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Abstract - The paper is focused on univariate relaxation and
coordinate exchange with improved multistart algorthms. The
effectiveness of these algorithm are shown for sedning of D-
optimal designs with continuous and 3-level discret parameters
in 3-15 dimensions with 10 to 300 runs (45 to 45Q#ptimization
parameters) and for optimization of Latin hypercube designs
according to several criteria. The optimized design are
compared on many metamodeling test problems. For thcase of
second order local polynomial approximation, the us of MSE-
optimal Latin hypercube designs and modified Gausan
weighting function is proposed. Optimized experimetal designs
are available in public Internet pages.
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| INTRODUCTION

Formulation of the problem and proposed algoritrans
given by authors in [1].

Il . COMPARISON OF THE SEARCH ALGORITHM RESULTS FOR-
OPTIMAL DESIGNS

Here we will look at the search results fBroptimal

designs in then-dimensional cube. Many authors have bee
working on theD-optimization of experimental designs. Box

and Draper [2] used a hill-climbing method to seafar D-

optimal quadratic designs in the square with froto &8 runs,
and Haines [3] used simulated annealing to seaochDf
optimal designs in some low-dimensional problems. |
particular, she found conjecturally optimal quadratesigns
in the square with from 6 to 9 runs. Our prograns ha
confirmed theD-optimality of the designs found in these two
papers as well as in paper of Hardin and Sloane [4]

For three dimensions there are a number of papEakngd
with D-optimal 3-level designs, see [5], [6-10]. We hased
our progranmRelax to search foD-optimal designs, both with
continuous and with 3-level coordinates, and th&gihes with
from 10 to 15 runs.

For theD-optimal 3-level designs our results agree with the
above references. We also see from Tables 2-5fdhab-
optimality it makes little difference whether weudevel or
continuous coordinates. Similarly there is not agda
difference betweemgvalues in the case of designs with or
without center points. First the saturated desifgmssecond
order approximations were optimized. In dimensioks
through 10, a number of authors have attemptedntb -
optimal designs with the minimal number of runsairtube.
Draper and Lin [11] and Hardin and Sloane [4] gavéable
ﬁomparing theD-values of designs found by Box and Draper
[12], Draper and Lin [13], Lucas [14], Mitchell afhyne [8],
Notz [15], Katsauonis [16], Rechtschaffner [17] afdrdin

TABLE 1
COMPARISONOFMINIMAL QUADRATIC DESIGNSIN CUBEBASEDON TABLE 7 OFHARDIN AND SLOANE[4].
ENTRY GIVESDEF VALUE

m Draper and Lucas Notz Mitchell and Box and Recht- Katsauonis Hardinand New

Lin [13] [14] [15] Bayne [7] Draper [12] schaff- [16] Sloane [4] Designs

ner [17]

