
Scientific Journal of Riga Technical University  
Transport and Engineering. Mechanics.  

                                  2010  
_________________________________________________________________________________________________Volume 33 

 30 

Optimized Experimental Designs for Metamodeling: 
Numerical Comparison 

Janis Auzins, Riga Technical University, Alexander Janushevskis, Riga Technical University, Janis Janushevskis,  
 Riga Technical University  

Abstract - The paper is focused on univariate relaxation and 
coordinate exchange with improved multistart algorithms. The 
effectiveness of these algorithm are shown for searching of D-
optimal designs with continuous and 3-level discrete parameters 
in 3-15 dimensions with 10 to 300 runs (45 to 4500 optimization 
parameters) and for optimization of Latin hypercube designs 
according to several criteria.  The optimized designs are 
compared on many metamodeling test problems. For the case of 
second order local polynomial approximation, the use of MSE-
optimal Latin hypercube designs and modified Gaussian 
weighting function is proposed. Optimized experimental designs 
are available in public Internet pages. 
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I  INTRODUCTION 

Formulation of the problem and proposed algorithms are 
given by authors in [1].  

II . COMPARISON OF THE SEARCH ALGORITHM RESULTS FOR D-
OPTIMAL DESIGNS 

Here we will look at the search results for D-optimal 
designs in the m-dimensional cube. Many authors have been 
working on the D-optimization of experimental designs. Box 
and Draper [2] used a hill-climbing method to search for D-

optimal quadratic designs in the square with from 6 to 18 runs, 
and Haines [3] used simulated annealing to search for D-
optimal designs in some low-dimensional problems. In 
particular, she found conjecturally optimal quadratic designs 
in the square with from 6 to 9 runs. Our program has 
confirmed the D-optimality of the designs found in these two 
papers as well as in paper of Hardin and Sloane [4]. 

For three dimensions there are a number of papers dealing 
with D-optimal 3-level designs, see [5], [6-10]. We have used 
our program Relax to search for D-optimal designs, both with 
continuous and with 3-level coordinates, and the designs with 
from 10 to 15 runs.  

For the D-optimal 3-level designs our results agree with the 
above references. We also see from Tables 2-5 that for D-
optimality it makes little difference whether weuse 3-level or 
continuous coordinates. Similarly there is not a large 
difference between Defvalues in the case of designs with or 
without center points. First the saturated designs for second 
order approximations were optimized. In dimensions 2 
through 10, a number of authors have attempted to find D-
optimal designs with the minimal number of runs in a cube. 
Draper and Lin [11] and Hardin and Sloane [4] give a table 
comparing the D-values of designs found by Box and Draper 
[12], Draper and Lin [13], Lucas [14], Mitchell and Bayne [8], 
Notz [15], Katsauonis [16], Rechtschaffner [17] and Hardin 

TABLE 1 

COMPARISON OF MINIMAL  QUADRATIC DESIGNS IN CUBE BASED ON TABLE 7 OF HARDIN AND SLOANE [4]. 

ENTRY GIVES DEF  VALUE 

m Draper and 
Lin [13]  

Lucas 
[14] 

Notz 
[15] 

Mitchell and 
Bayne [7] 

Box and 
Draper [12] 

Recht-
schaff-
ner [17] 

Katsauonis 
[16] 

Hardin and 
Sloane [4] 

