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Abstract – The paper is devoted to determination of the 
distribution of relaxation and retardation times (DRRT) from 
various time- and frequency-domain response functions. It is 
demonstrated that the problem in general reduces to the three 
deconvolution tasks for the data on a logarithmic time or 
frequency scale. FIR deconvolution (inverse) filters operating 
with geometrically sampled data are proposed to use as DRRT 
estimators. The frequency responses are found and the 
algorithms of the estimators are derived for estimating DRRT 
from different response functions. It is disclosed that non-linear 
phase filters must be used for DRRT recovery from time-domain 
(impulse and step) response functions, whereas linear phase filters 
are required for DRRT recovery from the frequency-domain 
responses. Simulation results are presented obtained by two 
estimators from the noiseless and noisy input data. 
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I.  INTRODUCTION 

To describe objects exhibiting aperiodic behaviour, 
elementary relaxation and retardation systems [1] are used 
having the exponential impulse responses 
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where δ(t) is delta function, τ is relaxation/retardation time, 
and (1a) and (1b) relate to an elementary relaxation system 
and an elementary retardation system, respectively. Since the 
responses of real objects, e.g. materials do not comply often 
with the simple exponential law, (1) is generalized in the form: 
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by introducing nonnegative function of distribution of 
relaxation/retardation times (DRRT) or relaxation/retardation 
spectrum )(τF  

DRRT contains valuable information about structure of 
aperiodic objects and is one of the most important quantities in 
various relaxation theories, including dielectric [2], [3], 
viscoelastic [3], [4], paramagnetic [5] ones. DRRT is not 
measurable directly, however, can be calculated from various 
experimental response functions to solve the appropriate 
inverse problems. The difficulty is that the inversions belong to 

ill-posed inverse problems where small perturbations in input 
data can yield unrealistic high perturbations in the results. Due 
to discretization, distortion by noise and incompleteness of 
experimental data, exact DRRT recovery is impossible and 
only physically feasible estimates can be obtained.  

Despite of huge effort devoted, determination of DRRT 
poses still theoretical as well as experimental challenges with 
a number of unsolved questions. This, particularly, concerns so-
called non-parametric methods [6], which contrary the 
parametric techniques based on curve fitting techniques do not 
make any assumption made about the parametric form of DRRT. 
At present, there is the lack of computationally efficient non-
parametric methods for recovery of continuous DRRT with a 
strong theoretical basis in the signal processing context.  

Motivation of this work is to gain an understanding of the 
overall problem framework of DRRT recovery in light of the 
up-to-date signal processing [7] and to propose 
computationally efficient algorithms based on the functional 
filtering approach [8] – [11]. 

II. BACKGROUND OF INVERSE FUNCTIONAL FILTERING 

Functional filtering approach [8] – [11] has been developed 
for data interconversion of the monotonic and locally 
monotonic signals in the relaxation experiments via direct and 
inverse transformations, which can be reduced to the Mellin 
convolution transforms. For inverse transformations, the 
Mellin convolution transform may be represented in the form:  
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where 
M

*  denotes the Mellin convolution, variable u represents 
time or frequency, x(u) is some recorded relaxation signal, 
y(u) is some unknown signal that we wish to recover, and k(u) 
is a kernel depending on the ratio of arguments u/r. Inversion 
of (3) formally can be expressed through the Mellin 
convolution transform with inverse kernel kinv(u) 
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The functional filtering approach is based on the fact that 
data in the relaxation experiments [2] – [5] are monotonic or 
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locally monotonic functions, which are usually recorded over 
many decades of time or frequency and, for this reason, are 
typically represented on a logarithmic scale 

 )/(log 0

* uuu q= , (5) 

where u0 is an arbitrary normalization constant (often chosen 
to be equal to 1). For the logarithmic variables (5), the Mellin 
convolution type transforms (3) and (4) alter into the 
appropriate Fourier convolution type transforms, which may 
be interpreted as linear shift-invariant systems or ideal filters 
operating on a logarithmic scale. This constitutes a theoretical 
basis for executing transforms (3) and (4) by means discrete 
convolution algorithms or discrete-time filters processing 
uniformly sampled data on the logarithmic scale. Therefore, 
transform (4) can be executed by the following algorithm:    
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where h[n] is the impulse response, which for computationally 
realizable algorithms must contain finite number of 
coefficients. 