3 30.3 15.2 40.0 41.0 42.3 40.0 40.95 42.3 42.347
4 30.8 9.6 39.2 425 42.3 39.2 425 43.2 43.240
5 24.1 6.6 45.9 45.6 374 45.0 45.9 46.7 46.721
6 26.3 4.8 44.6 31.7 42.8 45.98 46.4 46.456
7 19.6 3.6 22.7 38.3 45.10 45.8 47.604
8 321 2.8 19.3 33.6 44.56 45.5 48.010
9 20.0 2.3 16.7 29.3 44.96 46.0 46.592
10 16.5 1.8 14.6 255 46.5 46.709
11 47.085
12 46.850
13 46.893
14 47.854
15 47.589
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TABLE 2
EFFICIENCY OF NEW3-LEVEL SATURATED DESIGNS
m n Dy MinDist E @, (Dc)? MSE
3 10 40.95 0.7071 0.7948 3.548 0.1897 0.7685
4* 15 42.50 0.7071 0.5905 4.419 0.3171 0.9187
21 45.89 0.7071 0.6074 5.381 0.5963 1.2075
28 46.28 0.8660 0.2643 6.486 0.7707 1.3226
36 46.33 1.0000 0.2073 7.791 0.8611 1.5416
8* 45 47.63 1.1180 0.0559 8.794 1.5882 1.5355
9 55 46.07 1.1180 0.0276 10.095 2.0034 1.9034
10 66 46.08 1.1180 0.0133 11.479 2.6819 2.0588
11+ | 78 46.45 1.4142 0.0052 12.878 3.6979 1.8667
12 91 46.20 1.2247 0.0033 14.228 5.2303 2.3559
13 105 46.35 1.2247 0.0023 15.731 6.7866 2.4894
14 120 47.16 1.5000 0.0004 17.267 8.8577 2.6384
15 136 47.01 1.5811 0.00015 18.829 11.6104 2.7754
* — center point prese
TABLE 3
EFFICIENCY OF NEW3-LEVEL SATURATED DESIGNS WITH ONE CENTER POINT
m |n D MinDist E @, (Dc)? MSE
3 10 40.00 0.5000 0.8635 3.594 0.1492 0.7204
4 15 42.50 0.7071 0.5905 4.419 0.3170 0.9189
5 21 44.81 0.7071 0.3893 5.363 0.5358 1.0979
6 28 46.03 0.8660 0.2913 6.534 0.7662 1.2519
7 36 45.68 1.0000 0.1411 7.815 0.8923 1.3763
8 45 47.63 1118 0.0559 8.794 1.58819 1.5355
9 55 45.84 1.224 0.0262 10.179 1.9606 1.6477
10 | 66 45.36 1118 0.0167 11.538 2.7515 1.7605
11 | 78 46.45 1.4142 0.0052 12.878 3.6979 1.8667
12 | 91 46.01 1.3228 0.0022 14.250 5.1395 2.3551
13 | 105 4571 1.2247 0.0028 15.814 6.7603 2.0532
14 | 120 46.63 1.4142 0.0009 17.359 8.8413 2.1386
15 | 136 46.88 1.5811 0.0002 18.869 11.7698 2.2215
TABLE 4

EFFICIENCY OF NEW DESIGNS WHEN THE POINTS ARE RANGEOVER THE WHOLE CUBE

m n Dy MinDist E ®, (Dc)? MSE

3 10 42.346 0.6705 0.7354 3.512 0.1339 0.7132
4 15 43.240 0.7939 0.5903 4.456 0.2556 0.9467
5 21 46,721 0.6925 0.5267 5.378 0.5570 1.2083
6 28 46.456 0.8238 0.2825 6.439 0.8361 1.3757
7 36 47.604 1.2319 0.0778 7.705 0.9502 1.5354
8 45 48.010 1.1857 0.0520 8.797 1.6144 1.5357
9 55 46.592 1.2226 0.0216 10.161 2.0227 1.8613
10 | 66 46.709 1.1990 0.0088 11.476 2.8297 0.7354
11 | 78 47.085 1.3595 0.0049 12.930 3.7927 1.8942
12 | 91 46.850 1.3325 0.0022 14.296 5.2765 2.3537
13 | 105 46.893 1.3402 0.0010 15.806 6.8794 2.4805
14 | 120 47.854 1.5521 0.0003 17.329 9.2363 2.6294
15 | 13¢ 47.58¢ 1.670( 0.000: 18.91: 12.038:  2.757.
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TABLE 5
EFFICIENCY OF NEW DESIGNS WHEN THE POINTS ARE RANGEOVER THE WHOLE
CUBE WITH ONE CENTER POINT
m n Dy MinDist E ®, (Dc)? MSE
3 10 40.573 0.6040 0.7526 3.480 0.16547 0.7196
4 15 42.677 0.6363 0.6444 4.446 0.3239 0.9212
5 21 45.167 0.6081 0.5013 5.389 0.5571 1.1024
6 28 46.447 0.8087 0.3025 6.465 0.8569 0.7354
7 36 46.69 1.1316 0.1019 7.876 0.8683 1.3655
8 45 48.009 1.1860 0.0522 8.797 1.6143 1.5350
9 55 46.460 1.2320 0.0228 10.206 2.0256 1.6454
10 66 46.359 1.2038 0.0145 11.561 2.8282 1.7592
11 78 47.074 1.3708 0.0051 12.943 3.7676 1.8639
12 91 46.67: 1.287¢ 0.002: 14.32( 5.211¢ 2.347¢
TABLE 6
EFFICIENCY OF NEW DESIGNS WHEN THE POINTS ARE RANGED/@R THE WHOLE CUBE(DOUBLE
NUMBER OF RUNS
m n Dy MinDist E @, (Dc)? MSE
3 | 16* 45.91 0.4768 3.4032 6.186 0.1644 0.6659
4 30 48.23 0.4528 5.4418 9.762 0.2725 0.7979
5 42 49.794 0.5130 3.1761 11.472 0.4680 1.0182
6 56 51.587 0.4838 2.4806 13.534 0.7300 1.2184
7 72 53.273 0.6690 1.2808 15.635 1.0865 1.3826
8 90 54.846 0.6991 0.9663 18.004 1.6016 1.5884
9 110 56.178 0.8964 0.3593 20.485 2.1606 1.7445
10 | 132 57.373 0.9181 0.1983 23.041 3.0380 1.9044
11 | 156 58.543 1.0426 0.0807 25.787 4.1102 2.0597
12 | 182 59.646 1.2164 0.0297 28.581 5.4893 2.2227
13 | 210 60.324 1.1242 0.0193 31.509 7.3919 2.3608
14 | 240 60.881 1.2208 0.0082 34.570 9.6425 2.5017
15 | 272 61.656 1.4364 0.0021 37.609 12.7728 2.6576
* - 16 runs is the maximal number of points in &dhsional D-optimal design without repeated points
1 19 For four dimensions, Meyer and Nachtsheim [5] régubr

