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Background, current situation and relevance of the work 
 

Europe 2020 is the EU's growth ambitious strategy for the coming decade. Each 
Member State has national targets to reach in the climate and energy sector. This calls for in-
depth research and analysis addressing energy and environment sectors. 

Energy consumption of the building sector accounts for nearly half of the total Latvian 
energy end-use consumption. Therefore, energy efficiency actions and integration of 
renewable energy sources in this sector are urgently needed. 
 Energy use for air conditioning of buildings is constantly increasing, even in northern 
countries like Latvia. Reduction of primary energy consumption for cooling should be based 
both on the energy efficiency measures and then on using renewable energy sources. 
However, comprehensive study for selecting energy efficiency improvement measures to 
minimise cooling load and use of renewable energy sources to cover building cooling load are 
missing in Latvia. 

Solar cooling systems are an attractive technology to cover cooling loads. However, in 
Latvia these systems are not known and generally not considered feasible.  The operation of 
solar cooling system under Latvian climatic conditions has not been sufficiently assessed and 
evaluated in depth. 

The accurate determination of building cooling load is an important factor for 
selecting the most suitable type and capacity of solar cooling system. First of all it is essential 
to evaluate and model the fluctuations of cooling load in building, which include non-
stationary heat exchange processes; then to select a proper solar cooling system, which is 
technically and economically feasible with a minimal impact on the environment. 

 
 

Aim and objectives of the work 
 

The aim of this thesis has been the development of a method for: (I) the determination 
of time-varying cooling load in buildings and (II) the sizing of solar cooling system and the 
evaluation of system performance to cover building cooling load under Latvian climate 
conditions. 
The following tasks have been set in order to achieve the defined aim: 

1. Development and validation of a building dynamic model for accurate determination 
of cooling load. The model is named “CooL”. 

2. Analysis of the impact of energy efficiency measures on the cooling load. This 
analysis has been verified on a real case study with the aim to minimise building 
cooling load and cooling load duration curve. 

3. Experimental analysis on solar collectors installed with reflectors with aim to increase 
performance and energy output in Latvian climate conditions. 

4. Parameter identification of solar cooling system to cover building cooling load and 
development of a simulation model for a solar cooling system under Latvian climate 
conditions in the transient system simulation tool TRNSYS. 
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5. Analysis of the energy performance and assessment of economic and environmental 
impact of the simulated solar cooling system under Latvian climate and boundaries 
conditions. 

 
 

Methodology of the research 
 

The research methodology is based on system dynamic simulation and experimental 
analysis. 

For the determination of building cooling load and its fluctuation the author has 
developed a calculation model named “CooL”. With this model the analysis of the impact of 
energy efficiency measures on the cooling load was carried out.  

For covering cooling load with solar energy driven system, an experimental analysis 
on vacuum tube solar collectors installed with reflectors was conducted. Statistical time-series 
processing techniques were used for processing experimental data. 

Then, solar thermal energy driven absorption cooling unit was simulated in TRNSYS, 
which is a flexible software environment used to simulate the behavior of transient systems, 
for parameter identification to cover building cooling load.  

The environmental and economic aspects were evaluated based on the simulation 
results for Latvian climate and boundary conditions. 
 
 

Scientific significance 
 

The main scientific significance of this thesis is the comprehensive study on use of 
solar thermal energy in cooling of buildings for Latvian climate and boundary conditions. It 
includes development of a calculation model, analysis of energy efficiency measures on 
cooling load and simulation of solar cooling system. Based on these analyses, environmental 
impact and economic aspects are evaluated.  

 
 

Practical significance 
 

This work has a high practical significance. There is a broad target audience for the 
developed work, while the application of the work depends on the objectives of the user. 

The study can be used by: 
• State institutions: The Ministry of Environmental Protection and Regional 

Development and The Ministry of Economics – the results from this thesis are 
useful for the development of action plans and design of support schemes 
addressing energy efficiency and renewable energy. 

