
Scientific Journal of Riga Technical University 
Computer Science. Boundary Field Problems and Computer Simulation 

2010  
_________________________________________________________________________________________________ Volume 45 

 68 

Practical Inapplicability of Identification Models 
That Use Gradient Methods for Parameter 

Adjustment 
Genady Burov, Riga Technical University 

Abstract – In this paper, it is proved that calculations in 
identification models described in literature are done in the field 
of small numbers at the presence of high level of noise. It does not 
allow to obtain reliable estimations of the first and second 
derivatives of the Hessian matrix and to determine the movement 
on the gradient in the direction of decrease of the functional of 
discrepancy of difference equations. Therefore, the method does 
not converge. It is based on replacement of difference equations 
with Diophantine equations. That does not give advantages; the 
solutions are characterized by algorithmic uncertainty and yield 
numerical results with an abstract content. Their practical 
application is impossible without additional decoding. However, 
it is not done, and the process of identification is incomplete. Any 
introduction of additional operators in the model, as it is done in 
stochastic models, leads to structural methodical errors and, as a 
consequence, to creation of false extrema in functional of 
discrepancy. This leads to biases in parameter estimations, 
resulting in numerical results which correspond to physically 
impossible objects. Analysis of convergence of gradient method 
on the basis of increasing the number of equations formed on an 
interval of transient process cannot give reliable conclusions. 
Because of the non-uniform attenuation of its partial 
components, the stationary character of behaviour of difference 
equation solutions is violated. Their chaotic fluctuations lead to 
fluctuations of discrepancy functional. It contradicts the 
stationary nature of the identified object and proves the practical 
inapplicability of the model. Application of methods of statistical 
hypothesis testing with the use of various laws of probability 
density distribution in conditions of calculations with small 
numbers leads to additional distortions of obtained numerical 
results. Recommendations about the organization of test modes 
of identification and application of alternative methods for 
realization of decoding methods are also given. 
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I. PROBLEM STATEMENT 

Automated control and diagnosis of technical objects can be 
realized by using computers with efficient software. In [3], [4], 
the importance of this condition in the problem of 
identification of characteristics of space complexes at the 
stage of flight tests has been shown. In this stage, because of 
flight restrictions and safety conditions, there is a significant 
deficiency of dynamism of processed signals. Therefore, 
during an important stage of identification – solving equation 
systems generated from results of signal measurements – 
singular or near-singular situations are created. 

Such situations arise during formation of discrepancy 
functional, on the basis of which the gradient procedures for 

adjustment of coefficients of difference equations are created. 
Practically, difference equations turn into Diophantine 
equations and the procedure of identification is reduced to 
adjustment of their coefficients using iterative procedures [17]. 
The discrepancy functional is formed in the field of small 
numbers at the presence of high level of noise. Therefore, 
optimization of parameters is not achieved as the achievable 
extremum is a false one, and it leads to unpredictable 
displacement in parameter estimations. In such cases, usually 
the computer gives a message about termination of computing 
process because of a singular matrix. But in practice, it usual 
does not occur as the computer is not capable to determine 
whether it processes useful signals or noise. 

In [13] – [16], procedures of identification are incomplete 
as they end with the calculation of estimations of coefficients 
of difference equations. However, they have an abstract 
content which is not connected to the physical condition of the 
identified technical object. Continuation of identification – 
their transformation into parameters of analog object’s transfer 
function therefore is necessary. That is, the procedure of their 
decoding should be applied; however, it is not done. Decoding 
is necessary, as well, for the reason that operations with 
difference equations are carried out in the field of small 
numbers, where the negative influence of singular situations is 
especially large. 