New 
Designs 

3 30.3 15.2 40.0 41.0 42.3 40.0 40.95 42.3 42.347 

4 30.8 9.6 39.2 42.5 42.3 39.2 42.5 43.2 43.240 

5 24.1 6.6 45.9 45.6 37.4 45.0 45.9 46.7 46.721 

6 26.3 4.8 44.6  31.7 42.8 45.98 46.4 46.456 

7 19.6 3.6   22.7 38.3 45.10 45.8 47.604 

8 32.1 2.8   19.3 33.6 44.56 45.5 48.010 

9 20.0 2.3   16.7 29.3 44.96 46.0 46.592 

10 16.5 1.8   14.6 25.5  46.5 46.709 

11         47.085 

12         46.850 

13         46.893 

14         47.854 

15         47.589 
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TABLE 2 

EFFICIENCY OF NEW 3-LEVEL SATURATED DESIGNS 

m n Def MinDist E Φ2 (DC )2 MSE 

3 10 40.95 0.7071 0.7948 3.548 0.1897 0.7685 

4* 15 42.50 0.7071 0.5905 4.419 0.3171 0.9187 

5 21 45.89 0.7071 0.6074 5.381 0.5963 1.2075 

6 28 46.28 0.8660 0.2643 6.486 0.7707 1.3226 

7 36 46.33 1.0000 0.2073 7.791 0.8611 1.5416 

8* 45 47.63 1.1180 0.0559 8.794 1.5882 1.5355 

9 55 46.07 1.1180 0.0276 10.095 2.0034 1.9034 

10 66 46.08 1.1180 0.0133 11.479 2.6819 2.0588 

11* 78 46.45 1.4142 0.0052 12.878 3.6979 1.8667 

12 91 46.20 1.2247 0.0033 14.228 5.2303 2.3559 

13 105 46.35 1.2247 0.0023 15.731 6.7866 2.4894 

14 120 47.16 1.5000 0.0004 17.267 8.8577 2.6384 

15 136 47.01 1.5811 0.00015 18.829 11.6104 2.7754 

* – center point present 

TABLE 3 

EFFICIENCY OF NEW 3-LEVEL SATURATED DESIGNS WITH ONE CENTER POINT 

m n Def MinDist E Φ2 (DC )2 MSE 

3 10 40.00 0.5000 0.8635 3.594 0.1492 0.7204 

4 15 42.50 0.7071 0.5905 4.419 0.3170 0.9189 

5 21 44.81 0.7071 0.3893 5.363 0.5358 1.0979 

6 28 46.03 0.8660 0.2913 6.534 0.7662 1.2519 

7 36 45.68 1.0000 0.1411 7.815 0.8923 1.3763 

8 45 47.63 1.118 0.0559 8.794 1.58819 1.5355 

9 55 45.84 1.224 0.0262 10.179 1.9606 1.6477 

10 66 45.36 1.118 0.0167 11.538 2.7515 1.7605 

11 78 46.45 1.4142 0.0052 12.878 3.6979 1.8667 

12 91 46.01 1.3228 0.0022 14.250 5.1395 2.3551 

13 105 45.71 1.2247 0.0028 15.814 6.7603 2.0532 

14 120 46.63 1.4142 0.0009 17.359 8.8413 2.1386 

15 136 46.88 1.5811 0.0002 18.869 11.7698 2.2215 

 

TABLE 4 

EFFICIENCY OF NEW DESIGNS WHEN THE POINTS ARE RANGED OVER THE WHOLE CUBE 

 
m n Def MinDist E Φ2 (DC )2 MSE 

3 10 42.346 0.6705 0.7354 3.512 0.1339 0.7132 

4 15 43.240 0.7939 0.5903 4.456 0.2556 0.9467 

5 21 46.721 0.6925 0.5267 5.378 0.5570 1.2083 

6 28 46.456 0.8238 0.2825 6.439 0.8361 1.3757 

7 36 47.604 1.2319 0.0778 7.705 0.9502 1.5354 

8 45 48.010 1.1857 0.0520 8.797 1.6144 1.5357 

9 55 46.592 1.2226 0.0216 10.161 2.0227 1.8613 

10 66 46.709 1.1990 0.0088 11.476 2.8297 0.7354 

11 78 47.085 1.3595 0.0049 12.930 3.7927 1.8942 

12 91 46.850 1.3325 0.0022 14.296 5.2765 2.3537 

13 105 46.893 1.3402 0.0010 15.806 6.8794 2.4805 

14 120 47.854 1.5521 0.0003 17.329 9.2363 2.6294 

15 136 47.589 1.6700 0.0001 18.911 12.0384 2.7572 
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      a)         b)  
         Fig. 1. Continuous D-optimized design with 45 runs and 8 factors: 

  a) Plane x1-x2, b) Plane x4-x7 
 
and Sloane [4]. We have reproduced this as Table 1, 
supplemented with an additional column showing the D-
values of the designs found by Relax. 

