
RIGA TECHNICAL UNIVERSITY

Gatis VALTERS

FPGA IMPLEMENTATION OF PARAMETRICAL
ORTHOGONAL TRANSFORM-BASED

EXPERIMENTAL DSP DEVICES

Thesis synopsis

Riga 2011

RIGA TECHNICAL UNIVERSITY
Faculty of Electronics and Telecomunications

Institute of Radio Electronics

Gatis VALTERS
Student of the Doctoral study program ”Radioelectronics”

FPGA IMPLEMENTATION OF PARAMETRICAL
ORTHOGONAL TRANSFORM-BASED

EXPERIMENTAL DSP DEVICES

Thesis synopsis

Academic supervisor
Dr. sc. ing., professor

P. MISĀNS

Riga 2011

UDK 621.391:517.44(043)
Va 434 p

Valters. G. FPGA Implementation of Parametrical
Orthogonal Transform-based experimental DSP
devices. Thesis synopsis. -R:RTU, 2011, -96 lpp.

Printed according to decision of Department of
Fundamentals of Electronics, protocol No 1 of 7
September 2011.

This work has been supported by the European Social Fund within the project ”Sup-
port for the implementation of doctoral studies at Riga Technical University”.

ISBN 978-9934-10-262-2

DOCTORAL THESIS
FOR PROMOTION TO THE DOCTOR’S DEGREE IN

ENGINEERING AT THE RIGA TECHNICAL UNIVERSITY

The public defense of the doctoral thesis for promotion to the doctor’s degree in engi-
neering will take place on 12 of January, 2012, at 15:45 in Room 210, Faculty of Electronics
and Telecommunications, Azenes 12.

OFFICIAL REVIEWERS

Professor, Dr.sc.ing. Guntars Balodis
Faculty of Electronics and Telecommunications, Riga Technical University

Professor, Ph.D., Dipl.Eng. Peeter Ellervee
Tallin University of Technology, Department of Computer Engineering

Dr.sc.comp. Eugene Boole
Institute of Electronics and Computer Science, Senior Researcher

CONFIRMATION

I confirm that this doctoral thesis, submitted for a degree in engineering at the Riga
Technical University, is my own work. The doctoral thesis has not been submitted for a
degree in any other university.

Gatis Valters . (Signature)

Date: .

The doctoral thesis is presented as a thesis by publication.

3

Contents

Abbreviations . 8
Nomenclature . 10
The Form of the Doctoral Thesis . 11
Significance of the Subject Matter . 11
Objectives . 13
Methods of Study . 13
Scientific Novelty and Main Results . 13
Defendable Theses . 14
Practical Significance of Research . 15
Approbation . 15
Thesis Contents . 19

Introduction 20

1 Complex Parametrical Orthogonal Transforms 21
1.1 Orthogonal, orthonormal and unitary transforms 21
1.2 Rotation-angle-based unitary transforms . 21

1.2.1 Elementary generalized unitary rotation matrix 21
1.2.2 Full unitary matrix . 24
1.2.3 Haar-like complex orthogonal transforms 28
Summary . 32

2 Implementation Architectures for Orthogonal Transforms 34
2.1 Parallel structure of transform implementation 34
2.2 Serial structure of transform implementation 34

2.2.1 CRAIMOT BF generator [P1], [P4] 34
2.2.2 CRAIMOT spectrum analyzer [P2] 38
Summary on papers [P1], [P2], [P4] . 39

2.3 Tree-like structure of signal decomposition/reconstruction system 39
2.3.1 Signal decomposition [P10],[P11] . 40
2.3.2 Signal reconstruction . 45
Summary . 45

2.4 Signal decomposition using complex FIR filters 46
2.4.1 2.4.1. Transfer functions of complex filters 46
2.4.2 Cascading of complex orthogonal filters 49
Summary . 52

4

3 FPGA Implementation of the Phi-Transform Algorithms 53
3.1 Floating- and fixed-point arithmetic . 53
3.2 FPGA implementation of DSP elements . 53

3.2.1 Multiplier with variable output wordlengths (WL) 53
3.2.2 Serial-to-parallel and parallel-to-serial converters 54
Summary . 56

3.3 Implementation of the generalized Jacobi rotator 56
3.3.1 Traditional implementation using multipliers and adders [P9]-[P12] . 56
3.3.2 Implementation using CORDIC algorithm 58
Summary on papers [P5], [P6], [P9]-[P12] 60

3.4 Simplifications of the elementary generalized complex rotation matrix . . . 61
Summary on papers [P9], [P11] un [P12] . 62

3.5 Fixed-point error . 63
Summary . 65

3.6 Automation of implementation of EGU -rotator [P11], [P12] 66
3.6.1 Design automation steps . 67
3.6.2 Automation tools . 69
Summary on papers [P11] un [P12] . 72

4 Experimental Devices 74
4.1 FPGA implementation of experimental CRAIMOT function generator . . 74

Summary on papers [P2] and [P5] . 76
4.2 FPGA implementation of experimental signal spectrum analyzer 78

4.2.1 Signal spectrum analyzer with serial architecture [P2] 78
4.2.2 RE-based signal spectrum analyzer-synthesizer [P5] 79
Summary . 79

4.3 Signal analyzer-synthesizer . 80
Summary . 81

4.4 Haar-Like filters . 82
Summary on papers [P3], [P6] and [P8] . 85

4.5 The prototype-simulator of data transmission system based on the general-
ized orthogonal nonsinusoidal division multiplexing 86
Summary on papers [P10] . 88