• The commercial sector: consultant, design companies, investors and private 
persons: 

o to plan energy efficiency measures and determine the influence of 
these measures on of cooling loads.  
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o to size and select solar cooling system and to evaluate the 
implementation and maintenance of such a system, including technical 
barriers and environmental and economic analysis. 

 
 

Approbation 
 

The results of the thesis have been reported and discussed in: 
1. The 51st International RTU Scientific Conference with the paper “Small Scale Solar 

Cooling Unit in Climate Conditions of Latvia: Environmental and Economical 
Aspects” in Riga, Latvia, 12-13 October, 2010. 

2. The 50th International RTU Scientific Conference with the paper “Influence of 
Thermo-dynamic Properties and Thermal Inertia of the Building Envelope on Building 
Cooling Load” in Riga, Latvia, 14-16 October, 2009. 

3. The 3rd International Conference “Solar Air-Conditioning” with the paper 
“Applications of Solar Cooling Technologies in Buildings in Latvian (North-eastern 
Europe) Climate Conditions” in Palermo, Italy, 30 September – 2 October, 2009. 

4. The International Scientific Conference  “CISBAT 2009 Renewables in Changing 
Climate – From Nano to Urban Scale” with the paper  “Integration of Renewables to 
Cover Cooling Load of Building. Feasibility and Application” in Lausanne, 
Switzerland, 2-3 September, 2009. 

5. The Regional Conference “Environment and Energy in Vidzeme region” with the 
paper “Estimate of renewable energy resources use in Latvia up to 2020” in Valmiera, 
Latvia, 15th of May, 2009. 

6. The 49th International RTU Scientific Conference with the paper  “Development and 
Verification of Method for Building Cooling Load Calculation for Latvian Climate 
Conditions” in Riga, Latvia, 11-13 October, 2008. 

7. The 11th International Conference  “Solar Energy at High Latitudes” with the paper 
”Trigeneration Heat, Power and Cooling” in Riga, Latvia, 30 May – 1 June, 2007.  

8. The 48th International RTU Scientific Conference with the paper “Analysis of 
Trigeneration Heat, Power and Cooling Loads” in Riga, Latvia, 11-13 October, 2007. 

9. International Scientific Conference “Pulp and Paper Industry Of Russia – Future 
View” with the paper “Simulation Model and Control Algorithm of Solar 
Combisystem”, in St. Petersburg, Russia, 26 October, 2006. 

10. The 47th International RTU Scientific Conference with the paper “Development of 
Solar Combisystem Control Algorithm and Simulation Model” in Riga, Latvia, 12-14 
October, 2006. 
 
 

Publications 
 

1. Jaunzems D., Veidenbergs I., Žandeckis A., Rochas C. The use of reflectors for 
increasing the energy performance of solar thermal collector in Latvian climate 
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conditions// Latvian Journal of Physics and Technical Sciences. – Riga: 2011. Vol. 5. 
– 7 p. 

2. Jaunzems D., Veidenbergs I. Small Scale Solar Cooling Unit in Climate Conditions of 
Latvia: Environmental and Economical Aspects// 51th International Scientific 
Conference on Environmental and Climate Technologies. – Riga: RTU, 2010. – pp. 
47–53. 

3. Jaunzems D., Veidenbergs I. Influence of Thermo-dynamic Properties and Thermal 
Inertia of the Building Envelope on Building Cooling Load// 50th International 
Scientific Conference on Environmental and Climate Technologies. – Riga: Scientific 
Journal of Riga Technical University, 2009. – pp. 63–70. 

4. Jaunzems D., Veidenbergs I. Applications of Solar Cooling Technologies in Buildings 
in Latvian (North-eastern Europe) Climate Conditions// 3nd International Conference 
on Solar Air-Conditioning. – Palermo: Book of Proceedings, 2009. – pp. 447–454.  

5. Jaunzems D., Veidenbergs I. Integration of Renewables to Cover Cooling Load of 
Building. Feasibility and Application// International Scientific Conference CISBAT 
2009 Renewables in Changing Climate – From Nano to Urban Scale. – Lausanne: 
Book of Abstracts, 2009. – p. 109.  