that their simulated annealing algorithm found ardifs
design with|XX| = 1.4867E13 when the coordinates were
0y Os ? restricted to three levels, but that they couldyonbtain
4.1296E12 when the points ranged over the whole.drébax
found an even better continuous design, \,f/)ﬂﬁ)( = 1.6863

a) 1 s 3 b)_1-1 s s E13 and|XX|=1.5288E13 for the case of three levels. The
Fig. 1Continuous D-optimized design with 45 runs andddes saturated designs are rarely use_d in real appraimaThe
a) Plane x,-e, b) Plane x:-x; commonly used number of runs in Response surfadbatie

with second order polynomial approximation is Jo=2ttimes

and Sloane [4]. We have reproduced this as Table Qreater. Table 6 shows criteria values foptimal designs
supplemented with an additional column showing the with double number of runs.

values of the designs found Bglax. In the distribution of the points in the designrthés a

The entries give th®g-values, numbers which are to benoticeable tendency for the points to be conceedran the

made as large as possible. In dimensionss 6 the new neighborhood of three-level design points, i.e thoint

designs are better. coordinates are close to the values -1, 0, +1. Tndency
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can also be noted in designs with 8 variables @nduds, see
Fig. 1.

I1l. COMPARISON OF SPACE FILLING DESIGNS

For various optimal LHDs, (e.gD,, MinDist, MSE, entropy,
and discrepancy), there is no consensus on whitdrion is
better. In this paper, LHDs optimized accordingvarious
criteria were compared for metamodeling using secmler
local polynomial approximations. Several weightfagctions
were used:

triweight function suggested by Cleveland [18],

W(u) = - v W
function proposed by the authors
W(u)=(1-u)" 2
Gaussian kernel
W(u) = exp— au?) ®

Here u — the Euclidean distance between curremit podi
approximation x and point of experimental design,
normalized so that the distance betweérand the nearest
point outside the neighborhood ofig equal to 1, see [18].
The Gaussian weighting function traditionally isedswith
coefficientae = 0.5, and the smoothness of approximation i
controlled by bandwidth ,n((number of neighbors). We used
Gaussian kernel with maximal number of neighbersm and
the smoothness of approximation was controlled oojy
coefficiento.. The optimal constant values of bandwidgtamd
o were found by cross-validation approach.