Conclusion 90

References 92

5

List of Figures

1.1 Decomposition of two signal samples . 24
1.2 CCRAIMOT basis functions, N = 8, ϕ = [60◦, 60◦, 60◦], ψ = [60◦,−60◦,−60◦],

γ = [60◦, 60◦,−60◦] . 27
1.3 Graphical depiction of permutation matrices for Haar-like transforms (N = 8) 30
1.4 CRA-HT basis functions, N = 8, ϕ = [30◦, 30◦, 30◦], ψ = [−30◦, 30◦,−30◦],

γ = [−30◦, 30◦,−30◦] . 30
1.5 Trace of BFs vector end projections on the spread of surface of one of the

unit sphere 3-D projections [P5] . 32
2.1 Simplified block diagram of the CRAIMOT BF generator [P1] 36
2.2 Simplified block diagram of the CRAIMOT signal synthesizer 37
2.3 Optimized linear interpolation of sine for ∆max ≈ 0.004 [P4] 38
2.4 Simplified block diagram of the CRAIMOT spectrum analyzer [P2] 39
2.5 CCRAIMOT DE (for N=4) simplified block diagram [P11] 40
2.6 Simplified timing diagram [P11] . 40
2.7 Decomposition tree structure and addressing example N = 8 [P11] 41
2.8 First stage of decomposition of 4-sample signal 41
2.9 Decomposition of 4-sample signal . 43
2.10 Graphical depiction of permutation matrices matrices (N = 8) 43
2.11 Simplified block diagram of CCRAIMOT reconstruction, N = 4 45
2.12 Magnitude- and Phase-frequency response curves of the approximation and

detail filters (Decompozition), ϕ = π
4 , ψ = π

3 , γ = π
4 47

2.13 Magnitude- and Phase-frequency response curves of the approximation and
detail filters (Reconstruction), ϕ = π

4 , ψ = π
3 , γ = π

4 48
2.14 De–Re filters . 48
2.15 Magnitude response curves of the approximation and detail filters (Decomposition),

taken partly ((a)) from [P3], [P6] un [P8]) 49
2.16 Simplified Simulink model of complex FIR filter 49
2.17 The RA-HT DeRe filter block diagram in Simulink [P3] 50
2.18 Simulink model for obtaining the complex matrix TU (ϕ, ψ, γ, 424) (filter

coefficients) . 50
2.19 Simulink model of the cascading of decomposition stages, using two FIR

filters . 51
2.20 Simulink timing diagrams of input signal decomposition, [ϕ = π

4 , ψ = π
3 , γ =

π
6] . 51

2.21 Simulink model of signal reconstruction . 52
3.1 RTL description of multipliers using bit truncation, generated by HDL Coder 54
3.2 Serial-to-parallel converter (Simulink block diagram) 54
3.3 Timing diagram of the serial-to-parallel converter 55

6

3.4 Parallel-to-serial converter (Simulink block diagram) 55
3.5 Timing diagram of the parallel-to-serial converter 55
3.6 RTL description of the Jacobi rotator (no bit truncation) 57
3.7 RTL description of the YRe component calculation, using fix rounding (win =

8, wmult = 12, wout = 8) . 58
3.8 Simplified block diagram of serial EGURM -rotator for (ϕ, ψ = π

2 , γ = 0,
ID=424) [P9] . 62

3.9 Fixed-point errors for a 250-samples long noise-like signal 63
3.10 Distribution of FPA errors (win = 8, wmult = 8, wout = 8, floor rounding) . 64
3.11 Fixed-point MSE, for different WL (floor rounding) 65
3.12 Simplified design automation flow chart [P12] 67
3.13 Rotation Matrix Viewer Graphical User Intarface GUI [P12] 69
3.14 Spectrum Expressions GUI [P12] . 70
3.15 Simulink model for EGU -rotator VHDL code generation [P12] 71
3.16 HDLcoderGUI Graphical User Interface . 71
4.1 CRAIMOT BF generator implemented using Quartus II 6.0 graphical

environment . 74
4.2 Simulation timing diagram for CRAIMOT BF generator (from Quartus

II 6.0) [P1] . 75
4.3 Shapes of ideal BF and experimental BF for p = 6 and N = 16 (the shape

of captured BF is shifted up slightly for better comparison) [P1] 75
4.4 Simplified block diagram of CRAIMOT BF generator with parallel archi-

tecture [P4] . 76
4.5 LCD snapshots [P2] . 78
4.6 Simplified block diagram of the RA-HT spectrum analyzer [P5] 79
4.7 Example of speech signal compression . 81
4.8 Extraction of single 2nd CRA-HT BF from noise (SIMULINK diagram)

[P3] . 83
4.9 Extraction of single CRA-HT BF from additive noise [P3] 83
4.10 Filtering of sine wave corrupted by pulse [P6] 84
4.11 Simplified test scheme of digital part of CCRAIMOT GONDM [P10] . . . 87
4.12 Simplified block diagram of GONDM data transmission system [P10] 87
4.13 Comparison of BER performances for different transforms and AWGN chan-

nel [P10] . 88

7

Abbreviations

Abbreviation Full phrase

FIR Finite Impulse Respone
IIR Infinite Impulse Response
RMS Root Mean Square
MSE Mean square error
HDL Hardware description language
VHDL Very high speed integrated circuits Hardware