Application of procedure of decoding is necessary also 
because obtained estimations of coefficients of difference 
equations are nonlinear functions of the sampling period T of 
transient measurement. Therefore, they are not related to the 
physical parameters of object and have abstract meaning. 
However, authors of works on identification do not discuss the 
problem of decoding. In [13], [14], it is offered to calculate the 
estimations of coefficients of difference equations without 
mapping them into the parameters of object’s analog transfer 
function. These estimations are not even transformed into the 
roots of discrete characteristic polynomials. Their calculation 
leads to computing difficulties as for steady objects they are 
located in a limited compressed area of the right unit 
semicircle of the complex plane. Therefore, their separation is 
poor, and restoration of the analog transfer function from them 
is complicated.  

This problem is ignored in [13], [14] where it is claimed 
that these roots are located outside the unit circle. Such 
statement creates erroneous impression about their good 
separation and creates illusions about the ease of practical 
application of identification models. In reality, it is different. 
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In conditions when computing operations are made in the field 
of small numbers at the high level of noise and structural 
methodical errors, algorithmic uncertainty in realizations of 
identification procedures is created. In such conditions, 
application of methods of statistical hypothesis testing with 
the introduction of various probability distributions of 
disturbances does not solve the problem of practical 
application of identification models – it even complicates the 
problem. 

Practical applications demand using results of identification 
that are clearly enough related to the coefficients of technical 
object’s differential equation. They are used at the design 
stage, and also at the operation phase for carrying out 
preventive and repair work. Development of special 
mathematical approach of symbolical combinatory address 
models was necessary for deriving analytical expressions 
connected to the solution of difference equations. The results 
obtained on this basis [1], [2], [5] have confirmed practical 
inapplicability of identification models based on iterative 
gradient-based search procedures for parameter estimations. In 
this paper, influence of structural methodical errors on 
practical application of identification results is investigated.  

II. OPERATOR-BASED DESCRIPTION OF IDENTIFICATION MODEL 

AND ANALYSIS OF METHODICAL ERRORS  

Introduction of additional auxiliary coefficients in 
difference equations, based on subjective assumptions, as it is 
done in various kinds of stochastic models, is a 
mathematically incorrect approach. Unreasonable expansion 
of the dimension of system of difference equations [1], [2], 
[10] leads to disruption of balance between the information 
content of difference equations and their order. It leads to 
occurrence of singular situations during inversion of the 
matrix of equation system and to reception of unreliable 
results. In [13], [14; Eq. 2.20], the following formula is used 
for description of various models with additive noise: 

 )()()()()( teqHtuqGty +=  (1) 

Here, { })(te  is a sequence of mutually independent random 
variables with zero mean and dispersion λ . The symbol q is 
used as the designation of discrete time. On its basis, systems 
of difference equations [13; Eq. 1.2.1] and [14; Eq. 4.14] are 
formed and solved: 
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Identification of linear objects will consist of estimation of 
parameters **, mm ba , ∗

md  and ic , [13; p. 27]. In (1), 
symbols G(q) and H(q) designate operators of object and noise, 
correspondingly, in form of rational functions. They turn out 
by discretization of initial analog transfer functions W(p) and 

)(* pH  on the basis of operation of Z-transform. The model 
of noise is represented as the result of filtration of white noise 
by the operator )( pH ∗ . The operator of noise H(q) is not 
precisely determined and is introduced into the model from 
aprioristic data on the basis of subjective assumptions.  

Thus, because of introduction of additional operators in (1), 
there are additional coefficients in (2) and (3). In the opinion 
of authors, by applying method of gradient search for 
estimation of coefficients in the direction of minimum of 
discrepancy functional of equation systems, it is possible to 
obtain reliable estimations of parameters of object and 
characteristics of noise. 