The entries give the Def-values, numbers which are to be 
made as large as possible. In dimensions m > 6 the new 
designs are better.  

For four dimensions, Meyer and Nachtsheim [5] reported 
that their simulated annealing algorithm found a 17-runs 
design with XX ′ = 1.4867E13 when the coordinates were 
restricted to three levels, but that they could only obtain 
4.1296E12 when the points ranged over the whole cube. Relax 
found an even better continuous design, with XX ′  = 1.6863 
E13 and XX ′ =1.5288E13 for the case of three levels. The 
saturated designs are rarely used in real approximation. The 
commonly used number of runs in Response surface method 
with second order polynomial approximation is 1.5 to 2 times 
greater. Table 6 shows criteria values for D-optimal designs 
with double number of runs. 

In the distribution of the points in the design there is a 
noticeable tendency for the points to be concentrated in the 
neighborhood of three-level design points, i.e., the point 
coordinates are close to the values –1, 0, +1. This tendency 

TABLE 6 

EFFICIENCY OF NEW DESIGNS WHEN THE POINTS ARE RANGED OVER THE WHOLE CUBE (DOUBLE 

NUMBER OF RUNS) 

 
m n Def MinDist E Φ2 (DC )2 MSE 

3 16* 45.91 0.4768 3.4032 6.186 0.1644 0.6659 

4 30 48.23 0.4528 5.4418 9.762 0.2725 0.7979 

5 42 49.794 0.5130 3.1761 11.472 0.4680 1.0182 

6 56 51.587 0.4838 2.4806 13.534 0.7300 1.2184 

7 72 53.273 0.6690 1.2808 15.635 1.0865 1.3826 

8 90 54.846 0.6991 0.9663 18.004 1.6016 1.5884 

9 110 56.178 0.8964 0.3593 20.485 2.1606 1.7445 

10 132 57.373 0.9181 0.1983 23.041 3.0380 1.9044 

11 156 58.543 1.0426 0.0807 25.787 4.1102 2.0597 

12 182 59.646 1.2164 0.0297 28.581 5.4893 2.2227 

13 210 60.324 1.1242 0.0193 31.509 7.3919 2.3608 

14 240 60.881 1.2208 0.0082 34.570 9.6425 2.5017 

15 272 61.656 1.4364 0.0021 37.609 12.7728 2.6576 

* - 16 runs is the maximal number of points in 3-dimensional D-optimal design without repeated points 

 

TABLE 5 

EFFICIENCY OF NEW DESIGNS WHEN THE POINTS ARE RANGED OVER THE WHOLE 
CUBE WITH ONE CENTER POINT 

 
m n Def MinDist E Φ2 (DC )2 MSE 

3 10 40.573 0.6040 0.7526 3.480 0.16547 0.7196 

4 15 42.677 0.6363 0.6444 4.446 0.3239 0.9212 

5 21 45.167 0.6081 0.5013 5.389 0.5571 1.1024 

6 28 46.447 0.8087 0.3025 6.465 0.8569 0.7354 

7 36 46.69 1.1316 0.1019 7.876 0.8683 1.3655 

8 45 48.009 1.1860 0.0522 8.797 1.6143 1.5350 

9 55 46.460 1.2320 0.0228 10.206 2.0256 1.6454 

10 66 46.359 1.2038 0.0145 11.561 2.8282 1.7592 

11 78 47.074 1.3708 0.0051 12.943 3.7676 1.8639 

12 91 46.672 1.2878 0.0023 14.320 5.2119 2.3474 
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can also be noted in designs with 8 variables and 45 runs, see 
Fig. 1. 