However, a more elegant solution is to implement algorithm 
(6) on the linear scale, where uniformly sampled data on the 
logarithmic scale manifest as the data sampled according to 
geometrical progression  

 1...,,2,1,0,0 >±±== qnquu n

n .  

Then, algorithm (6), depending on evenness or oddness of 
number of coefficients of impulse response h[n], takes the 
final form of a functional filter [8]: 
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Since the functional filters execute the Mellin convolution 
type transforms, they have frequency-domain descriptions in 
the Mellin transform domain. Thus, transform (3) has the 
following frequency-domain representation: 

 )()()( µµ=µ jKjYjX ,   

while its inverse (4) –  

 )(/)()( µµ=µ jKjXjY , (8) 

where functions with capital letters are the Mellin transforms 
of the appropriate functions with small letters. For example, 
function K(jµ), representing the frequency response of ideal 
direct functional filter, is described as: 
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where M denotes the Mellin transform, 1−=j  and 
parameter µ, further named Mellin frequency, represents the 
angular frequency of a signal (function) on the logarithmic 
scale [9]. According to (8), deconvolution (inverse) functional 
filter (4) has frequency response, which is equal the reciprocal 
of the Mellin transform of kernel )(uk   

 )(/1)( µ=µ jKjH , (9) 

and so it has an increasing magnitude response  
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coming from the fact that the magnitude responses of the 
direct filters  |K(jµ)|  usually decrease with growing frequency.  

The necessary condition for implementation of inversion of 
(3) by a computationally realizable functional filter is the 
bounded magnitude response of the ideal filter at zero 
frequency [8] 
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Following the suggestion in [12], the degree of ill-
posedness of deconvolution filters will be characterized here 
quantitatively by noise amplification coefficient 
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n
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III.   DRRT ESTIMATORS  

A. Ideal estimators 

In practice, DRRT is determined from impulse responses 
(2), as well as other response functions, such as the step 
responses given by the integrals of (2) or the real and 
imaginary parts of the frequency responses expressed via the 
Fourier transforms of (2). To take into consideration that zero 
and infinitive times are located at ±∞  on a logarithmic scale, 
i.e. are inaccessible in the relaxation experiments, 
mathematically, determination of DRRT from various time- 
and frequency-domain response functions is considered often 
without the delta function in (2b) and is generalized as an 
inverse problem [8] – [11] in the form: 
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with aperiodic kernels K(u,τ) of the type 
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where K(u,τ) describes the response functions of the 
elementary relaxation and retardation systems with single 
relaxation/retardation time (DRRT in the form of the delta 
function). Kernels (12a) and (12b) represent the impulse and 
step response of the elementary relaxation system having the 
frequency response with real part (12d) and imaginary part 
(12e). In its turn, (12a) and (12c) express the impulse and step 
response of the elementary retardation system having the 
frequency response with real part (12f) and imaginary part 
(12e).  

Equations (11) and (12) may be rewritten as the following 
Mellin convolution type transforms 
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where the curly braces {} contain Mellin convolution kernels 
k(u), i.e. kernels K(u,τ) modified so to give the Mellin 
convolution (3). In the light of the functional filtering, (13) 
represent ideal deconvolution filters or ideal DRRT estimators 
having, according to (9), the following frequency responses 
[13] – [16]:  
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The fact that determination of DRRT from the functions 
described by six kernels (12) leads to three ideal filters with 
frequency responses (14) has the important practical 
consequences, such as:  

(i) only three independent impulse responses or sets of filter 
coefficients corresponding to (14) are necessary for DRRT 
recovery from the functions described by six kernels (12), 

(ii) the same coefficients may be used for all the time-
domain functions described by kernels (12a) – (12c), and 

(iii) the coefficients for the real parts of frequency-domain 
functions with kernels (12d) and (12f) differ only by signs. 