Additive noise  

 
)(

)(
)(;)()()(

pQ

pR
pHppHpe

H

H== δ  (4) 

is summed with object’s output signal )( py WX : 
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Using the method of decomposition into partial fractions, 
we get:  
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Here coefficients of decomposition are residues of functions 
of complex variable: 
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We use symbols denoting operation of Z-transform: 
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Here, in the operator, the dependence of parameters (12) 
from sampling period of signals used for formation of systems 
of difference equations is designated. Thus, sets of poles of 
analog operators are mapped into sets of discrete poles 
according to the rule: 
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Analog poles of stable physically realizable objects are 
located in the left infinite complex plane. At the transition 
from differential equations to difference equations, they are 
mapped into discrete poles located within the positive 
semicircle with the radius equal to one: 

 [ ])exp()( TaqaTExp iXiXiX ⋅−=⇒∗  
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The statement in [13] that they are outside the unit circle is 
erroneous. It hides the computing difficulties arising at 
realization of identification models with gradient method for 
parameter adjustment. For example, during solving of systems 
of difference equations that are near-singular, there are 
situations when poles corresponding to their coefficients 
appear in forbidden areas. It is a sign of inapplicability of 
identification algorithm. Obtained numerical results have no 
physical interpretation and cannot be used in practical 
applications. Such kind of situations is typical; they arise 
because operations with systems of difference equations are 
carried out in the field of small numbers at the presence of 
high level of noise. For this reason, carrying out full procedure 
of identification with application of algorithms for decoding, 
mentioned in the previous section, is necessary. 

Finding the common denominator in fractions of (12), we 
have: 
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So the analog characteristic polynomial 
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is mapped into discrete polynomial B(z) on the basis of the 
rule (14): 
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Transients are described by the following function: 
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The system of difference equations is formed from the 
results of measurements of process (20): 
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It will be consistent and its discrepancy will be zero if the 
values of its coefficients are formed from the coefficients of 
the characteristic polynomial (19). 

III.  ANALYSIS OF USABILITY OF GRADIENT METHODS FOR 

ADJUSTMENT OF PARAMETERS OF IDENTIFICATION MODELS 

In [13], [14], it is stated that optimum estimations of 
object’s parameters can be found by finding the minimum of 
discrepancy of equation systems (2), (3): 

 )(ˆ)(ˆ),( nTynTynTu −=



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The difference between the real transient and its calculated 
value )(ˆ nTy , which is determined from the estimation β̂  of 
the solution of system of difference equations (22), is used. 
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Conformity of adjusted model to the object is estimated by the 
criterion: 
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Here, )(nTu  is the vector of observations, Е is the symbol 
of population mean. The criterion (24) usually is chosen in the 
form of the square-law. In [13], [14], it is stated that 
improvement of quality of identification is achieved by 
decreasing the value of (24) on the basis of application of 
gradient methods that minimize the value: 
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It is assumed that the method converges and improvement 
of estimations is achieved with the increase of the interval of 
observation )( 0 tt L . 

In [1], [2], [5], an analytical expression for elements of the 
inverse matrix of the system (22) yY ⋅= −1β has been found. 
It was proved these elements contain, as coefficients, products 
of distances between discrete poles of operators which have 
been introduced into model of identification (1): 
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The number of coefficients in each of these expressions can 
be calculated using formulas like this: 
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As all poles of stable operators, irrespective of their orders, 
should be located in the same limited area of the right unit 
semicircle, the distances between them will decrease with the 
increase in dimension of operator H entered in (1). It can lead 
to decrease in the degree of separation of poles and to 
algorithmic uncertainty of restoration of analog transfer 
function.  

For example, if the orders for X, W, and H are accordingly 
2, 3, and 2, the total number of factors in (27) will be equal to 
21. For the most typical situation, the maximal absolute value 

of differences can be assumed to be equal to 0.1. Thus, the 
area where operations with diference equations at some stages 
of computing process are realized can be characterized by 
numbers approximately equal to 0.1-21. In particular, such 
numerical values can arise at calculation of determinants and 
minors of the matrix of equation system (22). It can testify to 
computing difficulties of realization of gradient method for 
search of estimations of object’s parameters. False extrema 
can be formed at the formation of discrepancy functional of 
equation systems. In the field of such small numbers, it is 
practically impossible to find reliable estimations of the first 
and second derivatives of the Hessian matrix of the functional 
to determine the correct direction of movement on the gradient.  