6. Jaunzems D., Veidenbergs I. Development and Verification of Method for Building 
Cooling Load Calculation for Latvian Climate Conditions// 50th International 
Scientific Conference Environmental and Climate Technologies. – Riga: RTU, 2008. 
– pp. 120–127. 

7. Joo S., Stoia V., Baeva D., Georgallis P., Jaunzems D. Development of Cost and 
Market Potential for Solar Panels Under Consideration of Learning Curve Effect// 
Summer Course “Energy&Environment” – Dresden: DUT, 2008. – pp. 9–22. 

8. Torio H., Jaunzems D. How is the Thermal Stratification of Solar Heating Systems 
Influenced by Thermal Stratification in the Tanks// SolNet Ph.D. course: Thermal 
stratification in solar storage tanks. – Copenhagen: Department of Civil Engineering, 
2007. – pp. 2–11. 

9. Jaunzems D., Veidenbergs I. Analysis of Trigeneration Heat, Power and Cooling 
Loads// The 48th International Scientific Conference on Power and Electrical 
Engineering. – Riga: RTU, 2007. – pp. 98–103.  

10. Jaunzems D., Veidenbergs I. Trigeneration Heat, Power and Cooling// 11th 
International Conference on Solar Energy at High Latitudes. – Riga: RTU, 2007. – p. 
70. 

11. Jaunzems D., Rochas C. Simulation Model and Control Algorithm of Solar 
Combisystem// International Scientific Conference “Pulp and Paper Industry Of 
Russia – Future View” – St. Petersburg: St. Petersburg State Technical University 
VPO RP, 2006. – p. 128–132. 

12. Jaunzems D., Rochas C. Development of Solar Combisystem Control Algorithm and 
Simulation Model// 47th International Scientific Conference Power and Electrical 
Engineering. – Riga: RTU, 2006. – pp. 133–144. 
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Thesis outline  
 

The doctoral thesis is written in the Latvian language and consists of an introduction, 
five chapters, conclusions, two annexes and a bibliography. It contains 149 pages, 67 figures, 
21 tables and a bibliography containing 97 literature sources. The summary does not include 
literature review. 

 
 

1. Building dynamic cooling load calculation model  
 

An accurate building cooling load and cooling energy consumption forecast is 
essential for choosing a building cooling system and optimal operation parameters. It is 
necessary to apply a dynamic calculation model to simulate building cooling load which takes 
into account all non-stationary heat exchange processes that occur simultaneously. 

A calculation model “CooL” has been developed in this chapter. The model is largely 
based on the Standard ISO EN 15255:2007 “Thermal performance of buildings - Sensible 
room cooling load calculation - General criteria and validation procedures” and the 
methodology for building cooling load calculation described in the Standard. The 
methodology allows determination of: 

1) Building hourly cooling load;  
2) Building indoor temperature fluctuation profile. 
 
The dynamic cooling load calculation model is supplemented by author with various 

options for processing and analysing the results and allows for the simulation of:  
a) The geometrical, optical, stationary, and dynamic parameters of the building envelope 

and the influence of various energy efficiency measures on the building cooling load;  
b) The influence of the building’s indoor microclimate fluctuations on the building 

cooling load;  
c) The influence of changes in tenants’ behaviour and habits on the building cooling 

load. 
 

Developed calculation model network is based on resistance and capacitance pattern. 
The network nodes of the building’s dynamic calculation model “CooL” and developed 
networks are shown in the figure 1.1.  
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Fig. 1.1. Network nodes of the building dynamic cooling load calculation model “CooL” 