III.  COMPARISON OF SPACE FILLING DESIGNS 

For various optimal LHDs, (e.g. 2Φ , MinDist, MSE, entropy, 
and discrepancy), there is no consensus on which criterion is 
better. In this paper, LHDs optimized according to various 
criteria were compared for metamodeling using second order 
local polynomial approximations. Several weighting functions 
were used:  
triweight function suggested by Cleveland [18],  

 ( )331)( uuW −=
, (1) 

function proposed by the authors 

 ( ) ( )41 uuW −= , (2) 

Gaussian kernel 
 ( ) ( )2exp uuW α−= . (3) 

Here u – the Euclidean distance between current point of 
approximation x* and point of experimental design, 
normalized so that the distance between x* and the nearest 
point outside the neighborhood of x* is equal to 1, see [18]. 
The Gaussian weighting function traditionally is used with 
coefficient 5.0=α , and the smoothness of approximation is 
controlled by bandwidth nt (number of neighbors). We used 
Gaussian kernel with maximal number of neighbors nt =n, and 
the smoothness of approximation was controlled only by 
coefficient α. The optimal constant values of bandwidth nt and 
α were found by cross-validation approach. 

For comparing a test function is necessary which: 1) badly 
approximates with second order polynomial approximation 
(otherwise in place of local approximation the much simpler 
global polynomial approximation can be employed); 2) is 
symmetrical in relation to all factors; 3) contains isolated 
extremes in region of interest; 4) is still simple enough to be 
approximated with a number of runs that may be comparable 
to the number of runs required for quadratic approximations. 
In a m-dimensional cube [-1, 1]m these requirements are met 
by the function ftest 
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which has exactly one minimum and one maximum in this 
region. 

The accuracy of approximation was measured with the 
relative average prediction error σtest 
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where wi – confirmation points (i=1,…,N), )( itest wf
)

 - 
approximated value of test function, testf - average value of 
test function in confirmation points. 50000 uniformly 
randomly selected confirmation points (Latin hypercube 
sample) in region of interest were used.  

Some authors employ the R2 prediction error measure [19] 

 
2
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Figures 2-5 show the exact three factor function and its 
approximations in the plane. Table 7 shows the accuracy of 
the three-factor test function, approximated with several 
experimental designs, global second order, global third order 
polynomial and local quadratic approximations with three 
different weighting functions. 50000 confirmation points were 
used. First number in the cell shows the value of relative 
average prediction error in the case of experimental data 
without noise. The second number in the cell shows the error 
value when the function has Gaussian noise with standard 
deviation equal to 5% from standard deviation of experimental 
data (the average value of 10 tries). D2 and D3 are 
determinant values of information matrix MX for global 
quadratic and global cubic approximation respectively. 

 

 

  

 
Fig. 2. Exact three argument test function,x3 fixed to zero 

 
Fig. 3. Global quadratic approximation of three argument test 
function, x3 fixed to zero  
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Fig. 4. Global cubic approximation of three argument test function, x3 fixed to 
zero 

            
 

As can be seen, the best prediction accuracy has been 
obtained by local quadratic approximation using MSE-optimal 
LHD and Gaussian weighting function. Second order D-
optimal LHD design gives noticeably worse accuracy for all 
approximation methods as for experiments with noise or 
without noise. It can also be seen that MSE- and E-optimal 
LHDs have very similar values of criteria and prediction 
errors. In our experience, in some cases, LHD optimized 
according to MSE criterion have better entropy criterion 
values than LHD optimized according to Entropy criterion and 
vice versa. 

The following investigation was carried out with 80 runs 3 
factors LHDs. 50 random LHDs were generated without any 
optimization, and values of optimality criteria, and prediction 
error values for approximation of test function (4) using local 
quadratic approximation with weighting function (2) were 
calculated. 

In addition the same values for MSE-optimal, E-optimal, 
(DC)2-optimal and Φ2-optimal were calculated. Then 
Pearson’s correlation coefficients between optimality 
criterions and prediction errors for all 54 designs were 
calculated. Results are shown in Table 8.  

As opposed to other criteria, MinDist criterion must be 
increased to improve the uniformity of space filling designs, 
therefore the correlation with other criteria and with the 
prediction error is negative. Correlation coefficients between 
optimality criteria and prediction error of approximations are 
shown also in Fig. 6. The three bars for each criterion show 
the average value of coefficient and minimal and maximal 
boundary for confidence interval of 95%. It can be seen that 
correlation coefficients have large dispersion and the number 
of tries should be increased. 