As the solution of system of difference equations (22) is 
realized in the field of small numbers, a small value of its 
discrepancy cannot guarantee the reliability of obtained 
estimations. Therefore, small values with which the method 
operates cannot be an indicator of convergence of gradient 
method.  

However, the main problem is that the occurrence in model 
of structural methodical errors, because of introduction 
additional operators, leads to occurrence of a false extremum. 
It becomes the reason of significant displacement of 
estimations of object’s parameters. And the obtained 
numerical results will have an abstract value and will 
correspond to a physically impossible object. Such results 
cannot be used in practical applications. 

Let’s consider this problem in more detail. We shall 
introduce additional functions for studying the balance of 
system of difference equations:  
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The vector )(mα designates one of the solutions of the 
system. The imbalance of the system of difference equations 
can be determined using the formula: 
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From the vector )(mα , we shall generate discrete 
polynomial A(z). Then it is possible to represent (35) as: 

 ∑
=

+=⋅⇒
WN

i
iW

K
iWiWk qzAqC

1

)(µ  

 ∑
=

+=⋅+
WN

i
iX

K
iXiX qzAqC

1

)(  

 ∑
=

=⋅+
WN

i
iH

K
iHiH qzAqC

1

)(  (36) 

Let’s assume that the solution of system of difference 
equations has turned out such that )()( zA m  contains discrete 
poles of the object and the input signal (18): 
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Then the local discrepancy is determined using the formula: 
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Here, rv  are the poles of polynomial )()( zV HN . Then, 
the criterion (25) can be represented as value )( )(mJ α . The 
square-law form is used: 
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From here, taking into account the expression (38), it is 
possible to draw the following conclusions.  

Here, the extremum used for adjustment of parameters is 
wrong. Really, in the situation when optimum estimations of 
parameters of the input signal and the object have been 
achieved, the extremum has not been achieved yet as the 
discrepancy is determined by the value (34). Gradient search 
will proceed, and that will lead to displacement of the already 
found correct estimations of parameters of the input signal and 
the object. It is most probable that corresponding to them 
discrete poles will be displaced into the left negative half of 
the complex plane, that is, into the area of physically 
impossible objects.  

It was mentioned above that estimations of discrete poles 
should not go outside the area of the unit right semicircle of 
the complex plane. From [1], [5] follows that the number of 
factors in (34), the absolute value of which are always less 
than one, grows nonlinearly with the increase of the order of 
equation system. It happens when additional operators are 
unreasonably introduced in the model, which means increase 
in the number of discrete poles. It leads to further reduction of 
value (38). Really, as the poles irrespective of their quantity 
should remain in the same limited area of the unit semicircle, 

the distances between them must decrease. Therefore, the area 
where arithmetic operations are done is even more narrowed, 
and the range of calculations is determined by smaller 
numbers. It leads to increase in the degree of singularity of 
matrix of equation system (22) and to increase in the level of 
errors in solutions of equation systems.  

It also means that the level of noise at the calculation of 
discrepancy functional (35) grows. In such conditions, it is 
practically impossible to calculate elements of the Hessian 
matrix [14; pp. 246–249]. Realization of method of gradient 
search becomes practically impossible. 

Physically, the gradient method, which is based on testing 
various combinations of parameters of system of difference 
equations, is a method for solving a system of Diophantine 
equations [17]. However, unlike their classical models which 
are formed in the field of integers where restrictions on 
solutions in the form of the greatest common dividers are used, 
here such restrictions do not exist. Therefore, the variation of 
coefficients of difference equations in the field of small 
numbers with the presence of strong noise will lead to abstract 
numbers that have no physical interpretation and cannot be 
decoded. 

IV.  AN EXAMPLE 
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The discrete characteristic polynomial, poles, and 
coefficients β where determined for T = 0.1 s. 
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Fig. 1.  Change of coefficients of discrete polynomial for 2nd order model
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Fig. 2.  Change of coefficients of discrete polynomial for 4th order model 

 
From Fig. 2 follows that when the order of the model 

matched the number of components of the transient, the 
coefficients where exactly determined on the initial interval. 
However, when two components attenuated, coefficients 
started to fluctuate and errors rapidly increased. 