For comparing a test function is necessary whigrbadly
approximates with second order polynomial approxioma
(otherwise in place of local approximation the mstmpler
global polynomial approximation can be employed); i®
symmetrical in relation to all factors; 3) contaiislated
extremes in region of interest; 4) is still simgleough to be
approximated with a number of runs that may be caige
to the number of runs required for quadratic apjnaxions.

In a m-dimensional cube [-1, W }hese requirements are met
by the function £

1 1
1+ (x, ~ 005 1+ (x, + 0osp @

=1 =1

fles( (X)

which has exactly one minimum and one maximum is th
region.

The accuracy of approximation was measured with the

relative average prediction erregs;

—100% MeanquareError (5)
Variance

%ZN:(':&&(WJ - fx&(ww ))2

J

O = 100%J

N

2

i=1

1

N (ta(V\/.)_fx&)z

where w — confirmation points (i=1,...,N),f, (W) -
approximated value of test functiorfm - average value of
test function in confirmation points. 50000 unifdym
randomly selected confirmation points (Latin hypdre
sample) in region of interest were used.
Some authors employ thé Brediction error measure [19]
MeanSquareError 1

2
O_ﬂ (6)
Variance 100

Figures 2-5 show the exact three factor functiod #s
approximations in the plane. Table 7 shows the raogyuof
the three-factor test function, approximated witbvesal
experimental designs, global second order, glotiadl torder
polynomial and local quadratic approximations witiree
different weighting functions. 50000 confirmatioaipts were
used. First number in the cell shows the value atétive
average prediction error in the case of experintedtda
without noise. The second number in the cell shtheserror
value when the function has Gaussian noise withdstal
deviation equal to 5% from standard deviation qgfeimental
data (the average value of 10 tries). D2 and D3 are
determinant values of information matrix yMfor global
guadratic and global cubic approximation respebtive

R* =1

//‘
0107 ||
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@
o 0.00
L
’ l / 00 L;‘\
0.08| / \ -0.5
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Fig. 2. Exact three argument test functigfixed to zero

feauadratic approximation

-0.5

0.0

X4

Fig. 3. Global quadratic approximation of three argumest
function, X fixed to zero

0.5
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Fig. 4. Global cubic approximation of three argutrtest functionx; fixed to
zero

fes LOCEI quadratic appr.
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Fig. 5.Local quadratic approximation of three argument
function,x; fixed to zero

As can be seen, the best prediction accuracy has be
obtained by local quadratic approximation using Mgfmal
LHD and Gaussian weighting function. Second order D
optimal LHD design gives noticeably worse accurémyall
approximation methods as for experiments with noige
without noise. It can also be seen that MSE- ampfinal
LHDs have very similar values of criteria and pogidin
errors. In our experience, in some cases, LHD dpéch
according to MSE criterion have better entropy eciin
values than LHD optimized according to Entropyezidn and
vice versa.

The following investigation was carried out with Bths 3
factors LHDs. 50 random LHDs were generated witheug
optimization, and values of optimality criteria,daprediction
error values for approximation of test function (#jng local
guadratic approximation with weighting function (R)ere
calculated.

In addition the same values for MSE-optimal, E-oyati,
(DC)*optimal and ®,-optimal were calculated. Then
Pearson’s correlation coefficients between optityali
criterions and prediction errors for all 54 designgre
calculated. Results are shown in Table 8.

As opposed to other criteria, MinDist criterion rhuse
increased to improve the uniformity of space filidesigns,
therefore the correlation with other criteria andthwthe
prediction error is negative. Correlation coeffitie between
optimality criteria and prediction error of approwtions are
shown also in Fig. 6. The three bars for each rimiteshow
the average value of coefficient and minimal andximal
boundary for confidence interval of 95%. It cands®n that
correlation coefficients have large dispersion #re number
of tries should be increased.

