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Abstract — The paper is devoted to determination of the
distribution of relaxation and retardation times (DRRT) from
various time- and frequency-domain response functits. It is
demonstrated that the problem in general reduces tdhe three
deconvolution tasks for the data on a logarithmic itme or
frequency scale. FIR deconvolution (inverse) filtes operating
with geometrically sampled data are proposed to usas DRRT
estimators. The frequency responses are found andhe
algorithms of the estimators are derived for estiming DRRT
from different response functions. It is disclosedhat non-linear
phase filters must be used for DRRT recovery fromime-domain
(impulse and step) response functions, whereas larephase filters
are required for DRRT recovery from the frequency-cbmain
responses. Simulation results are presented obtamheby two
estimators from the noiseless and noisy input data.

Keywords Distribution of relaxation and retardation times

(DRRT), functional filters, geometric (logarithmic) sampling,
integral transforms, inversion

I. INTRODUCTION

To describe objects exhibiting aperiodic behaviour,

elementary relaxation and retardation systems f[&] wsed
having the exponential impulse responses

@

_jexptt/t)/t
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3(t)—explt/T) /T’

where §(t) is delta function;t is relaxation/retardation time,
and (1a) and (1b) relate to an elementary relanatigstem
and an elementary retardation system, respecti@hce the
responses of real objects, e.g. materials do naipto often
with the simple exponential law, (1) is generalizethe form:

T F(t)exptt/t)de/
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by introducing nonnegative function oflistribution of
relaxationfetardationtimes (DRRT) or relaxation/retardation
spectrumF ()

DRRT contains valuable information about structafe

aperiodic objects and e of the most important quantities in

various relaxation theorigsincluding dielectric [2], [3],
viscoelastic [3], [4], paramagnetic [5] ones. DRRSI not
measurable directly, however, can be calculateoh frarious
experimental response functions to solve the ap@iap
inverse problems. The difficulty is that the invens belong to

26

ill-posed inverse problems where small perturbationinput
data can yield unrealistic high perturbations ia tesults. Due
to discretization, distortion by noise and incongess of
experimental data, exact DRRT recovery is impossiahd
only physically feasible estimates can be obtained.

Despite of huge effort devoted, determination of ROR
poses still theoretical as well as experimentallehges with
a number of unsolved questions. This, particulaiyncerns so-
called non-parametric methods [6], which contrafye t
parametric techniques based on curve fitting teples do not
make any assumption made about the parametricdbBPRRT.
At present, there is the lack of computationallficednt non-
parametric methods for recovery of continuous DRRh a
strong theoretical basis in the signal processorgext.

Motivation of this work is to gain an understandioigthe
overall problem framework of DRRT recovery in light the
up-to-date signal processing [7] and to propose
computationally efficient algorithms based on faactional
filtering approach [8] — [11].

1. BACKGROUND OFINVERSEFUNCTIONAL FILTERING

Functional filtering approach [8] — [11] has beerveloped
for data interconversion of the monotonic and Iycal
monotonic signals in the relaxation experimentsditact and
inverse transformations, which can be reduced ¢oMiellin
convolution transforms. For inverse transformatjorike
Mellin convolution transform may be representethia form:

x(u) = y(u):C k(u) = j y(r)k(u/r)dr/r
2 . 3
:Iy(u/r)k(r)dr/r

Whereg denotes the Mellin convolution, variahleepresents
time or frequencyx(u) is some recorded relaxation signal,
y(u) is some unknown signal that we wish to recoved kfu)

is a kernel depending on the ratio of argumentsinversion

of (3) formally can be expressed through the Mellin
convolution transform with inverse kerngj,(u)

y(u) = X(u)* k., (u)

x(nk,, (u/r)dr/r
: 4
x(u/r)k (r)dr/r

inv
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The functional filtering approach is based on thet fthat
data in the relaxation experiments [2] — [5] arenotonic or
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locally monotonic functions, which are usually resed over

many decades of time or frequency and, for thisopaare

typically represented on a logarithmic scale
u =log,(u/u,),

®)

whereu, is an arbitrary normalization constant (often @os

to be equal to 1). For the logarithmic variablels {be Mellin
convolution type transforms (3) and (4) alter intbe
appropriate Fourier convolution type transforms,jolvhmay
be interpreted as linear shift-invariant systemsdeal filters
operating on a logarithmic scale. This constit@ehleoretical
basis for executing transforms (3) and (4) by mediagete
convolution algorithms or discrete-time filters processing
uniformly sampled data on the logarithmic scaleer€fore,
transform (4) can be executed by the following &thm:

Y )= S xlu,a),

n=—o

(6)

whereh[n] is the impulse response, which for computatignall

realizable algorithms must contain finite number
coefficients.

However, a more elegant solution is to implemegoathm
(6) on the linear scale, where uniformly samplethda the
logarithmic scale manifest as the data sampledrdowp to
geometrical progression

u,=uq", n=0t1+2.., gq>1.
Then, algorithm (6), depending on evenness or i
number of coefficients of impulse responga], takes the
final form of a functional filter [8]:

(N=1)/2

> Hinlx(u,g™")

n=—(N-1)/2
(N-2)/2

> Hrnlx{u,a™ ")

n=—(N-2)/2-1

foroddN (a)

y(u,a") = (7)

forevenN (b)

Since the functional filters execute the Mellin eolution
type transforms, they have frequency-domain desorip in
the Mellin transform domain. Thus, transform (3)shthe
following frequency-domain representation:

X(jw) =Y(jwK(ju),
while its inverse (4) —
Y(iw) = X(ju) /K (jw), ®)

where functions with capital letters are the Metliansforms
of the appropriate functions with small lettersr lexample,

function K(ju), representing the frequency response of ide

direct functional filter, is described as:

27

K (JH-) =M [k(u),—JM] = ]i k(u)u*jufldu,

where M denotes the Mellin transform,j =J-1 and
parameternu, further namedMellin frequency, represents the
angular frequency of a signal (function) on thealdpmic
scale [9]. According to (8), deconvolution (inveréenctional
filter (4) has frequency response, which is eqoalreciprocal
of the Mellin transform of kernek(u)

H(ju) =1/K(jw), (9)

and so it has an increasing magnitude response
fim [H (ju) oo

coming from the fact that the magnitude responseshe
direct filters |K(ju)| usually decrease with growing frequency.

The necessary condition for implementation of isi@r of
(3) by a computationally realizable functional diltis the
Founded magnitude response of the ideal filter etoz
requency [8]

H(w)| , =[H (0] = <. (10)

Following the suggestion in [12], the degree of ill
posedness of deconvolution filters will be charazesl here
quantitatively by noise amplification coefficient

S= > nin]

mu!nplymg input noise variancec. to give output noise
variancec’,

2 _ 2.
c, =30,

I1l. DRRTESTIMATORS

A. |deal estimators

In practice, DRRT is determined from impulse ressm
(2), as well as other response functions, suchhasstep
responses given by the integrals of (2) or the raad
imaginary parts of the frequency responses expilegisethe
Fourier transforms of (2). To take into considematihat zero
and infinitive times are located ato on a logarithmic scale,
i.e. are inaccessible in the relaxation experiments
mathematically, determination of DRRT from variotise-
and frequency-domain response functions is consitleften
without the delta function in (2b) and is genermdizas an

tiﬂverse problem [8] — [11] in the form:

X(U)ZTF(‘C)K(U,‘C)d‘C/‘C, O<u<ow (11)
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with aperiodic kernel&(u,t) of the type

expCu/t)/t @

exp(-u/1) (b)

_ |1-exptu/t) ©
D= v &) (12)

ut /(L+u’t?) ©

u’t? [+ u*t?) (f)

B. Discrete-time estimators

Since condition (10) is satisfied for all three quency
responses (14)

0
2/n

for (14a)and(14b) (@)

[H (0= { for (14c) ()

computationally realisable functional filters caadonstructed
for DRRT recovery from all the response functiomsatibed

where K(u,r) describes the response functions of thBY kernels (12). However, only convolution transfsr(13b)

elementary relaxation and retardation systems witigle
relaxation/retardation time (DRRT in the form ofethlelta
function). Kernels (12a) and (12b) represent thpulse and
step response of the elementary relaxation sys@ring the
frequency response with real part (12d) and imaginmeart
(12e). In its turn, (12a) and (12c) express theuisgand step
response of the elementary retardation system Qathie
frequency response with real part (12f) and imaginzart
(12e).