B. Discrete-time estimators 

Since condition (10) is satisfied for all three frequency 
responses (14) 
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computationally realisable functional filters can be constructed 
for DRRT recovery from all the response functions described 
by kernels (12). However, only convolution transforms (13b) 
and (13c) relates directly to F(τ) as an output function 
allowing to use general algorithms (7). For other transforms, 
algorithms (7) shall be modified. Thus, transform (13a) relates 
to output function F(τ)/τ requiring that the general algorithms 
modified into the form )()( mmm yF ττ=τ  are used. Likewise, 
transforms (13d) – (13f) relates to output function F(1/τ), for 
which the general algorithms must be modified into the form 

)/1()( mm yF τ=τ . Therefore, DRRT recovery from the 
functions described by kernels (12) can be implemented by the 
following three algorithms:  
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where nk −=  for odd N and nk −−= 5.0  for even N, and 
summation index n, depending on even or odd filter length, 
runs in accordance with (7). 

C. DRRT recovering  from the time-domain data 

Frequency response (14a) of ideal filter for producing F(τ) 
from the time-domain data is a complex function of µ. From 
the symmetry property of the Fourier transform, it follows that 
the appropriate impulse response has no symmetry or the 
estimators recovering DRRT from the time-domain data 
belong non-linear phase filters [7].  

D. DRRT recovering  from the real parts 

Frequency response (14b) of the ideal filter producing F(τ) 
from the real parts is a pure imaginary function 

 ππµ±=ππµ±=µ /)2/(2/)2/sin(2)( shjjjH , 

with odd symmetry enforcing anti-symmetry properties also 
on the appropriate impulse responses [7]. Therefore, the 
estimators recovering DRRT from the real parts must be type 
III linear phase filter in the case of odd N and type IV linear 
phase filter in the case of even N. 

E. DRRT recovering  from the  from the imaginary parts 

Frequency response (14c) of the ideal filter producing F(τ) 
from the imaginary parts is a real function with even 
symmetry 
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 ππµ=ππµ=µ /)2/(2/)2/cos(2)( chjjH . 

In this case, the estimators have the symmetric impulse 
responses and represent type I linear phase filters for odd N 
and type II linear phase filters for even N [7]. 

F.  Design of DRRT estimators 

The basic design problem for DRRT estimators is the 
necessity of limiting the sensitivity to noise to the levels 
acceptable for practice. Because all noise reduction schemes 
make worse the accuracy, a trade-off between the amount of 
noise suppression and the amount of signal distortion 
(accuracy) must be searched. In this study, the filters have 
been designed according to approach [12], [13], [16], which 
allows obtaining the estimators with the desired values of the 
noise amplification coefficients. 

IV.  SIMULATION RESULTS 

Simulations have been performed by two six-point FIR 
estimators of type IV [13], [14] operating at 3.3=q  and 
recovering the retardation spectrum from the real part of the 
frequency-domain compliance (kernel (12d)). The estimators 
carry out algorithm (15c), which, for the selected values of N 
and q, takes the form 

 ∑
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Coefficients h[n] are given in Table 1, they ensure the noise 
amplification coefficients 62.10=S  (estimator 1) and  

28.2=S  (estimator 2), respectively. 

A. Simulations with noiseless data 

In Fig. 1, the retardation spectra are compared recovered 
from the noiseless input data corresponding to the Cole-Cole 
(CC) model with different values of spectrum width parameter 
α. Estimator 1 recovers almost perfectly the retardation 
spectrum for parameters 5.0=α  and 7.0=α  (see Fig. 1a)). 
For 5.0=α , coincidence with the exact spectrum is so good, 
that it is hard to distinguish them. However, estimator 1 
generates the oscillating spectrum with non-physical negative 
values for the delta function retardation spectrum at α=1. 
Contrary, estimator 2 gives the non-oscillating spectrum at 
α=1 (see Fig. 1(b)), but at the expense of the worse recovery 
quality for the broader spectra. 