There is a methodical structural error that occurs because 
the dimension of system of difference equations is greater than 
the number of significant partial components. In this case, 
structure has non-stationary character and it shows in the 
occurrence of fluctuations of estimations of coefficients of the 
discrete polynomial. 

If from the very beginning the structure of model – the 
order of the system of difference equations is greater than the 
number of partial components in the transient (Fig. 3) then 
fluctuations of coefficients of discrete characteristic 
polynomial began from the very beginning of formation of 
equation system. From Fig. 3 follows that redefinition of 
model’s dimension (the order is equal to 5 and does not match 
the order of the initial polynomial) leads to non-stationary 
behaviour of system’s solution from the very beginning, 
starting at the first steps.  
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Fig. 3.  Change of coefficients of discrete polynomial for 5th order model 

The obtained experimental results confirm that groundless 
change of the structure of difference equations, including the 
introduction of additional coefficients, leads to methodical 
structural errors. They are the reason of inapplicability of 
identification models of based on iterative gradient methods 
for search of reliable estimations of parameters of technical 
objects.  

V. INCREASING THE RELIABILITY OF IDENTIFICATION WITH THE 

APPLICATION OF ALTERNATIVE METHODS  

That fact that the transient contains partial components with 
frequencies and factors of attenuation of the input signal 
demands taking them into account in the formulas of balance 
of system of difference equations. Therefore, according to (18) 
and (19), in test modes, it is necessary to take measures for 
neutralization of structural methodical errors that can arise for 
this reason. These questions were examined in [1], [2] in 
general, and also for concrete practical cases. For example, in 
[3], the method of using special test impulse sequences for 
identification of characteristics of space complexes at flight 
test stage was examined in view of safety requirements of 
flights. However, it is necessary to take into account the 
negative influence of singular situations arising in computing 
algorithms which generally are ill-conditioned. In test modes, 
it is advisable to use alternative methods of identification, one 
of which is the frequency domain method. Its advantage is 
greater computing stability and noise stability in comparison 
with time domain methods. The comparative analysis of 
results will allow to draw more reliable conclusions about the 
practical suitability of results of identification. However, for 
this purpose, the results obtained using alternative methods 
should be transformed into a uniform form, for example, into 
the parameters of analog transfer function of object W(p).  

Such transformations for frequency domain method are 
based on formulas: 
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The values amplitude and phase characteristics 
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are determined from tests.  
The structure of operator W(p) is usually known from 

design results. Further we use system of relations, separating 
in them real and imaginary parts: 
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For the range of frequencies on which tests are carried out, 
the following equation is used: 
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From here, we get: 
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We use the notation in form of polynomials for powers of 
frequencies: 
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From them, we get the basic equations for formation of 
equation system: 

 ⊗−⊗ )1()1(

1
)1( n

kk

mm
k Uq ωω  

 2
)1(

2
)1()1(

1
1

k

knn
kkk

n U
bVb

ω
ωω

−
=⊗+⊗  (50) 

 ( ) ⊗−⊗ Tn
kk

mm
k Uq ,)2(

2
)2( 1ωω  

 
( ) ( ) ( )

k

knTn
kkk

n V
bVb

ω
ωω =⊗+⊗ 221

2
,

1  (51) 