 
The symbols shown in figure 1.1.: 

a) ������� – temperature of the air supplied to the ventilation system, °C; 

b) ���	 – ambient air temperature, °C; 
c) �
 – building indoor temperature, °C; 
d) �� – temperature of the building envelope thermal mass, °C; 
e) �� – building envelope surface temperature, °C; 
f) ���� – ventilation produced heat loss factor, W/K; 
g) ��
��� – lightweight transparent and non-transparent building construction  heat 

loss factor, W/K; 
h) ����� – heat loss factor between ambient air and heavyweight building 

envelope, W/K; 
i) ��� – heat loss factor between heavyweight building envelope and inner 

surface of the building envelope, W/K; 
j) �� – heavyweight building envelope heat loss factor, W/K; 
k) �
� – heat loss factor between inner surface of the building envelope and 

indoor air, W/K; 
l) �� – thermal mass factor of the building envelope, J/K; 
m) �� – building mass area equivalent, m2; 
n) ���
�� – total heat flow from inner heat sources of the building, W; 

o) ���� – total heat flow in the building from solar radiance, W; 
p) �
 – heat flow in interior temperature network node �
, W; 
q) �� – heat flow in surface temperature network node �� , W; 
r) �� – heat flow in building envelope thermal mass temperature network node ��, W; 
s) �� – building cooling load, kW. 
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1.1. Validation procedure 
 

Validation procedures were based on the Standard ISO EN 15255:2007 “Thermal 
performance of buildings - Sensible room cooling load calculation - General criteria and 
validation procedures”. 

Results of validation shows that the deviation of the result from building cooling load 
calculation model „CooL” varies ±5% and precision complies with A-level since average 
relative building cooling load ��� = 0,042. This means that the developed calculation model 
can be practically applied. The results of the validation are summarized in table 1.1 
 

Table 1.1.  
The results of the building dynamic calculation model validation 

 
Test 
nr. 

Reference building cooling load ��,�� , W 
Modelled building cooling 

load ��, W 
Relative building cooling 

load ��� 
1. 1683 1755 0,041 
2. 1431 1435 0,003 
… … … … 
15. 1967 2005 0,019 
16. 2218 2270 0,023 

Average relative building cooling load ��� 0,042 

 
 

2. Research on building cooling load fluctuations  
 

Developed calculation model “CooL” has been approbated on the research target 
building in this chapter. It includes an analysis of the influence of energy efficiency measures 
on the building cooling load and cooling load duration. 

 
2.1. Research target building 

 
The research target building is a typical three-storey building in Latvia with a 

relatively small proportion of transparent building envelope (~11%) and simple architecture. 
It is an office building with a ceiling height of 3 meters. The total usable floor area is ~ 772 
m2, where the cooling load is required only for 524 m2. The amount of air in the building is 
equal to 1262 m3/h, and the air exchange rate is 0.545 h-1. 

The walls are made of silicate and clay bricks and mortar, cement and lime plastering. 
The floor and cellar ceiling are made of concrete panels and a sand and slag mixture. The 
building has not been insulated. 

Average building heat gain is 6 W/m2. The building’s internal heat gains consist of:  
a) Heat gained from lighting: 720 W; 
b) Heat gained from electronics and electrical appliances: 1532 W; 
c) Heat gained from humans (metabolism): 900 W; 
d) Heat gained from hot water circuit: 10 W. 
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3. Experimental study of the solar collector  
 

An experimental study of the solar thermal system was performed from August 13th, 
2010 to September 17th, 2010. The following parameters were measured and defined in the 
experiment:  

1) Intensity of solar radiation 2!��, W/m2; 
2) Ambient air temperature 3��	, °C; 
3) Return temperature of the solar collector heat carrier 3!��,
�, °C; 
4) Supply temperature of the solar collector heat carrier 3!��,���, °C; 
5) Heat capacity of the solar collector �!��, kW; 
6) Produced heat energy �!��, kWh; 
7) Heat medium flow 4!��, m3/h; 
8) Volume of the heat carrier 5!��, m3; 
9) Operational life of the solar collector �!��, h. 

 
The experimental study of the solar collector was performed in two modes:  

a) Without reflectors;  
b) With reflectors.  

 
The solar heat system operational parameters were defined for each of the modes, thus 

allowing a comparison of energy performance in both modes. The system for the vacuum tube 
collector experimental study is shown in figure 3.1.  