Equations (11) and (12) may be rewritten as thimviohg
Mellin convolution type transforms

T F(t)/c{exp(u/t)jde/t @)
3 : expFu/t) (o))

X(u) = j F(r){l_exp(_u /T)} o/t o @
B 1/@+u®/1?) (d)
[Farmjuiziaruis?) (di/c @

° u?/? J(L+u? /7?) (f)

where the curly braces {} contain Mellin convoluti&kernels
k(u), i.e. kernelsK(u,z) modified so to give the Mellin
convolution (3). In the light of the functional tBking, (13)
represent ideal deconvolution filters or ideal DR&STimators
having, according to (9), the following frequenasponses
[13] - [16]:

-1T(-jw) for (12a)-(12c) @
H(jw = * 2sin(jru/2)/m for (12d)and(12f) () (14)
2cos(jmu/2)/n  for (12e) (©)

The fact that determination of DRRT from the fuoos
described by six kernels (12) leads to three iditals with
frequency responses (14) has the important
consequences, such as:

(i) only three independent impulse responses arfefilter
coefficients corresponding to (14) are necessaryBRT
recovery from the functions described by six kesr{gPR),

(ii) the same coefficients may be used for all thme-
domain functions described by kernels (12a) — (12a)l

(i) the coefficients for the real parts of frequey-domain
functions with kernels (12d) and (12f) differ ofdy signs.

28

practic\g

and (13c) relates directly té(tr) as an output function
allowing to use general algorithms (7). For othansforms,
algorithms (7) shall be modified. Thus, transfoi3d) relates
to output functior(t)/t requiring that the general algorithms
modified into the formF(t, ) =71, Yy(t,) are used. Likewise,
transforms (13d) — (13f) relates to output functi(i/z), for
which the general algorithms must be modified itite form
F(z,)=y@/t,) . Therefore, DRRT recovery from the
functions described by kernels (12) can be implaetby the
following three algorithms:

u, g™ Y Hnlx(u,g™)  for (12a) @)

F(u,g™) = Z H r:] X(u,g™") for @2Zv)and(12c) (b)
Zn: Hnlx(a "/ u,) for A.2d) - @2f) ©

" (15)

where k=—n for odd N and k=-05-n for evenN, and
summation indexn, depending on even or odd filter length,
runs in accordance with (7).

C. DRRT recovering fromthetime-domain data

Frequency response (14a) of ideal filter for prodod-(r)
from the time-domain data is a complex functionuofFrom
the symmetry property of the Fourier transfornipitows that
the appropriate impulse response has no symmetrther
estimators recovering DRRT from the time-domainadat
belongnon-linear phasefilters[7].

D. DRRT recovering fromthereal parts

Frequency response (14b) of the ideal filter prauyé&(z)
from the real parts is a pure imaginary function

H(ju) =+2sin(jru/2)/ n=%j2sh(zpn/2)/ nt,

ith odd symmetry enforcing anti-symmetry propestaso
on the appropriate impulse responses [7]. Therefthe
estimators recovering DRRT from the real parts nimgstype
[11 linear phase filter in the case of odtll andtype IV linear
phasefilter in the case of eveN.