TABLE 7
30-RUNS TEST IN3-DIMENSIONAL CUBE[-1,1]
MSE (Dc)? E Min [ D> Ds Gtest Gtest Ctest Glest Glest
DI s Global Global Local Local Local
quadratic cubic Gaussian Tricube aw’
MSE- 0.349 1738 | 2645 | 0320 | 17.7| 2.9e | 32¢ | 451 39.7 | 122 143 | 125
optimal 453 407 | 130 149 | 132
Uniform | 0.373 1428 | 3048 | 0119 | 187| 42e | 54¢ | 453 21.8 | 167 197 | 16.6
(Fang) 45.4 231 | 174 203 | 17.3
(D)% 0.368 1378 | 2074 | 0169 | 183| 22e | 1.2 | 458 302 | 157 184 | 16.2
optimal 46.1 288 | 163 190 | 168
E-optimal | 0.350 | 1632 | 2639 | 0320 | 17.7| 28 | 26¢ | 451 386 | 129 145 | 13.0
45.3 382 | 135 152 | 13.7
@ 0.352 1638 | 2717 | 0320 | 17.7| 19e | 346 | 451 438 | 1856 200 | 182
optimal 45.2 446 | 192 20.4 | 189
D-opt.LH | 0411 | 2838 | 3874 | 0060 | 228| 88e | 126 | 486 585 | 25.0 284 | 257
quadr. 48.5 58.8 25.2 285 26.3
D-opt.LH | 0384 | 2118 | 3484 | 0084 | 218| 78e | 688 | 461 270 | 131 153 | 12.9
cubic 46.3 267 | 135 156 | 133
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TABLE 8
CORRELATION COEFFICENTS BETWEEN CRITERIA AND PREDICTION ERRGIF APPROXIMATION

MSE MinDist @, (Dc)? Gtest
E 0.9660 -0.8741 0.8249 0.7142 0.5811
MSE -0.8164 0.74129 0.7188 0.6401
MinDist -0.8561 -0.5345 -0.3622
@, 0.5491 0.3518
(Dc)? 0.5015
This function of three arguments is defined as fugter
08- nonlinear and very difficult for approximation.
Figures 7-9 show the exact functiofr,, and its
S 0.71 approximations. The accuracy of approximations iem in
L 06- _ the table 9.
= 0.5
8 041 40
qt) {;“\\\\\
S 034 30 Ty
02 \\\\\\\\\\‘\
l < 20 \\\‘\\‘\‘\'\"\\/‘i/
Wz
0.1 w ,‘/}%ﬁ%%
/ Il
o = . 10 .
E MSE  -MinDist @, (Dg) il
Fig. 6.Correlation between criteria and prediction erfoamproximation 0

1.0

A comparison of LHDs of this kind was carried oot nnly
on the basis of test function (4), but also withngather
functions with number of factors from 2 to 10, ae well-
known optimization examples: the Branin functioix-lsump
camel-back function [20], the Goldstein-Price fumetand the
Hartmn 6 function [21] The results in all cases eveimilar —
the best prediction accuracy of approximation welsieved

-0.5
Fu

Fig. 7. Exact functiorfry, (X fixed to zero)

with  MSE- or E-optimal LHD and local quadratic
approximation with weighting functions (2) or (3).

The proposed algorithm for optimization of LHD amting ) ff
to the MSE criterion works much faster than the same ‘*&3\‘\“‘{%‘%‘% ///
algorithm for the entropy criterion, because thitelaneeds 3‘:&\\“‘{{%&*&“&\\\_\%‘\“ //I/////

' .

|

I

=
=

il
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calculation of determinant o x N matrices, which is
computationally difficult for large.
In the conclusion of this analysis we will demoagtr an
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example of functionFy, taken from work [19], and §‘\
transformed to interval [-1,1] for all three factor
99 )
FlO(X):Zfi(X) : (7)
i=1

where

f.(X)=—-001 + ex;{—

and

(Ui -128x, — 12_8)(2.5><3+25)J (8)

4995x, + 5005
Fig. 8. Local quadratic approximation f,

U, = 25+ (- 50In(001i))**, i=L,...,99 .

Results for Multivariate Adaptive Regression Spdine
(9) (MARS), Radial Basis Functions (RBF) and Kriging aaken

from work [19]. In all cases 125-runs 3 factorsiges were
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2.
40 N
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£ 20 L 5
10 i /4/’1’""!!‘.
hﬂ 6.
0 7.
1.0
8.
0.0 .
-0.5 :
-1.0 7 1.0 L,
Fig. 9. Ortogonal polynomial approximation /e 0
used. For the third order polynomial (PR), Orthagon
11.