TABLE I 

COEFFICIENTS OF THE ESTIMATORS 

n h[n] 

Estimator 1 Estimator 2 

-3 -0.062 133 -0.033 296 

-2  0.577 504  0.129 207 

-1 -2.253 640 -1.058 800 

0  2.253 640  1.058 800 

1 -0.577 504 -0.129 207 

2  0.062 133  0.033 296 

 

Fig. 1.  The retardation spectra corresponding to CC model with different 
values of parameter α recovered by estimator 1 (a) and estimator 2 (b) from 
noiseless input data. Solid lines: exact spectra, dashed lines: recovered 
spectra. The exact spectrum for α=1 is the delta function (not shown). 

B. Simulations with noisy data.  

The effect of the noise and its potential reduction by 
smoothing have been investigated for noisy input data 
distorted by additive noise 

 )()()( mnexx mexactmnoisy ⋅+ω=ω  (16) 

and multiplicative noise 

 )](1)[()( mnexx mexactmnoisy ⋅+ω=ω , (17) 

where n(m) is the normally distributed pseudorandom 
sequence within interval [-1,1] with zero mean, and e denotes 
the noise amplitude.  

The noise curtails the intervals of the usable spectrum. It 
has been empirically estimated that, in the case of additive 
noise, DRRT can be obtained within the intervals of τ  where  

 3/)( min SeFF =≥τ .   (18) 

Within these intervals, the noise can be effectively suppressed 
by smoothing the input data, while outside the intervals the 
noise effect is dominant and the spectrum is lost. 

The effect of additive random noise (16) and smoothing is 
demonstrated in Fig. 2, where the retardation spectrum is 
shown recovered by the both estimators from the noisy the real 
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Fig. 2. Effect of additive random noise and smoothing on the retardation 
spectrum recovered by estimator 1 (a) and estimator 2 (b). Curves 1 – the 
exact spectrum; curves 2 – the spectra recovered from the noiseless input data; 
points – the spectra recovered from the noisy input data; curves 3 – the noisy 
spectra smoothed 10 times by (19). The vertical lines show intervals of the 
usable spectra according to criterion (18). 

part corresponding to CC model with parameter 8.0=α . 
Here, amplitude 05.0=e  has been used and the recovered 
noisy spectra have been smoothed by simple 5-point averaging 

 )(
5

1
)(

2

2
∑
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The vertical lines show the usable intervals of the recovered 
DRRT estimated according to criterion (18). As seen, within 
these intervals, there is the good agreement between the 
recovered spectra from the noiseless data (curves 2) and the 
smoothed spectra (curves 3). 

In Fig. 3, the same recovery situation is shown from noisy 
input data distorted by multiplicative noise (17) also with 

05.0=e . In this case, the usable spectra are curtailed only at 
the large relaxation times. Again, positive effect of smoothing 
is demonstrated. 

V. CONCLUSIONS 

It is demonstrated that the problem of determination of the 
distribution of relaxation/retardation times (DRRT) from various 
response functions leads to three deconvolution tasks on the  

 

 

Fig. 3. Effect of multiplicative random noise and smoothing on the retardation 
spectrum recovered by estimator 1 (a) and estimator 2 (b). Numbering of 
curves – as in Fig. 2. 