E. DRRT recovering fromthe fromtheimaginary parts

Frequency response (14c) of the ideal filter prauyé ()
from the imaginary parts is a real function withenv
symmetry
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H(jp) = 2cos(jnp/2)/ n=2ch(nu/2)/ . Te
In this case, the estimators have the symmetricuisep 01'
responses and represédyye | linear phase filters for odd N B
andtype Il linear phase filters for evenN [7].
F. Designof DRRT edimators T 0.01¢
The basic design problem for DRRT estimators is the )
necessity of limiting the sensitivity to noise thet levels 0,001L
acceptable for practice. Because all noise reductthemes £/
make worse the accuracy, a trade-off between theuatrof i
noise suppression and the amount of signal distorti (0001 }—
(accuracy) must be searched. In this study, therdilhave 3
been designed according to approach [12], [13]], [ibich [
allows obtaining the estimators with the desiretles of the 0,1k
noise amplification coefficients. g
IV. SIMULATION RESULTS i’ 0,01¢
Simulations have been performed by two six-poinR FI L / \
estimators of type IV [13], [14] operating at= 3.3 and 0001k
recovering the retardation spectrum from the reat pf the ' 1.0\
frequency-domain compliance (kernel (12d)). Thenestbrs T/
carry out algorithm (15c), which, for the selectedues ofN 0,0001 L AR R R I S
andq, takes the form 0,001 0,01 0,1 1 10 100 1000
Retardation time, t
F(uoqm) _ ZZ: h[n]x (3_3—0.&n—m /Uo)- Fig. 1. The retardation spectra corrc_asponding @ rdodel _with different
— values of parameter recovered by estimator 1 (a) and estimator 2 riwhf

noiseless input data. Solid lines: exact specteshed lines: recovered

_ . . ._spectra. The exact spectrum éorl is the delta function (not shown).
Coefficientsh[n] are given in Table 1, they ensure the noise’ P ( )

amplification coefficients S= 1062 (estimator 1) and . . .
S= 228 (estimator 2), respectively. B. Smulationswith noisy data.
The effect of the noise and its potential reduction

A. Smulationswith noisdessdata ) ; 3 . :
, ] smoothing have been investigated for noisy inputada
In Fig. 1, the retardation spectra are comparedvered distorted by additive noise

from the noiseless input data corresponding toGbke-Cole

(CC) model with different values of spectrum wigidrameter X e (@) = X (@) + € (M) (16)
o. Estimator 1 recovers almost perfectly the retioda
spectrum for parametekrs = 05 and o = 0.7 (see Fig. l1a)). nd multiplicative noise

For o = 05, coincidence with the exact spectrum is so gooé‘,

that it is hard to distinguish them. However, estion 1 X () =X, (0,)1+e n(m)] 17)
generates the oscillating spectrum with non-physiegative e e '

values for the delta function retardation spectratmo=1. where n(m) is the normally distributed pseudorandom

Contrary, estimator 2 gives the non-oscillatingcspen at g0 ,ance within interval [-1,1] with zero mean, andenotes
a=1 (see Fig. 1(b)), but at the expense of the wogsevery hqo noise amplitude.

quality for the broader spectra. The noise curtails the intervals of the usable spec It
TABLE | has been empirically estimated that, in the casedadfitive
COEFFICIENTS OF THEESTIMATORS noise, DRRT can be obtained within the intervals afhere
n h[n]
Estimator 1 Estimator 2 F(z2F, = e\/§/3. (18)
-3 | -0.062133 -0.033 296 o ) ) .
> 0577504 0.129 207 Within thes_e mtervgls, the noise can be gffecjamlppressed
| 2053 620 1 058 800 by.smoothln.g the _|nput data, while outsuje therirds the
: : noise effect is dominant and the spectrum is lost.
2.253 640 1.058 800 The effect of additive random noise (16) and smiogtfis
-0.577 504 -0.129 207 demonstrated in Fig. 2, where the retardation spectis
0.062 133 0.033 296 shown recovered by the both estimafoos the noisy the real

29
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Retardation time,

Fig. 2. Effect of additive random noise and smawhobn the retardation
spectrum recovered by estimator 1 (a) and estinfatfl). Curves 1 — the
exact spectrum; curves 2 — the spectra recoveoed thie noiseless input data;
points — the spectra recovered from the noisy ilat; curves 3 — the noisy
spectra smoothed 10 times by (19). The verticaslishow intervals of the
usable spectra according to criterion (18).

part corresponding to CC model with paramete+ 0.8 .