Description Language
FPA Fixed Point Arithmetic
DSP Digital Signal Processing
LUT Look Up Table
ALUT Adaptive Look Up Table
CORDIC COordinate Rotation DIgital Computer
RTL Register Transfer Level
TPD Time Propagation Delay
SMT Symbolic Math Toolbox
ASCII American Standard Code for Information In-

terchange
BF Basis Function
ADC Analog-Digital Converter
DAC Digital-Analog Converter
UC Up Converter
DC Down Converter
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
IEEE Institute of Electrical and Electronics Engineers
OFDM Orthogonal Frequency-Division Multiplexing
EGURM Elementary Generalized Unitary Rotation Ma-

trix
LE Logic Element
FPGA Field Programmable Gate Array
FT Fast Transform
FFT Fast Fourier Transform
IFFT Inverse Fast Fourier Transform
DCT Discrete Cosine Transform
AWGN Additive White Gaussian Noise
FFC Flat Fading Channel

8

FSFC Frequency Selective Fading Channel
GONDM Generalized Orthogonal Nonsinusoidal Division

Multiplexing
M Multipliers
A Adders
MC Multiplications by constant
SOPC System On a Programmable Chip
EGURIT Elementary Generalized Unitary Rotation Im-

plementation Tool
UNITIT UNItary Transform Implementation Tool
SANSYN Spectrum ANalyzer-SYNthesizer

9

Nomenclature

Nomenclature Explanation

Φk Parameters collection (ϕk, ψk, γk)

Φ Parameters matrix
Φp Parameters matrix p−th column
ΦH Haar-like transform parameters ma-

trix
TU Generalized Jacobi rotation matrix
Bb Sparse factorized block-like rotation

matrix
Bs Sparse factorized stair-like rotation

matrix
P Permutation matrix
0 Zeros matrix
I Identity matrix
H Orthogonal transform matrix
Φ Orthogonal transform matrix (in older

papers)
HH Haar-like transform matrix
(...)−1 Hermitian matrix
X,Y Input and output signal vectors
δp,k Kronecker symbol
c cos(ϕ)
s sin(ϕ)
N Size of Transform matrix (N = 2n)
n Number of factorized matrices (n =

log2(N))
(...) Complex conjugate
H(z),H(ω) Filters transfer function
ω angular frequency
ϵRMS Root mean square error
v̂ Signal vector with fixed point error
Fs Sampling frequency
Ts Sample time
w FPA word length
Lo Approximation filter
Hi Detalization filter

10

The Form of the Doctoral Thesis

The doctoral thesis is presented in form of the author’s scientific papers published from
2007 to 2011 and a review on these papers. There are many examples available of doctoral
theses of such a kind (a review of published papers covering a single subject, e.g. [1]). For
that reason it was not easy to choose in which form to submit the work. Firstly, because
of the size – for the review part it varies from 15 to 200 pages, secondly, because no precise
guidelines can be found in regulatory documents (listed in [2]). Therefore the following
form, resembling also a standard doctoral thesis, has been chosen:

• the first part is like an introduction part of standard thesis synopsis

• the description part may be considered either like a shortened form of standard thesis
or an extended body of standard thesis synopsis

• copies of published papers concerning the defendable work are included as appendices

The description part is written so that reader can understand the presented material
without detailed examination of the publications. Most of the figures, tables and formu-
las are from the publications, but there are also additions that have either arisen after
publication time or not been included in papers because of their restricted size.

Significance of the Subject Matter

This doctoral thesis deals with FPGA implementation issues of CRABOT1 (complex
rotation-angle-based, further named also as “angular”) transforms. To avoid bulky desig-
nation, these transforms are named as “phi-transforms” [P8]. As Māris Tērauds stated in
his doctoral thesis [3], “angles as parameters are not a novelty – they are used in Givens
rotation, in SVD2 [4], [5] and EVD3 [6] algorithms.” The mentioned thesis deals with real
angular transforms (RABOT and its subclasses). Lately, as evidenced by the growing
research in complex wavelets [7], research on complex angular transforms is also becom-
ing more active. Over the past few decades, complex rotations (Jacobi rotations) have
been hugely used in SVD and QR-algorithms (in eigenvalue calculations). With the rapid
growth of complexity and performance of ASIC and FPGA circuits in the past decade, it
has become more feasible to implement these algorithms into chips.

For the last six years, at the Faculty of Electronics and Telecommunications, Riga
Technical University, under supervision of Professor P. Misāns theoretical and practical
research is being done, concerning possible applications of angular transforms and, partic-
ularly, the use of these transforms for signal analysis/synthesis, signal compression, filter-
ing, data transmission, image processing [P8]. Although two subclasses (CRAOT4 and

1Constant Rotation Angle Based Orthogonal Transform
2Singular Value Decomposition
3Eigenvalue Decomposition
4Constant Rotation Angle Orthogonal Transform

11

CRAIMOT5) of RABOT transforms has been firstly described by Andrews – named as
generalized Kronecker matrices [13], the RTU team has made a significant contribution in
this field, by developing a methodology for the definition of novel parametrical transforms
and creating various experimental devices, both virtual and FPGA-based. Researched
transforms are parametrical transforms, characterized by several parameters (rotation an-
gles). The parametrical representation of transforms allows to obtain orthogonal basis
functions with an indefinite variety of forms. That, in its turn, extends possibilities of us-
ing digital signal processing in analysis/synthesis, compression, filtering, data transmission
and allows to compete with well-known wavelets transforms [P8].