logarithmic time or frequency scale related to recovery of 
DRRT from: (i) the time-domain (impulse and step) responses, 
(ii) the real parts and (iii) the imaginary parts of the frequency 
responses. These deconvolution tasks are interpreted as ideal 
deconvolution (inverse) filters or ideal DRRT estimators and 
finite impulse response (FIR) deconvolution filters operating 
with geometrically sampled data are proposed for their 
implementation. It is demonstrated that the estimators recovering 
DRRT from the time-domain responses belong to non-linear 
phase filters, while linear-phase filters of type I or II must be 
used for DRRT recovery from the imaginary parts, and the filters 
of type III or IV – for DRRT recovery from the real parts. Three 
algorithms (with modifications for even or odd number of 
coefficients) are derived, which must be used for recovering 
DRRT from: (i) the impulse responses, (ii) the step responses, 
and (iii) the real and imaginary parts of the frequency 
responses. Simulation results are represented obtained by two 
estimators of type IV for DRRT recovery from the noiseless and 
noisy real parts distorted by additive and multiplicative noise. 
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V. Štrauss, A. Kalpiņš, U. Lomanovskis. Dekonvolūcijas filtri relaks ācijas un retardācijas laika sadalījuma noteikšanai 
Raksts veltīts relaksācijas un retardācijas laika sadalījuma (RRLS) noteikšanai no dažādām reakcijas funkcijām laika un frekvences apgabalā. Parādīts, ka RRLS 
noteikšana reducējās uz trīs dekonvolūcijas uzdevumiem logaritmiskā laika vai frekvences mērogā, kuros RRLS tiek noteikts no: 1) laika apgabala reakcijas 
funkcijām (IPMulsa un pārejas raksturlīknēm), 2) frekvences raksturlīkņu reālām daļām un 3) frekvences raksturlīkņu imaginārām daļām. Šie dekonvolūcijas 
uzdevumi tiek interpretēti kā ideāli dekonvolūcijas filtri, kurus piedāvāts realizēt finitas IPMulsu raksturlīknes (FIR) dekonvolūcijas (inversu) filtru veidā, 
apstrādājot ģeometriski diskretizētus ieejas datus. Parādīts, ka dekonvolūcijas filtri RRLS noteikšanai no laika apgabala rekcijas funkcijām pieder nelineāras 
fāzes filtru klasei, bet lineāras fāzes I vai II tipa filtri jāizmanto RRLS noteikšanai no frekvences raksturlīkņu imaginārajām daļām, un 3) lineāras fāzes III vai IV 
tipa filtri – RRLS noteikšanai no frekvences raksturlīkņu reālām daļām. Atrasti trīs algoritmi (ar modifikācijām pāra un nepāra skaita koeficientiem) RRLS 
noteikšanai no: 1) IPMulsa raksturlīknēm, 2) pārejas raksturlīknēm, un 3) frekvences raksturlīkņu reālajām un imaginārajām daļām. Sniegti ar diviem IV tipa 
filtriem iegūti RRLS noteikšanas modelēšanas rezultāti no precīzām frekvences raksturlīkņu reālām daļām un reālām daļām, kas izkropļotas ar aditīvu un 
multiplikatīvu troksni. 
  
В. Штраус, А. Калпиньш, У. Ломановскис. Фильтры обратной сверки для определения распределения времен релаксации и ретардации 
Статья посвящена определению распределения времен релаксации и ретардации (РВРР) по различным функциям откликов во временной и частотной 
областях. Показано, что определение РВРР сводится к трем задачам обратной сверки в логарифмическом масштабе времени или частот, связанных с 
восстановлением РВРР по: 1) функциям откликов во временной области (импульсными и переходными характеристиками); 2) действительными 
частями частотных характеристик, и 3) мнимыми частями частотных характеристик. Эти задачи обратной сверки интерпретируются как идеальные 
фильтры обратной сверки. Для их осуществления предлагается использовать фильтры обратной сверки с конечной импульсной характеристикой 
(КИХ) работающие с геометрически дискретизированными данными. Показано, что фильтры, восстановляющие РВРР с функций откликов во 
временной области принадлежат фильтрам c нелинейной фазой, в то время как фильтры c линейной фазой типа I или II должны быть использованы 
для восстановления РВРР с мнимых частей частотных характеристик, и фильтры c линейной фазой типа III или IV – для восстановления РВРР с 
вещественных частей частотных характеристик. Получены три алгоритма (с версиями для четного и нечетного числа коэффициентов) применяемые 
для восстановления РВРР по: 1) импульсными характеристиками,  2) переходными характеристиками, и 3) действительными и мнимыми частями 
частотных характеристик. Представлены результаты моделирования восстановления РВРР полученные двумя фильтрами типа IV с бесшумных 
вещественных частей и шумных вещественных частей, искаженных аддитивным и мультипликативным шумом. 