. 

TABLE 7 

30-RUNS TEST IN 3-DIMENSIONAL CUBE [-1,1]3 

 MSE (DC )
2 E Min 

Dist 

Φ2 D2 D3 σtest 

Global 

quadratic 

σtest 

Global 

cubic 

σtest 

Local 

Gaussian 

σtest 

Local 

Tricube 

σtest 

Local 

(1-u)
4 

MSE-
optimal 

0.349 173e-3 26.45 0.320 17.7 2.7e6 3.2e4 45.1 

45.3 

39.7 

40.7 

12.2 

13.0 

14.3 

14.9 

12.5 

13.2 

Uniform 

(Fang) 

0.373 142e-3 30.48 0.119 18.7 4.2e6 5.4e4 45.3 

45.4 

21.8 

23.1 

16.7 

17.4 

19.7 

20.3 

16.6 

17.3 

(DC)2-
optimal 

0.368 137e-3 29.74 0.169 18.3 2.2e6 1.2e4 45.8 

46.1 

30.2 

28.8 

15.7 

16.3 

18.4 

19.0 

16.2 

16.8 

E-optimal 0.350 163e-3 26.39 0.320 17.7 2.4e6 2.6e4 45.1 

45.3 

38.6 

38.2 

12.9 

13.5 

14.5 

15.2 

13.0 

13.7 

Φ2-
optimal 

0.352 163e-3 27.17 0.320 17.7 1.7e6 3.4e3 45.1 

45.2 

43.8 

44.6 

18.6 

19.2 

20.0 

20.4 

18.2 

18.9 

D-opt. LH 
quadr. 

0.411 283e-3 38.74 0.060 22.8 8.5e6 1.2e3 48.6 

48.5 

58.5 

58.8 

25.0 

25.2 

28.4 

28.5 

25.7 

26.3 

D-opt. LH 
cubic 

0.384 211e-3 34.84 0.084 21.8 7.8e6 6.8e6 46.1 

46.3 

27.0 

26.7 

13.1 

13.5 

15.3 

15.6 

12.9 

13.3 

 

 
Fig. 5. Local quadratic approximation of three argument test 
function, x3 fixed to zero 
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A comparison of LHDs of this kind was carried out not only 

on the basis of test function (4), but also with many other 
functions with number of factors from 2 to 10, as the well-
known optimization examples: the Branin function, six-hump 
camel-back function [20], the Goldstein-Price function and the 
Hartmn 6 function [21] The results in all cases were similar – 
the best prediction accuracy of approximation was achieved 
with MSE- or E-optimal LHD and local quadratic 
approximation with weighting functions (2) or (3).  

The proposed algorithm for optimization of LHD according 
to the MSE criterion works much faster than the same 
algorithm for the entropy criterion, because the latter needs 
calculation of determinant of nn ×  matrices, which is 
computationally difficult for large n. 

In the conclusion of this analysis we will demonstrate an 
example of function F10 taken from work [19], and 
transformed to interval [-1,1] for all three factors: 

 ∑
=

=
99

1

2
10 )()(

i
i xfxF , (7)  

where 

 ( )( )












+

−−
−+−=

+

05.5095.49

8.128.12
exp01.0)(

1

5.25.2
2

3

x

xu
ixf

x
i

i
 (8) 

and  

 ( )( ) 3201.0ln5025 iui −+= ,  i=1,…,99 . (9) 

This function of three arguments is defined as high-order 
nonlinear and very difficult for approximation.  

Figures 7-9 show the exact function F10 and its 
approximations. The accuracy of approximations is given in 
the table 9. 