Historically, besides H.C.Andrews, A.M.Trahtman [9] also may be regarded as the
founder of generalization of unitary transforms. Trahtman extended significantly the range
of transforms used for analysis/synthesis of discrete signals, but he did not emphasize
the use of rotation angles as parameters. Before the introduction of wavelets, the most
significant contribution in generalization of transforms has been made by B.Fino and
R.Algazi [10]. They formulated several rules for synthesis of unitary transforms, but
again, with no emphasis on rotation angles. The first who introduced rotation-angle-
based orthogonal filters is P.P.Vaidyanathan [11], but he did not use rotation angles in
unitary transforms. Among wavelet researchers, definitely, must be mentioned P.Rieder
with colleagues [12], who introduced parameterization of wavelets using rotation angles
and used it in the CORDIC algorithm to implement wavelet filters. Without doubt, the use
of novel transforms for signal analysis/synthesis and filtering opens up new opportunities,
and research in this field is therefore very important. The same applies to the use of
generalized frequency division multiplexing in data transmission systems, probably firstly
introduced in [52].

The complexity and implementation of researched transforms are practically the same
as in the case of fast Fourier transform [9] or wavelets, but the area of potential application
is much more broad. On the one hand, for investigation of these application possibilities,
it is important to diversify research directions (signal analysis/synthesis, signal compres-
sion, filtering, data transmission, image processing, etc. On the other hand, for assessment
of hardware implementation possibilities for phi-transforms, it is important to diversify
implementation of experimental devices. Besides, a deeper research is needed for hard-
ware implementation issues of elementary generalized unitary rotation matrix – the core
of angular transforms. The current development level of microelectronics allows to imple-
ment complex algorithms into hardware much easier than it was, for example, ten years
ago. It considerably facilitates and, as a result, makes important, also the implementation
in FPGA of rotation-angle-based signal processing algorithms. Since latest FPGA chips
contain billions of transistors, automation of implementation of signal processing algo-
rithms becomes more important. FPGA microchips, unlike ASIC, are more attractive in

5Constant Rotation Angle Inside Matrix Orthogonal Transform

12

the sense that they allow to maximally minimize the time for device creation and testing.
Since FPGA families may have different architectures, performance, power consumption
and the number of logic elements, then it is really necessary to estimate these parameters,
depending on the required precision of signal processing.

Objectives

The thesis is a study on the FPGA implementation of the algorithms for RABOT and
CRABOT transforms (phi-transforms). The main goal of work is to deal with the
problems related to a practical implementation of those algorithms and to
conduct an approbation of the algorithms in FPGA. To accomplish this goal the
following basic tasks have been stated:

1. Describe the elementary generalized unitary rotation matrix and its modifications.

2. Investigate and approbate the possibilities to automate the implementation of ele-
mentary generalized unitary rotation in FPGA.

3. Investigate and approbate the suitability of various architectures of rotation-angle-
based basis function generators for implementation in FPGA.

4. Investigate and approbate the suitability of various architectures of rotation-angle-
based spectrum analyzers for implementation in FPGA.

5. Investigate and approbate the possibilities to implement rotation-angle-based para-
metrical orthogonal filters in FPGA.

Methods of Study

The research process can be divided into four characteristic phases: analytical calculations,
numerical calculations, simulation, and practical experiments. At first, analytical methods
are used to prepare algorithms for subsequent implementation. It means manual using of
matrix algebra and well-known properties of matrices, and using MatLab facilities for
symbolic mathematical calculations (analytical calculations and inferences). Prototyping
of algorithms is performed using programming in MatLab and VHDL, building models in
Simulink environment, using numerical calculations and computer simulation withQuartus
II/ModelSim software. Trial implementation of algorithms and testing of device prototypes
are performed using Alteras Quartus II software and development kits.

Scientific Novelty and Main Results

The doctoral thesis studies, for the first time, FPGA implementation issues for rotation-
angle-based fast unitary transforms (CRABOT). The main novelties are related to im-

13

plementation of algorithms for these transforms as experimental FPGA-based devices and
programs:

• For the first time trial versions of parametrical BF generators, parametrical spectrum
analyzers, parametrical orthogonal filters, based on the proposed algorithms and
architectures, have been developed.

• For the first time a prototype in FPGA for the simulator of generalized orthogonal
nonsinusoidal division multiplexing, based on the proposed algorithm and architec-
ture, has been developed.

• For the first time a system for automated synthesis in FPGA of elementary general-
ized unitary rotation element, based on the proposed algorithm, has been developed.

The main results are:

• Definition of elementary generalized unitary rotation matrix.

• System based on MatLab/Simulink/QuartusII/ModelSim for automated synthesis in
FPGA of elementary generalized unitary rotation element.

• Trial versions of parametrical orthogonal filters, that with an FPA precision perform
the extraction/rejection of orthogonal signals.

• Prototype in FPGA for the simulator of generalized orthogonal nonsinusoidal divi-
sion multiplexing. The parametrical CCRAIMOT transform is used.

• Trial versions of parametrical CRAIMOT BF generator.

• Trial versions of parametrical CRAIMOT and RA-HT spectrum analyzers.

Defendable Theses

The following theses are to be defended:

1. The developed system for automated synthesis of elementary generalized unitary
rotation element (rotator), based on the proposed algorithm, essentially simplifies
FPGA-based synthesis process – by decreasing the time required for synthesis and
the consumption of logic elements, and by increasing operation speed.

2. The developed FPGA-based parametrical BF generators, parametrical spectrum an-
alyzers and parametrical orthogonal filters, with serial, parallel and tree-like archi-
tectures, allow to choose most appropriate solutions, depending on operation speed
and consumption of logic elements.