(@)

0,1t

F(z)

0,01

0,001

0,1k

0,01k

0,001

0.001 001 01 1 10 100
Retardation time,

&

1000

Fig. 3. Effect of multiplicative random noise amdaothing on the retardation
spectrum recovered by estimator 1 (a) and estim&t@). Numbering of
curves — as in Fig. 2.

logarithmic time or frequency scale related to keryg of
DRRT from: (i) the time-domain (impulse and steg3ponses,
(ii) the real parts and (iii) the imaginary parfstiee frequency

Here, amplitudee= 005 has been used and the recovereffSPONSes. These deconvolution tasks are intedpoestadeal

noisy spectra have been smoothed by simple 5-pgéraging

F(t,) =%Z F(t,.) .

n—2

(19)

The vertical lines show the usable intervals ofrémovered
DRRT estimated according to criterion (18). As seeithin
these intervals, there is the good agreement betwbke
recovered spectra from the noiseless data (curyem@ the
smoothed spectra (curves 3).

In Fig. 3, the same recovery situation is showmfrwoisy
input data distorted by multiplicative noise (17sca with
e= 005. In this case, the usable spectra are curtaildéy an
the large relaxation times. Again, positive effeEsmoothing
is demonstrated.

V.CONCLUSIONS

It is demonstrated that the problem of determimat the
distribution of relaxation/retardation times (DRRQm various
response functions leads to three deconvolutidestas the

30

deconvolution (inverse) filters or ideal DRRT esiors and
finite impulse response (FIR) deconvolution filtewperating
with geometrically sampled data are proposed foeirth
implementation. It is demonstrated that the estinsaiecovering
DRRT from the time-domain responses belong to meat
phase filters, while linear-phase filters of typerlll must be
used for DRRT recovery from the imaginary partsl the filters
of type Ill or IV — for DRRT recovery from the reparts. Three
algorithms (with modifications for even or odd nusnbof
coefficients) are derived, which must be used &wmovering
DRRT from: (i) the impulse responses, (ii) the stegponses,
and (iii) the real and imaginary parts of the freqgcy
responses. Simulation results are representednebtdiy two
estimators of type IV for DRRT recovery from thasaess and
noisy real parts distorted by additive and multiative noise.
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V. Strauss, A. Kalpin3, U. Lomanovskis. Dekonvadicijas filtri relaks acijas un retardacijas laika sadatjuma noteik3anai

Raksts veits relakécijas un retargtijas laika sadguma (RRLS) noteikSanai no daiim reakcijas funkciim laika un frekvences apgabaPaadits, ka RRLS
noteikSana redégas uz tfs dekonvaicijas uzdevumiem logaritmigklaika vai frekvences @noga, kuros RRLS tiek noteikts no: 1) laika apgabalakogas
funkcijam (IPMulsa un prejas rakstutknem), 2) frekvences rakstakhu realam ddam un 3) frekvences rakstikhu imagiriram ddam. Sie dekonvaicijas
uzdevumi tiek interpréti ka ideali dekonvoficijas filtri, kurus piedvats realizt finitas IPMulsu rakstutknes (FIR) dekonvatijas (inversu) filtru veid,
apstadajot geometriski diskreti®us ieejas datus. Ralits, ka dekonvaicijas filtri RRLS noteikSanai no laika apgabaladi@s funkciim pieder nelingras
fazes filtru klasei, bet lirizas fizes | vai Il tipa filtri gizmanto RRLS noteikSanai no frekvences rakstyul imagirarajam ddam, un 3) linaras fizes Il vai IV
tipa filtri — RRLS noteikSanai no frekvences rakitmu realam ddam. Atrasti tis algoritmi (ar modifikcijam para un nepra skaita koeficientiem) RRLS
noteikSanai no: 1) IPMulsa rakstikriem, 2) mrejas rakstutkném, un 3) frekvences rakstikhu realajam un imagiarajam ddam. Sniegti ar diviem IV tipa
filtriem ieguti RRLS noteikSanas mod8knas rezulti no predzam frekvences rakstdknu realam ddam un ra@lam ddam, kas izkrofotas ar aditu un
multiplikafivu troksni.

