2 – generalized coordinates (x = x2 – 
x1);          m1, m2 – mass of oscillating bodies; b1, 

b2 – linear dissipation coefficients; c1 – stiffness 
coefficient of the first linear elastic constrain; c21, 
c22 - stiffness coefficients of the second nonlinear 
elastic constrain; h1, ω, φ0 – amplitude, frequency 
and phase of excitation. 
 

In the Fig. 11 there is presented a unusual 
bifurcation group of sub-harmonic isle P2. 
Unusual is that all branches of solutions related 
to particular group are unstable, that is, at least 

one of indicators of stability (multiplier) is 
always out of unit circle borders. But varying 
system parameters, for example, mass of 
oscillating bodies, or linear dissipation 
coefficients, or particular stiffness coefficients, or 
excitation frequency, leads to appearance of 
stable periodic regimes (rare attractors), and as a 
result chaotic behavior, on previously unstable 
branches (Fig.12). 

Topologically subharmonic isles with chaotic 
behavior have form of closed shell for on two 
parameters plane 1DOF systems (Fig.13): narrow 
band (rare attractor) of stable period nT regime 
on shell border (near the fold bifurcation) and 
Unstable Periodic Infinitium inside the shell. It is 
typical, presence of narrow coat of chaotic 
attractors inside the shell.  

The next case is piece-wise linear system with 
negative damping and harmonic excitation 

)tcos(1 021 ϕω +h=)x(x,F+(x)F+x &&&             (5)   

where x – generalized coordinate; F1(x), F2(x, 

x& ) – nonlinear restoring and dissipative forces 
(see Fig.14); h1, ω, φ0 – amplitude, frequency and 
phase of excitation. 

In this system we observe rare attractors and 
bifurcations usual for system with several DOF: 
unstable fold, symmetri lost, Andronov-Hopf. 

Rare attractors exist also in the nonlinear rotor 
dynamics [19]. In particular, in Fig.15 it is shown 
that RA are born on the unstable branch of the 
amplitude-frequency response when introduce 
small asymmetry into the parameters of a 
nonlinear suspension 

 

 

Fig. 11. New bifurcation group of completely 
unstable subharmonic twin isles 2T. Bifurcation 
diagrams for driven chain system with two 
degrees-of-freedom with three equilibrium 
positions of the second mass m2 and linear 
dissipation at harmonic excitation [24]. 
Amplitude of oscillations of the first mass vs. h1. 
Parameters: m1 = m2 = 1, b1 = b2 = 0.2, c1 = 1, c21

= -1,  c22 = 1, ω = 1, φ0 = 0, h1 = var. 
 
 

Fig. 12.  Appearance of stable regimes – rare 
attractors – on the fully unstable subharmonic 
isles 2T (Fig. 11) at varying the first mass m1. 
Bifurcation diagrams for driven chained system 
with two degrees-of-freedom with three 
equilibrium positions of the second mass m2 and 
linear dissipation at harmonic excitation [24]. 
Amplitude of oscillations of the first mass vs. m1. 
Parameters: m2 = 1, b1 = b2 = 0.2, c1 = 1, c21 = -1,        
c22 = 1, h1 = 1, ω = 1, φ0 = 0, k = 7, m1 = var. 
 

 
Fig. 13. Bifurcation map (ω-h1) of subharmonic 
isle 3T with tip type rare attractors P3 and chaotic 
coat ChA-3. Trilinear symmetrical system with 
linear damping and harmonic excitation [25]. 
Parameters: m = 1, с1 = 1,     с2 = 5, d = 0.5, b = 
0.1, φ0 = 0, ω = var., h1= var 

ω 

h1 



 

 

 

 

 
 

Fig. 14. Rare attractor, unstable symmetry lost 
and unstable fold bifurcation. Bifurcation 
diagram for piece-wise linear system with 
negative damping and harmonic excitation. a) 
fixed point coordinate vs. excitation amplitude 
h1; b) amplitudes of oscillations vs. h1. 
Parameters:  m = 1, c1 = 1, c2  = 9, d = 1, b1 = 0.2,         
b2 = -0.2, ϕ0 = 0, ω = 1, h1= var. 
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where x, y – generalized coordinates; b – 
linear dissipation coefficient; c1, c3 – stiffness 
coefficients of suspension; k – coefficient of 
asymmetry; e – eccentricity, ω – frequency of 
excitation. 
 
 
Conclusion 
 
It is shown that using of the method of complete 
bifurcation groups allows to implement a global 
bifurcation analysis of strongly nonlinear 
oscillating and vibro-impact systems, and to find 
new nonlinear effects, unknown before periodic 
and chaotic regimes. This was shown on typical 
nonlinear systems with one and two degrees-of-
freedom: bilinear, pendulum, rotor dynamics, 
with several equilibrium positions, negative 
damping. Obtained results have practical 
importance in nonlinear vibroengineering: 

vibromoving, vibromixing, vibropolishing, 
vibrowelding etc. 
 

 

 
 

Fig. 15. The birth of the unusual period-1 rare 
attractor (P1 RA) on the ‘unstable’ branch of the 
driven damped slightly asymmetric rotor system 
with the cubic elastic nonlinearity. Parameters: c1 
= 1, c3 = 1, b = 0.2,            ω = var.; (a) k = 0.141, 
(b) k = 0.200 [19]. 
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M. Zakrževskis, R. Smirnova, I. Ščukins, V. 
JevstigĦejevs, V. Kugelevičs, V. Frolovs, A. Klokovs, E. 
Šilvāns. Pilno bifurkāciju grupu metode un tas 
pielietojums nelineārā dinamikā 
Darbā ir aplūkota jauna pieeja būtiski nelineāro dinamisko 

sistēmu globālai bifurkāciju analīzei. Pieejas pamatideja 

balstās uz pilno bifurkāciju grupu koncepcijas un periodisko 

režīmu turpinājuma pa parametru gar stabiliem un 

nestabiliem risinājumiem, un saucas par pilno bifurkācijas 

grupu metodi (MPBG). Dotajā darbā parādīts, ka MPBG 

pielietojums Ĝauj atrast jaunus nelineāros efektus un 

nezināmus agrāk periodiskus (retie atraktori) un haotiskus 

režīmus tipveida dinamiskās sistēmās ar vienu un ar divām 

brīvības pakāpēm: bilineārās, svārstu, rotoru, ar dažiem 

līdzsvara stāvokĜiem, sistēmās ar negatīvo berzi. 

 
М. Закржевский, Р. Смирнова, И. Щукин, В. 
Евстигнеев, В. Кугелевич, В. Фролов, А. Клоков, Э. 
Шилван. Метод полных бифуркационных групп и 
его применение в нелинейной динамике 
В статье рассматривается новый подход к 

глобальному бифуркационному анализу сильно 

нелинейных динамических систем. Основная идея 

подхода основывается на концепции полных 

бифуркационных групп и продолжении по параметру 

периодических режимов вдоль устойчивых и 

неустойчивых решений, названных методом полных 

бифуркационных групп (МПБГ). В данной статье 

показано, что применение МПБГ позволяет находить 

новые нелинейные эффекты и неизвестные ранее 

периодические (редкие аттракторы) и хаотические 

режимы в типовых динамических системах с одной и 

двумя степенями свободы: билинейной, маятниковой, 

роторной, с несколькими положениями равновесия, в 

системах с отрицательным трением. 

 
 
 
 