 

 
 

Fig. 3.1. Experimental study system for vacuum tube solar collector 
 

The solar thermal system consists of a vacuum tube solar collector, control unit, 
measurement devices, circulation pump, expansion vessel, circulation pump measurement 
device, pipe circuit, security, counter-pressure, flooding valve and dearerator.  

The vacuum tube solar collector was oriented precisely to the South at an angle of 39° 
against horizontal. The solar collector system was installed in the village of Rāmuļi, Vaive 
Municipality, Cēsu Region, Latvia (GPS coordinates: 57.21155N, 25.414953E).  

The vacuum tube solar collector energy efficiency parameters are shown in table 3.1.  
Table 3.1. 
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Parameters of vacuum tube solar collector 
 

Optical coefficient of performance of vacuum tube solar collector η0 = 0,717 
Heat transfer coefficient a1 = 1,52 W/(m2K) 
Temperature-dependant heat transfer coefficient a2 = 0,0085 W/(m2K2) 

 
A water and propylene glycol mixture in the ratio of 3 to 1 is used as a heat medium. 

The pump is used for circulating the heat medium liquid. The control unit is connected to the 
supply and ambient temperature sensors and regulates the operation of the circulation pump. 
A diagram of the vacuum tube solar collector experimental study prototype is shown in figure 
3.2.  

 

 
Fig. 3.2. Diagram of vacuum tube solar collector experimental study system 

 
The following equipment and measurement tools were used to perform the 

experimental research:  
1) Pyranometer; 
2) Temperature sensors; 
3) Heat meter with flow sensor and meter; 
4) Circulation pump; 
5) Expansion vessel; 
6) Security valve; 
7) Dearerator; 
8) Flooding valve; 
9) Solar collector circuit circulation pump control unit.  
 

Uncertainty analysis of the solar collector capacity measurements showed that in order 
to reduce solar collector capacity measurement uncertainty, it is important to pay attention to 
the definition of solar radiation. As analysis of the uncertainty balance shows that solar 
radiation measurements contribute the largest input (75.5–99.96 %) to total uncertainty. 
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3.1. Analysis of the influence of reflectors on solar collector performance  
 
Reflectors increase the intensity of solar radiation falling on the solar collector, thus 

improving the energy efficiency of the existing solar collector. Considering Latvian climatic 
conditions and operational aspects of the solar cooling system, optimal use of reflectors can 
improve the energy performance of the solar collector and improve economic performance.  

 

 
 

Fig. 3.3. Diagram of vacuum tube solar collector with reflectors and reflectors’ location 
 
Figure 3.3 shows a diagram of a vacuum tube solar collector with reflectors. The 

optimal reflector angle to the horizontal is assumed to be 25° according to literature data. 
Accordingly, the geometrical sizes of the reflectors were determined in accordance with the 
angles to the horizon of both reflectors and the collector and based on the geometrical 
parameters of the solar collector.  

Based on an evaluation of the solar collector’s actual performance ratio fluctuation 
(see fig. 3.4), it can be concluded that the solar collector coefficient of performance can be 
improved by using reflectors. A solar collector with reflectors can produce up to 7-10% more 
heat energy per received solar radiation energy unit than a solar collector without reflectors. 
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The three dynamic time series data processing method precision parameters are 
summarized in the table 3.2. 

 
Table 3.2. 

Accuracy measures of processing of dynamic time series data 
 

Precision 
parameter 

Time series decomposition 
method 

Time series data moving average 
method 

Exponential smoothing 
method 

Multiplicative 
model 

Additive 
model 

With centring Without centring  Single-stage Double-stage 

MAPE 226.57 204.46 318.25 210 177.33 185.01 
MAN 47.0 34.07 34.3 23.73 18.94 20.48 
MSD 7200.20 4027.04 5563.28 2894.45 3081.74 3407.26 

 
The single-stage exponential smoothing method achieved the most precise parameter 

indicators. This means that this method most accurately describes solar collector heat capacity 
fluctuations. Analysis of real and obtained time series processing data is shown in figure 3.5.  
 