3. The developed original FPGA-based parametrical orthogonal filters allow to perform
the extraction of signals of any form better than, for example, wavelet filters.

14

4. The developed prototype, based on original algorithm and FPGA, for the simula-
tor of generalized orthogonal nonsinusoidal division multiplexing allows to reduce
essentially simulation time of modeled systems, and to prototype frequency division
systems of a new kind – a promising alternative to standard OFDM.

Practical Significance of Research

The practical use is to implement the experimental angle-based devices in real FPGA
devices. Current trial versions of FPGA devices can serve as prototypes for new devices,
based on angle-based algorithms. The practical results include a variety of experimental
devices – BF generators, unique orthogonal filters, data transmission system. The auto-
mated system EGURIT is of especially practical value. It allows to synthesize in FPGA
numerous simplifications (modifications) of elementary generalized unitary rotation ele-
ment, using a rotation matrix specified by a formula. EGURIT is essential part of the
unitary transform implementation system UNITIT, which is currently under development.

Approbation

The main ideas of the research have been presented and discussed at the scientific confer-
ences:

• “The 10th International Conference ELECTRONICS”, Kaunas, Lithuania, May 23-
25, 2006.

• “RTU 48th international scientific conference”, Riga, Latvia, October 11-13, 2007.

• “MIXDES-2007”, Ciechocinek, Poland, June 20-22, 2007.

• ”ECS’07, the 6th Electronic Circuits and Systems Conference”, Bratislava, Slovakia,
September 6-7, 2007.

• ”Norchip 2007”, Aalborg, Denmark, November 19-20, 2007.

• “Norchip 2008”, Tallinn, Estonia, November 17-18, 2008.

• ”Nordic MATLAB User Conference 2008”, Stockholm, Sweden, November 20-21,
2008.

• “Norchip 2009”, Trondheim, Norway, November 16-17, 2009.

• *“The 15th International Conference ELECTRONICS”, Kaunas, Lithuania, May
23-25, 2011.

• *“Norchip 2011”, Lund, Sweden, November 14-15, 2011.

* Accepted for publishing

15

The main ideas have been published in the papers:

[P1] G. Valters, P. Misans, “Initial Version of FPGA-Based CRAIMOT Basis
Functions Generator“, Proceedings of the 14th IEEE International Confer-
ence Mixed Design of Integrated Circuits and Systems MIXDES 2007, The
14th IEEE International Conference Mixed Design of Integrated Circuits and
Systems MIXDES 2007, Poland, Ciechocinek, pp. 632-637, June 21.-23, 2007.

[P2] P. Misans, G. Valters, ”Initial Version of FPGA-Based CRAIMOT Spectrum
Analyzer”, Proceedings of the 6th Electronic Circuits and Systems Confer-
ence ECS’07, The 6th Electronic Circuits and Systems Conference ECS’07,
Slovakia, Bratislava, pp. 159-164, September 6.-7, 2007.

[P3] P. Misans, G. Valters, “Introduction Into The Parametrical Decomposition -
Reconstruction Filters Based On Haar-Like Orthonormal Transforms“, Pro-
ceedings of the 6th International Electronic Circuits and Systems Conference
ECS’07, The 6th International Electronic Circuits and Systems Conference
ECS’07, Slovakia, Bratislava, pp. 107-112, September 6. -7, 2007.

[P4] P. Misans, M. Terauds, G. Valters, U. Derums, N. Vasilevskis, ”FPGA-Based
CRAIMOT Basis Function Generator”, Proceedings of the 25th IEEE Norchip
Conference on CD, The 25th IEEE Norchip Conference, Denmark, Alborg, pp.
1-6, November 19.-20, 2007.

[P5] P. Misans, G. Valters, M. Terauds, A. Aboltins, “Initial Implementation of
Generalized Haar-Like Orthonormal Transforms into FPGA-Based Devices -
Part I: Signal Spectrum Analyzer-Synthesizer Module”, Scientific Journal of
RTU. 7. series., Telekomunikācijas un elektronika. Vol. 8, pp 16-21, 2008.

[P6] P. Misans, G. Valters, M. Terauds, N. Vasilevskis, “Initial Implementation of
Generalized Haar-Like Orthonormal Transforms into FPGA-Based Devices -
Part II: Parametrical Decomposition-Reconstruction Filters”, Scientific Jour-
nal of RTU. 7. series., Telekomunikācijas un elektronika. Vol. 8, pp 12-16,
2008.

[P7] M. Terauds, G. Valters, U. Derums, N. Vasilevskis, P. Misans, “Comparison of
Fixed-Point Arithmetic Errors for the FPGA-Based CRAIMOT Basis Func-
tion Generators“, Proceedings (on flash memory) of the 26th IEEE Norchip
2008 Conference, ISBN 1-4244-2493-1/08 2008 IEEE, The 26th IEEE Norchip
2008 Conference, Estonia, Tallin, pp. 1-6, November 16.-18, 2008.

16

[P8] P. Misans, M. Terauds, A. Aboltins, G. Valters, ”MATLAB/SIMULINK Im-
plementation of Phi-Transforms – A New Toolbox Only or the Rival of Wavelet
Toolbox for the Next Decade?”, Proceedings (on CD) of Nordic MATLAB User
Conference 2008, Nordic MATLAB User Conference 2008, Sweden, Stockholm,
pp. 1-8, November 20.-21, 2008.