Polynomial [22] (OP) and Local quadratic methodSE-
optimized design was used. In this case the Orthalgo ;,
Polynomial approximation method gives the bestIteJihis
function seems to be too complex for approximatigtm only
125-runs experimental design.

14.

[V. CONCLUSIONS

Comparing results of many test problems of metaringle
it was concluded that in the case of second ordeall
polynomial approximation the use of Mean SquareofErr
criterion is preferable, because this gives goocuecy of
metamodels and the finding of optimal designs uding
proposed algorithm is less difficult than optiminat
according to other criteria. The experimental desjgound

15.

by the developed prografRelax, are placed at the addressio.

http://213.175.94.108/designDB/search.php of Rigehhial
University page http://www.mmd.rtu.lv/ for commorseufor
approximation and optimization tasks

TABLE 9
THE ACCURACY OFMETAMODELS FORFUNCTIONFyo

Local 22.
MARS* | RBF* | Kriging* | PR oP quadratic
R2 | 0.7434 0.7441 0.7628 0.586 0.91j75 0.819
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Janis Auzin$, Aleksandrs JanuSevskis,ahis JanuSevskis. Optimigtie eksperimentu pkni metamodeEgSanai: Skaitliskais saidzinajums

Saj darts tiek apskata viendimensijas relaksijas un koordiatu apmaias ar uzlabotu multistartu algoritmu efektitét Ta tiek demonstta mekéjot D-

optimalos plnus ar nefrtrauktiem un 3imengu diskigtiem parametriem 3dz 15 dimensjs ar 101dz 300 eksperimentu punktiem (4824 4500 optimizcijas
parametri) un veicot Lafu hiperkubu gnu optimizciju atbilstoSi vaiikiem kriterijiem. Optimiztie pkni tiek safdzinati, risinot daudzus metamodghnas
testa uzdevumus. Gewima ar otéis pakipes loklu polinomilu aproksinaciju tiek piedivati vidgjas kvadatiskas Kudas optinalie Latipu hiperkubu gni un

Gausa modifieta svara funkcija. Optimigtie eksperimentu phi ir publiski pieejami Internét

SAnuc Aysunbm, Anexcanap SInymesckuc, SInuc SInymeBckuc. ONTHMH3HPOBAHHBIE IUIAHBI IKCIEPUMEHTOB /AJIs MeTaMojeaupoBaHus: YucieHHoe
cpaBHeHHe

B pabore nccrienyroTcs anropuTMbl OJHOMEPHOI peakcaiyd H 0OMEHa KOOPAMHAT C YITyYIICHHBIM MYJIbTHCTAPTOM. D(P(EKTHBHOCTD aIrOPUTMOB ITOKa3aHA
pH noucke D-onTHManpHBIX IUTAHOB JUTS HEMPEPHIBHBIX M IHMCKPETHHIX Ha 3 ypOBHSX MEPEMEHHbBIX HaumHas ¢ 3 10 15 MepHOro mpocTpaHcTBa C YHCIOM
skcrnepumertoB ot 10 no 300 fucno ontumusupyemsix napamerpoB ot 45 no 4500) 1 npu ONTHMHU3AUMK 110 HECKOJIBKMM KPUTEPHUSIM IUIAHOB JIATHHCKUX
runepky6oB. ONTHMH3HPOBAHHBIC IUIAHBI CPABHUBAIOTCS HA MHOTHMX TECTOBBIX HPHMEpPax METaMOACIMpOBaHMs. Jisi ciydas JTOKaabHOH ammpOKCHMAIUH
KBaJPAaTUYHBIM IIOJMHOMOM mpemiaraercss ucronb3oBanne CKO onTuMaibHBIX IUTAHOB JATHHCKHAX THIIEPKYOOB M MOAM(UUIMPOBAHHON BECOBOH (yHKIMH
I'aycca. ONTUMH3MPOBAHHBIC MIAHBI SKCIICPUMEHTOB OITYOJIMKOBAHbI B HHTCPHETE.
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