 
Fig. 3.5. Analyses of the measured and simulated data of solar collector heat capacity 

 
Based on analysis of the three time series data processing methods that were 

performed, the single-stage exponential adjustment method and its relationships can be used 
for describing solar collector heat capacity in Latvian climatic conditions. 

 
�!��,��67) = 8�!��7) + :1 + 8<�!��,��67=> = 

= 8 ?0,532�) + 2,11 ?3��	) − 3!��,
�)2 C + 4,02C + :1 + 8< ∙ 
∙ E�F�� G2�HIJ� − KI L3��	7=> − 3!��,���7=> + 3!��,
�7=>2 M − KN L3��	7=> − 3!��,���7=> + 3!��,
�7=>2 MNOP , :3.1. < 

 
where �!��7)  – solar collector heat capacity in point R of the time series, W; 

8 – smoothing constant; 2�) – solar radiation in point R of the time series, W/m2; 
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3��	)
 – ambient air temperature in point n of the time series, °C; 

3!��,
�) – solar collector inlet temperature in point n of the time series, °C; 3!��,���7=> – solar collector outlet temperature in point & − 1 of the time series, 

°C. 
 
Solar collector heat capacity fluctuations are dependent on ambient temperature, solar 

radiation intensity, solar collector optical and thermophysical parameters (see equation 3.1.). 
Considering the fact that each subsequent simulated collector heating capacity value 

depends on the preceding one, general solar collector capacity fluctuations can be shown as 
following the single-stage exponential smoothing method: 

 �F��,��67) = 8�!��7) + :1 + 8<�!��,��67=) ,                  :3.2. <              
 
where R – point of the time series; �!��,��67=) – simulated solar collector heat capacity in l-n point of the time 

series, W/m2. 
 

The obtained empirical relationships (3.1) and (3.2) can be used to define the solar 
collector’s heating capacity and component parameters for Latvian climatic conditions 
depending on solar intensity, ambient temperature and the solar collector’s optical and 
thermophysical parameters. 

 
 

4. Simulation of a solar cooling system  
 

Simulations of solar cooling system for research target building in Latvian climate 
conditions have done in this chapter.  

Simulation of the solar cooling system is based on the selected research target 
building, where maximum cooling load �!,��" is 17.8 kWc, cooling load duration �! is 692 

h/year and specific building cooling energy consumption ��,! is 6.97 kWhc/m
2 per year where 

the defined indoor temperature of the building ��� equals 24 °C. Figure 4.1 shows a diagram 
of the solar cooling system. 
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Fig. 4.1. Diagram of simulated solar cooling system  

 
Based on the literature review, in order to cover the cooling load of the building an 

absorption type cooling system available in the market with nominal cooling load of 20 kWc 
was selected. Solar collector array was planned to cover 80% of total heat consumption of 
heat driven absorption cooling unit. 

 
4.1. Solar cooling system model in TRNSYS 

 
The TRNSYS simulation program was used to simulate the solar cooling system and 

evaluate its operation. This simulation program has a modular structure which makes it 
possible to divide the existing system into mutually connected components (solar collector, 
cooling unit, etc.). Each component is simulated separately using mathematical relations 
available in the TRNSYS data base or which can be developed using different data processing 
programs or programming languages e.g. MS Excel, Matlab or C++. 
 

 
Fig. 4.2. Diagram of simulated solar cooling system in the environment of TRNSYS 

simulation program 
 
Solar collector have simulated with component Type71. Heat driven absorption 

cooling unit have simulated with Type 107. Building model has been integrated as outsource 
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2. The dynamic cooling load calculation model “CooL” has been developed and 

validated for Latvian climate conditions. The impact of various energy efficiency 
measures and parameter fluctuations on the building cooling load, building cooling 
load duration and indoor temperature have been simulated for the research target 
building for defined indoor temperature. 