[P9] G. Valters, P. Misans, ”FPGA Implementation of Elementary Generalized
Unitary Rotation”, Proceedings of 27th IEEE Norchip 2009 Conference, on
the flash, Norway, Trondheim, pp 1-4, November 16.-17, 2009.

[P10] P. Misans, G. Valters, “Initial FPGA Design for Generalized Orthogonal Non-
sinusoidal Division Multiplexing“, Proceedings of 27th IEEE Norchip 2009
Conference, on the flash, Norway, Trondheim, pp. 1-5, November 16.-17,
2009.

[P11] G. Valters, P. Misans, ”Automation of FPGA Implementation of Unitary
Transforms Based on Elementary Generalized Unitary Rotation”, RTU 52th
Scientific Conference 2011, Latvia, Riga, in press.

[P12] G. Valters, “Initial Version of MatLab/Simulink Based Tool for VHDL Code
Generation and FPGA Implementation of Elementary Generalized Unitary
Rotation“, Norchip 2011, Sweden, Lund, in press.

All published papers related to the doctoral thesis:

1. *G. Valters, P. Misans, “Initial Version of FPGA-Based CRAIMOT Basis Functions
Generator“, Proceedings of the 14th IEEE International Conference Mixed Design
of Integrated Circuits and Systems MIXDES 2007, The 14th IEEE International
Conference Mixed Design of Integrated Circuits and Systems MIXDES 2007, Poland,
Ciechocinek, pp. 632-637, June 21.-23, 2007.

2. P. Misans, G. Valters, ”Initial Version of FPGA-Based CRAIMOT Spectrum Ana-
lyzer”, Proceedings of the 6th Electronic Circuits and Systems Conference ECS’07,
The 6th Electronic Circuits and Systems Conference ECS’07, Slovakia, Bratislava,
pp. 159-164, September 6.-7, 2007.

3. P. Misans, G. Valters, “Introduction Into The Parametrical Decomposition - Recon-
struction Filters Based On Haar-Like Orthonormal Transforms“, Proceedings of the
6th International Electronic Circuits and Systems Conference ECS’07, The 6th Inter-

17

national Electronic Circuits and Systems Conference ECS’07, Slovakia, Bratislava,
pp. 107-112, September 6. -7, 2007.

4. *P. Misans, M. Terauds, G. Valters, U. Derums, N. Vasilevskis, ”FPGA-Based
CRAIMOT Basis Function Generator”, Proceedings of the 25th IEEE Norchip Con-
ference on CD, The 25th IEEE Norchip Conference, Denmark, Alborg, pp. 1-6,
November 19.-20, 2007.

5. P. Misans, G. Valters, M. Terauds, A. Aboltins, “Initial Implementation of Gener-
alized Haar-Like Orthonormal Transforms into FPGA-Based Devices - Part I: Sig-
nal Spectrum Analyzer-Synthesizer Module”, Scientific Journal of RTU. 7. series.,
Telekomunikācijas un elektronika. Vol. 8, pp 16-21, 2008.

6. P. Misans, G. Valters, M. Terauds, N. Vasilevskis, “Initial Implementation of Gen-
eralized Haar-Like Orthonormal Transforms into FPGA-Based Devices - Part II:
Parametrical Decomposition-Reconstruction Filters”, Scientific Journal of RTU. 7.
series., Telekomunikācijas un elektronika. Vol. 8, pp 12-16, 2008.

7. *M. Terauds, G. Valters, U. Derums, N. Vasilevskis, P. Misans, “Comparison of
Fixed-Point Arithmetic Errors for the FPGA-Based CRAIMOT Basis Function Gen-
erators“, Proceedings (on flash memory) of the 26th IEEE Norchip 2008 Conference,
ISBN 1-4244-2493-1/08 2008 IEEE, The 26th IEEE Norchip 2008 Conference, Esto-
nia, Tallin, pp. 1-6, November 16.-18, 2008.

8. P. Misans, M. Terauds, A. Aboltins, G. Valters, ”MATLAB/SIMULINK Implemen-
tation of Phi-Transforms – A New Toolbox Only or the Rival of Wavelet Toolbox
for the Next Decade?”, Proceedings (on CD) of Nordic MATLAB User Conference
2008, Nordic MATLAB User Conference 2008, Sweden, Stockholm, pp. 1-8, Novem-
ber 20.-21, 2008.

9. *G. Valters, P. Misans, ”FPGA Implementation of Elementary Generalized Unitary
Rotation”, Proceedings of 27th IEEE Norchip 2009 Conference, on the flash, Norway,
Trondheim, pp 1-4, November 16.-17, 2009.

10. *P. Misans, G. Valters, “Initial FPGA Design for Generalized Orthogonal Nonsinu-
soidal Division Multiplexing“, Proceedings of 27th IEEE Norchip 2009 Conference,
on the flash, Norway, Trondheim, pp. 1-5, November 16.-17, 2009.

11. G. Valters, U. Derums, K. Osmanis, P. Misans, ”Experimental Image Analyzer-
Synthesizer Based on the Novel Discrete Orthogonal Transforms”, Electronics 2011,
Lithuania, Kaunas, in press.

12. G. Valters, P. Misans, ”Automation of FPGA Implementation of Unitary Trans-
forms Based on Elementary Generalized Unitary Rotation”, RTU 52th Scientific
Conference 2011, Latvia, Riga, in press.

18

13. *G. Valters, “Initial Version of MatLab/Simulink Based Tool for VHDL Code Gen-
eration and FPGA Implementation of Elementary Generalized Unitary Rotation“,
Norchip 2011, Sweden, Lund, in press.