Here the notation of direct vector product is used. These 
formulas include coefficients of numerator and denominator 
polynomials of the transfer function W(p) which are 
considered as unknowns. In the system of equations, the 
results of test frequency control are substituted: 
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Let’s consider an example of solving such system for a 
technical object with transfer function: 
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The range of frequencies, in which the frequency 
characteristics were measured, is from 0.2 to 2.5 Hertz. The 
amplitude and phase characteristics are given in Fig. 4 and Fig. 
5 correspondingly. In Fig. 6 and Fig. 7, the characteristics U 
and V, used in equations (20) and (21), are shown. Root mean 
square errors in definition of factors of operator W(p) are 
about 20%. However, their accuracy is distributed non-
uniformly over the frequency range. In some intervals of 
frequencies, the functioning of algorithm was broken because 
of occurrence of singular situations during the solution of 
equation systems (52) and (53). In Fig. 8 and Fig. 9, graphs of 
changes of condition numbers for the first and second systems 
of equations are shown. 
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Fig. 5.  Phase characteristics of the object 
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Fig. 6.  Values of characteristic U 
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Fig. 8.  Condition numbers for the first system of equations 
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Fig. 9.  Condition numbers for the second system of equations 

From these results, it is possible to draw the conclusion that 
applicability of the method varies between frequency ranges 
and it is necessary to take special measures for computing 
stabilization of algorithm. Most advisable for solving 
problems of this kind is to apply parallel algorithms based on 
the use of parallel symbolical combinatory address models. 
They have shown high efficiency at the solution of ill-
conditioned equation systems related to inversion of high-
order Hilbert matrix. For example, for a 20-th order matrix, 
the 100% accuracy has been achieved [7]. 

VI.  CONCLUSIONS 

From the derived analytical proofs and proofs in [1], [2], [5] 
follows that the elements of solution of difference equations of 
identification model contain products of all possible 
differences between discrete poles of operators introduced into 
the model. For stable objects, these poles are always located in 
a limited area of the right unit semicircle of the complex plane. 
These values are small and it shows that computing operations 
at the use of gradient methods are carried out in the field of 
small numbers where the level of noise is high. In these 
conditions, it is practically impossible to calculate reliable 
values of the first and second derivatives of the Hessian matrix 
used for definition of movement on the gradient in the 
direction of decrease of discrepancy functional of equation 
systems. 

At the use of gradient method, the solutions of difference 
equations are found using a method for solving Diophantine 
equations, which are characterized by algorithmic uncertainty 
[17]. There exists a set of equivalent combinations of adjusted 
parameters that have the same discrepancy. Therefore, the 
majority of obtained solutions can correspond to virtual, 
physically impossible objects, which cannot be used in 
practice. They require additional decoding with the 
transformation into parameters of object’s analog transfer 
function. However, it is not done. Despite of such 
incompleteness of identification procedure, authors offer such 
results for practical use.  

From the proofs in [3], [4] follows that in the interval of 
change of the transient, non-uniform attenuation of its partial 
components leads to chaotic fluctuations of solutions of 
difference equations. It is the result of imbalance between the 
order of equations and their information content. It contradicts 
the stationary nature of identified object and testifies about the 
inapplicability of the method. Therefore, the statement [14; Ch. 
9] that convergence of gradient method improves with the 
increase in the number of equations in the system not always 
is true.  
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G.Burovs. Identifikācijas modeļu ar gradientu metodēm parametru noskaņošanai praktiskā nepiemērojamība 
No iepriekš pierādītajām analītiskajām izteiksmēm var secināt, ka identifikācijas modeļus aprakstošo diferenču vienādojumu sistēmu atrisinājumu elementi satur 
modelī ieviesto operatoru diskrēto polu visu iespējamo starpību reizinājumus. Stabiliem fiziski realizējamiem objektiem šiem poli nevar atrasties ārpus 
kompleksās plaknes labā vienības pusapļa robežām. Tādēļ reizinātājiem, kas veidoti no šo polu starpībām, absolūtā vērtība vienmēr ir mazāka par vienu. Tie 
noved visus skaitļošanas procesa etapus mazu skaitļu apgabalā, kurā trokšņu līmenis kļūst dominējošs. Tas, pirmkārt, atteicas uz vienādojumu sistēmas nesaistes 
funkcionāli, uz kura pamati tiek veikta optimizācijas procedūra. Šādos apstākļos praktiski nav iespējams aprēķināt Heses matricu, kas sastāv no pirmās un otrās 
kārtas atvasinājumiem, lai varētu noteikt kustības virzienu pa gradientu šī funkcionāļa minimizācijas virzienā. 