B. Tpayc, A. Kannuusi, Y. JlomaHoBckuc. @UabTpbl 00paTHOI cBepKH /151 ONpe/ieIeHUs pacipe/e/ieHUsl BpeMeH PeJIaKcallii H peTapAaluu
Cratbsl MOCBSIECHA ONPEICICHHUIO paclpe/e/icH s BpeMeH penakcauuu u perapaaiuu (PBPP) mo paznmuaHbsiM QyHKIHSAM OTKINKOB BO BPEMEHHON U 4acTOTHON
obnactax. [Tokxazano, uro onpenencuue PBPP cBoxutcs k TpeM 3amadaM 0OpaTHOI CBEpPKH B JIOrapU(pMHIECKOM MACIITa0e BPEMEHH WM YacTOT, CBI3AHHEIX C
BoccranoBieHreM PBPP mo: 1) dQyHKIusSM OTKIMKOB BO BPEMEHHOII 00macTd (MMITYJIBCHBIMH M IICPEXOAHBIMU XapaKTEPUCTHKAMH); 2) IeHCTBUTEIBHBIMU
YaCTSMH YaCTOTHBIX XapaKTEPUCTHK, U 3) MHUMBIMH YacTSIMH YaCTOTHBIX XapaKTEPUCTHK. DTH 3ajaui OOpaTHOH CBEPKU HHTEPIPETHPYIOTCS Kak HcalbHbIC
GuabTpl 00paTHON cBepkH. [ MX OCYIIECTBIEHMS HPEIaraeTcsi HCIOIb30BaTh (PUIBTPHL OOpaTHOH CBEPKH ¢ KOHEYHOW HMMITYJIBCHOI XapaKTepUCTHKOU
(KUX) paboraromye ¢ reOMETPHYECKH JUCKPETU3UPOBAHHBIME JaHHBIMH. [lokaszaHo, uto (uibTpsl, BoccTaHoBisomue PBPP ¢ ¢GyHKumii OTKIHNKOB BO
BPEMEHHOI 001acTH MpUHALISKAT GUIBTPaM C HEMMHEHHOU (a30il, B TO BpeMsl Kak GpUIbTPHI C MUHEHHOH (a3oii Tuna | wiu || 1omkHBI OBITH HCTIOIB30BAHBI
Ui BoccTaHoBieHus: PBPP ¢ MHUMBIX dacTell 4aCTOTHBIX XapaKTEpPHUCTHK, U (GuibTpsl C JauHeiiHoN ¢azoit tuma Il wmm IV — mnsa Boccranonenuss PBPP ¢
BCIICCTBEHHBIX YacTeil YaCTOTHBIX XapakTepucTuk. [lomydeHs! Tpu anropurMa (C BEpCHSMH IS YETHOTO M HEYETHOTO YHCIa KOI(Q(DUIMEHTOB) IPUMCHSIEMBIC
U BoccTanoBieHust PBPP 1o: 1) MMIy/IbCHBIMU XapakTepPUCTHKAMH, 2) IEPEXOIHBIMU XapaKTEPUCTHKAMHU, U 3) ACHCTBUTEIbHBIMH M MHUMBIMH YacCTAMH
YaCTOTHBIX XapaKTepHUCTHK. [IpencTaBieHbl pe3ynbTaThl MOAECIMPOBAaHUA BoccTaHoBieHus PBPP momyuennsie nByms ¢uibtpamu Tuma IV ¢ GeciryMHbIX
BEIECTBEHHBIX YaCTeH M ITyMHBIX BEIIECTBCHHBIX YaCTeH, HCKaKCHHBIX aJIUTHBHBIM U My/IbTUILINKATUBHBIM IIIyMOM.
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