* IEEE papers.

Thesis Contents

The review consists of four chapters, bibliography and conclusion. The review is written
in Latvian and then translated also into English. It consists of 96 pages, 55 figures, 20
tables and 56 references to sources. The synopsis takes up 19 pages, the description part
– 76 pages. The total number of pages in the publications amounts to 70.

19

Introduction

Fast orthogonal transforms maintain a significant position in a wide range of signal pro-
cessing algorithms. Over the past decade particularly rapid progress has taken place in the
area of wavelets (one of the subclasses of orthogonal functions). For some years now, the
research on real 1-D discrete orthogonal transforms is being conducted at the Faculty of
Electronics and Telecommunications of Riga Technical University. The research on com-
plex 1-D orthogonal transforms (reviewed in this paper) and real 2-D discrete orthogonal
transforms has been started.

Since one of the main parts of the doctoral thesis is author’s published scientific papers,
a short description of each paper is given below. Detailed information on orthogonal trans-
forms can be found in this review document – Chapter 1 presents theoretical background
for rotation-angle-based complex orthogonal transforms and shows their diversity; Chap-
ter 2 deals with various implementation architectures for orthogonal transforms; Chapter
3 reviews problems and their solutions with respect to the transform implementation in
FPGA; (the last) Chapter 4 reviews experimental rotation-angle-based devices.

Angle-based orthogonal transforms allow to obtain an indefinitely large number, but
not all possible, of basis functions. While working on master thesis [14], various generators
of real BFs have been developed [P1]. At the same time the real-time audio signal spectrum
analyzer has been developed [P2]. A Haar-like signal decomposition/reconstruction system
based on parametrical orthogonal filters is described in [P3]. [P4] deals with resolving
the difficulties with implementation of BF generator in FPGA. [P5] and [P6] have been
published by RTU in the annual collection of scientific proceedings. These two papers
describe the implementation of parametrical real Haar-like transforms in FPGA. Signal
filtering in [P6] is performed using the decomposition/reconstruction system. Errors are
inevitable when systems are implemented in real devices with fixed-point arithmetic. [P7]
examines FPA errors that arise when implementing various algorithms for BF generator.
For a novel kind of orthogonal transforms a MatLab toolbox has been created [P8]. [P9]
describes the implementation of a simplified version (see Section 3.4) of complex rotation
matrix (see Chapter 1). [P10] describes the trial implementation (a simplified version
of complex rotation matrix has been used) of digital part of transmission system based
on nonsinusoidal division multiplexing. [P11] discusses the necessity to develop tools for
automatic code generation for FPGA implementation of complex rotation matrices. [P12]
describes one of such tools and its operation principles.

20

1 Complex Parametrical Orthogonal Transforms

This chapter presents generalized expressions for phi-transforms that are common for all
papers [P1]-[P12]. The notation for generalized Jacobi matrix (see Section 1.2.1) intro-
duced in [P11],[P12] allows to present all the variety of possible phi-transforms – real
[P1]-[P7] and complex [P8]-[P12].

1.1 Orthogonal, orthonormal and unitary transforms

Discrete orthogonal transforms are used to calculate the spectrum of discrete signal.

Y = k1 · H · X, X = k2 · H−1 · Y (1.1)

where H - Orthogonal transform matrix, (. . .)−1 - inverse matrix (for com-
plex transforms, Hermitian matrix). The values of constants k1 and k2

depend on specific transform.

Orthonormal transforms and their corresponding matrices are a special case of orthog-
onal transforms, for which the norm of basis function (matrix row) equals 1. In such a
case constants k1 = k2 = 1 in Formula (1.1). Complex orthonormal matrices are referred
to as unitary matrices, and their corresponding transforms as unitary transforms [4]. By
calculating the scalar product of matrix rows, it can be checked whether a certain matrix
is orthonormal. For orthonormal matrices the following equivalences are valid:

(
Hp,Hk

)
= δp,k,

N∑
t=1

Hp,t ·Hk,t = δp,k, (1.2)

where δp,k – Kronecker symbol, Hm – m-th row in matrix H,
Hm,q – q-th element of m-th row in matrix H.

1.2 Rotation-angle-based unitary transforms

This section deals with basic elements of complex angle-based orthonormal, that is, uni-
tary, transforms and gives a brief insight into their classification. For more detailed infor-
mation on the classification of real angle-based orthogonal transforms see [3] and [14].

1.2.1 Elementary generalized unitary rotation matrix

The basic element of novel parametrical unitary transforms is the elementary generalized
unitary rotation matrix (further referred to as elementary rotation matrix), which is a
generalization of well-known Jacobi rotation matrix [4]. In the case of complex signals
the elementary rotation matrix is a three-angle (ϕ, ψ, γ) matrix. When angles ϕ, ψ, γ ∈
[0, 45◦], 64 different structures of rotation matrix are possible. The number of structures of
rotation matrix decreases twice (to 32) when angles ϕ, ψ, γ ∈ [0, 90◦]. Some of the possible

21

structures of rotation matrix are shown in Table 1. For a convenient way to present all
structures of rotation matrix, the notation for generalized Jacobi matrix is introduced
[P12]:

TU =

(− −

− −
+ +
+ +

){
sin
cos

}
e

(− +
− +

)
jψ

(− −
+ +
− −
+ +

){
cos
sin

}
e

(− +
+ −

)
jγ

(− +
− +
− +
− +

){
cos
sin

}
e

(
+ −
− +

)
jγ

(+ −
− +
− +
+ −

){
sin
cos

}
e

(
+ −
+ −

)
jψ

 , (1.3)