Gradientu metodes izmantošana parametru kombināciju atrašanai nozīmē, ka patiesā atrisinājuma vietā tiek meklēts Diofanta vienādojumu sistēmas 
atrisinājums, kam ir raksturīga algoritmiska nenoteiktība. Jebkādu papildus operatoru, piemēram, trokšņus aprakstošu operatoru, ieviešana modelī uz subjektīvu 
pieņēmumu pamata vēl vairāk palielina šo nenoteiktību. Starp dažādām negatīvām sekām, galvenā ir tāda, ka šie operatori mazo skaitļu apgabalā ienes 
ievērojamas strukturālas metodiskas kļūdas, kas iznes diskrētos parametrus ārpus saprātīgām robežām. Bez tam, kas ir galvenais, šo strukturālo kļūdu rezultātā 
rodas viltus ekstrēmi nesaistes funkcionālī. Rezultātā tiek iegūti skaitliski rezultāti ar abstraktu saturu, kas atbilst fiziski nerealizējamiem objektiem. Šo metožu 
autoru rekomendācijas par to praktisko pielietošanu ir nepamatotas, jo netiek veikta rezultātu dekodēšana. Identifikācijas process netiek pabeigts, jo netiek 
noteikti analogā objekta pārejas funkcijas novērtējumi. Tikai uz to pamata var izdarīt secinājumus par identifikācijas rezultātu ticamību. Statistisko hipotēžu 
pārbaužu metožu izmantošana ar dažādiem varbūtības blīvumu sadalījuma likumiem tikai noved pie papildus kļūdām un padara to praktisko izmantošanu 
neiespējamu. 
 
Г. Буров. О практической неприменимости моделей идентификации с градиентными методами настройки параметров 
Из доказанных ранее аналитических выражений  следует, что в элементы решений разностных  уравнений, которыми описываются модели 
идентификации, входят произведения всевозможных разностей дискретных полюсов операторов, вводимых в модель. Для устойчивых физически 
реализуемых объектов эти полюсы не должны выходить за пределы единичного правого полукруга комплексной плоскости. Поэтому множители, 
формируемые из таких разностей, по абсолютной величине всегда значительно меньше единицы. Они переводят все этапы вычислительного процесса 
в область малых величин, в которой уровень шумов становится преобладающим. Это, в первую очередь, касается функционала невязки системы 
уравнений, по которому реализуется процедура оптимизации. В этих условиях практически невозможно определить матрицы Гессе, состоящих из 
первых и вторых производных, для нахождения направлений движения по градиенту в направлении минимизации этого функционала.  
 Применение метода градиента для нахождения сочетаний параметров означает, что вместо истинного решения ищутся решения системы 
диофантовых уравнений, для которых типичным является алгоритмическая неопределенность. Введение в модель на субъективных  предположениях, 
каких - либо дополнительных операторов, например, операторов, описывающих случайные помехи, в таких условиях еще больше увеличивает эту 
неопределенность. Среди различных ее негативных последствий, одним из главных является то, что такие операторы вносят в область малых величин 
значительные структурные методические ошибки, которые выводят дискретные параметры за разумные пределы. Кроме того, и это главное, 
последствием этих структурных искажений является создание ложные экстремумов функционалов невязки. В итоге получаются численные 
результаты с абстрактным содержанием, которым соответствуют физически нереализуемые объекты. Рекомендации авторов об их  практическом 
использовании необоснованны, так как не было произведено их дешифрирование. Процесс идентификации оказывается незавершенным, поскольку не 
были получены оценки передаточной функции аналогового объекта. Только на их основе могут быть получены выводы о достоверности результатов 
идентификации. Применение методов статистических гипотез с использованием различных вариантов законов распределения плотностей 
вероятностей к абстрактным результатам приводит лишь к дополнительным искажениям и невозможности их практического использования. 