3. Analysis of the simulation results for the impact of building cooling load, building 
cooling load duration and indoor temperature fluctuations prove that:  

o Increases in indoor heat gain are not linear. If the heat gain value exceeds 10 
W/m2 under unchangeable building envelope parameters, a rapid building 
cooling load increase is observed, since heat gain becomes a dominant source 
of the building cooling load. At heat gain below 10 W/m2 building cooling 
load is mainly influenced by the ambient temperature and solar radiation;  

o An increase of the building envelope heat transfer ratio at unchangeable heat 
gain leads to a non-linear reduction of the specific building cooling load 
consumption and insignificantly influences building cooling load duration, 
since a more intensive natural cooling of the building occurs; when thermal 
resistance of the building envelope decreases, heat exchange between the 
building’s indoor rooms and the ambient environment increases;  

o An increase in the proportion of the building envelope transparent area 
decreases the thermal mass of the building and results in an increase of the 
building cooling load.  If the glazed surface area exceeds 60% of the total area, 
higher indoor temperature fluctuations occur since heat energy accumulation in 
the building envelope decreases;  

o If building insulation is installed, building cooling energy consumption 
increases non-linearly with constant heat gain. The increase depends on the 
thickness of the insulation layer. The building cooling load duration decreases. 
This happens because of reduced heat exchange between the building’s indoor 
premises and the ambient environment;  

o When the thickness of the building wall increases, the building’s thermal mass 
also increases while temperature fluctuations in the building indoor premises 
decrease under constant heat gain, all of which has a positive impact on the 
building’s microclimate. At the same time, significant thickness of the heat 
insulation (more than 0.1–0.15 m) under constant heat gain leads to increased 
indoor temperature fluctuations for the building since the heat gain created by 
heat flow from the building’s indoor premises to the environment is reduced.  
 

4. An experimental study using a vacuum tube solar collector was performed in order to 
define its heating capacity depending on the ambient air, supply and return 
temperatures of the heat medium and solar radiation intensity. The experimental data 
is described by trends, repeating patterns, seasonality, and random components. For 
this reason the data was processed using time-series methods. The obtained empirical 
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relationship can be used to evaluate solar collector installed with reflectors operations 
in Latvian climatic conditions. 

5. A study was conducted on building cooling load coverage with solar thermal energy 
driven absorption-type cooling equipment. A solar cooling system study using a 
simulation program TRNSYS integrating the calculation model “CooL” as an external 
data source was conducted. The results of the simulation analysis showed that solar 
heat energy can cover a significant part of the heat energy needed for the cooling 
equipment from the technical and energy aspects. A solar cooling system for the target 
building with a total collector area of 45 m2 and installed cooling equipment capacity 
of 20 kWc can cover up to 80% of the total heat energy requirements for the cooling 
equipment. 

6. Simulation of the flat solar collector and vacuum tube solar collector was performed 
TRNSYS program in order to provide the heat energy temperature level required for 
the cooling equipment in Latvian climatic conditions. Vacuum tube solar collectors 
can be used for the high temperature mode of the heat carrier (>70 °C), since lower 
heat losses are possible from the solar collector into the ambient environment and its 
stagnation temperature limit is higher (190–260 °C). Moreover, a smaller vacuum 
solar collector area is needed than with flat solar collectors.  

7. Analysis of solar cooling system environmental aspects shows that in comparison with 
electrical energy operated compression-type cooling equipment, 10 to 35% of annual 
CO2 emission output can be reduced depending on the cooling energy consumption of 
the respective building.  

8. Analysis of solar cooling system economic aspects shows that under existing market 
prices for solar collectors and thermally operated cooling equipment, electricity tariffs 
and CO2 trading prices, initial investments and operating costs are now lower than for 
traditional, compression-type cooling equipment used for  building cooling supply 
systems. Moreover, rapid reductions in prices for solar energy technologies, increasing 
electricity tariffs and increases in CO2 trading prices must also be taken into 
consideration. 

9. Due to sharp decrease in market prices for solar energy technologies, constant 
increases in electricity tariffs and CO2 trading prices, fluctuations in macroeconomic 
indicators and progress in scientific research in this field, it is expected that solar 
cooling systems will become economically feasible and will promote use of renewable 
energy sources, thus helping to achieve the set objectives in the energy sector.  