 
 

Fig. 7. Exact function F10 (x2 fixed to zero) 

 

  
Results for Multivariate Adaptive Regression Splines 

(MARS), Radial Basis Functions (RBF) and Kriging are taken 
from work [19]. In all cases 125-runs 3 factors designs were  

TABLE 8 

CORRELATION COEFFICENTS BETWEEN CRITERIA AND PREDICTION ERROR OF APPROXIMATION 

 
 E MSE MinDist Φ2 (DC )

2 σtest 

E  0.9660 -0.8741 0.8249 0.7142 0.5811 

MSE   -0.8164 0.74129 0.7188 0.6401 

MinDist    -0.8561 -0.5345 -0.3622 

Φ2     0.5491 0.3518 

(DC )
2      0.5015 

 

Fig. 8. Local quadratic approximation of F10 

Fig. 6. Correlation between criteria and prediction error of approximation 
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used. For the third order polynomial (PR), Orthogonal 
Polynomial [22] (OP) and Local quadratic methods MSE-
optimized design was used. In this case the Orthogonal 
Polynomial approximation method gives the best result. This 
function seems to be too complex for approximation with only 
125-runs experimental design. 

IV.  CONCLUSIONS 

Comparing results of many test problems of metamodeling, 
it was concluded that in the case of second order local 
polynomial approximation the use of Mean Square Error 
criterion is preferable, because this gives good accuracy of 
metamodels and the finding of optimal designs using the 
proposed algorithm is less difficult than optimization 
according to other criteria. The experimental designs, found 
by the developed program Relax, are placed at the address 
http://213.175.94.108/designDB/search.php of Riga Technial 
University page http://www.mmd.rtu.lv/ for common use for 
approximation and optimization tasks 
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TABLE 9 

THE ACCURACY OF METAMODELS FOR FUNCTION F10 

 
  

MARS* 

 

RBF* 

 

Kriging* 

 

PR 

 

OP 

Local  

quadratic 

R2 0.7434 0.7441 0.7628 0.586 0.9175 0.819 

 

 
Fig. 9. Ortogonal polynomial approximation of F10 



Scientific Journal of Riga Technical University  
Transport and Engineering. Mechanics.  

                                  2010  
_________________________________________________________________________________________________Volume 33 

 37

Jānis Auziņš, Aleksandrs Januševskis, Jānis Januševskis. Optimizētie eksperimentu plāni metamodelēšanai: Skaitliskais salīdzinājums 
Šajā darbā tiek apskatīta viendimensijas relaksācijas un koordinātu apmaiņas ar uzlabotu multistartu algoritmu efektivitāte. Tā tiek demonstrēta meklējot D-
optimālos plānus ar nepārtrauktiem un 3 līmeņu diskrētiem parametriem 3 līdz 15 dimensijās ar 10 līdz 300 eksperimentu punktiem (45 līdz 4500 optimizācijas 
parametri) un veicot Latīņu hiperkubu plānu optimizāciju atbilstoši vairākiem kritērijiem. Optimizētie plāni tiek salīdzināti, risinot daudzus metamodelēšanas 
testa uzdevumus. Gadījumā ar otrās pakāpes lokālu polinomiālu aproksimāciju tiek piedāvāti vidējās kvadrātiskās kļūdas optimālie Latīņu hiperkubu plāni un 
Gausa modificētā svara funkcija. Optimizētie eksperimentu plāni ir publiski pieejami Internetā. 

 
Янис Аузиньш, Александр Янушевскис, Янис Янушевскис. Оптимизированные планы экспериментов для метамоделирования: Численное 
сравнение 
В работе исследуются алгоритмы одномерной релаксации и обмена координат с улучшенным мультистартом. Эффективность алгоритмов показана 
при поиске D-оптимальных планов для непрерывных и дискретных на 3 уровнях переменных начиная с 3 до 15 мерного пространства с числом 
экспериментов от 10 до 300 (число оптимизируемых параметров  от 45 до 4500) и при оптимизации по нескольким критериям планов латинских 
гиперкубов. Оптимизированные планы сравниваются на многих тестовых примерах метамоделирования. Для случая локальной аппроксимации 
квадратичным полиномом предлагается использование СКО оптимальных планов латинских гиперкубов и модифицированной весовой функции 
Гаусса. Оптимизированные планы экспериментов опубликованы в интернете. 

 
 
 