By introducing the notations (1.4) , the matrix (1.3) can be rewritten as (1.5) [P11].

s11 =

[− −
− −
+ +
+ +

]
, s12 =

[− −
+ +
− −
+ +

]
, s21 =

[− +
− +
− +
− +

]
, s22 =

[+ −
− +
− +
+ −

]
,

sc =
[

sin(ϕ)
cos(ϕ)

]
, cs =

[
cos(ϕ)
sin(ϕ)

]
, sp =

[− +
− +

]
, sg =

[
+ −
− +

] (1.4)

T(ϕ, ψ, γ, a, b, u) =

[
s11(a)sc(b) · esp(u)j·ψ s12(a)cs(b) · e−sg(u)j·γ

s21(a)cs(b) · esg(u)j·ψ s22(a)sc(b) · e−sp(u)j·ψ

]
(1.5)

So, for example, the following structure is obtained when choosing actual values for
a, b, u – 4th element in sign matrix, 2nd element in sin/cos matrix, 4th element in sign
matrix for the power of exponent:

TU [ϕ, ψ, γ, 4, 2, 4] =

[
cos(ϕ) · ei·ψ sin(ϕ) · e−i·γ

− sin(ϕ) · ei·γ cos(ϕ) · e−i·ψ

]
(1.6)

For the sake of simplicity the parameters a, b, u can be presented as a single index id3
[P11]:

TU (ϕ, ψ, γ, 424) =

[
cos(ϕ) · ei·ψ sin(ϕ) · e−i·γ

− sin(ϕ) · ei·γ cos(ϕ) · e−i·ψ

]
(1.7)

The structure parameters can be simply obtained from id3 using the following formulas:

a=fix(id3/100), b=round(fix(id3/10)−10×a),
u=round(10×(id3/10−fix(id3/10)),

(1.8)

where fix and round – two types of rounding a number (more
detailed described in Section 3.2.1).

It is sometimes rather difficult to use the index id3 in automated algorithms, because,
for example, after 114 there follows 121. For that reason the index id1 ∈ [1, 64] , id1 ∈ N
is introduced and it can be calculated as follows:

id1 = (a− 1) · 8 + (b− 1) · 4 + u (1.9)

Table 1 shows some of the possible 64 structures of Jacobi rotation matrix and all the

22

Table 1: Some random examples of rotation matrix shapes for different index
sets [P11]

ID
id1

Index set
{a, b, u},

id3
Rotation matrix

1 {1, 1, 1}
111

[
− sin(ϕ) · e−jψ − cos(ϕ) · e−jγ
− cos(ϕ) · e+jγ + sin(ϕ) · e+jψ

]
2 {1, 1, 2}

112

[
− sin(ϕ) · e−jψ + cos(ϕ) · e−jγ
− cos(ϕ) · e+jγ − sin(ϕ) · e+jψ

]
3 {1, 1, 3}

113

[
+ sin(ϕ) · e−jψ − cos(ϕ) · e−jγ
− cos(ϕ) · e+jγ − sin(ϕ) · e+jψ

]
62 {8, 2, 2}

822

[
+ cos(ϕ) · e−jψ + sin(ϕ) · e+jγ
+ sin(ϕ) · e−jγ − cos(ϕ) · e+jψ

]
63 {8, 2, 3}

823

[
+ cos(ϕ) · e+jψ + sin(ϕ) · e+jγ
+ sin(ϕ) · e−jγ − cos(ϕ) · e−jψ

]
64 {8, 2, 4}

824

[
+ cos(ϕ) · e+jψ + sin(ϕ) · e−jγ
+ sin(ϕ) · e+jγ − cos(ϕ) · e−jψ

]

described ways of indexing used for the generalized matrix. Real rotation matrices, for
example, the Givens rotation matrix, are used in [3] and [14]. Note, that real rotation
matrix may be considered as a simplified case of complex matrix (1.10). [P1]-[P7] deal
with real orthogonal transforms and corresponding devices.

TU (ϕ, ψ = 0, γ = 0, 424) =

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
(1.10)

A complex vector obtained by rotating a complex input vector
[
x1

x2

]
by angles ϕ, ψ, γ,

can be considered as two-sample signal spectrum
[
y1

y2

]
dependent on angles ϕ, ψ and γ:

Y = TU · X =

[
y1

y2

]
= TU ·

[
x1

x2

]
(1.11)

Two FIR filters with the coefficients bL = [cos(ϕ) · ei·γ , sin(ϕ) · e−i·ψ] and bH =

[− sin(ϕ) · ei·ψ, cos(ϕ) · e−i·γ] are chosen and downsampling of filter outputs performed.
After processing of two input samples the same signal spectrum is obtained (see Figure
1.1).

Orthogonal filters and their properties are described more detailed in Section 2.4. To
reconstruct a signal, the obtained spectrum must be multiplied by inverse T−1 matrix (in
the case of complex matrix, by Hermitian matrix) [P9]:

23

.. .

.LoD

.HiD

.↓

.↓

.x(n)

.yL(n/2)

.yH(n/2)

Figure 1.1: Decomposition of two signal samples

T−1
U (ϕ, ψ = 0, γ =

π

2
, 424) =

[
cos(ϕ) · e−iγ − sin(ϕ) · e−iψ

sin(ϕ) · eiψ cos(ϕ) · eiγ

]
(1.12)

Geometrically signal reconstruction means the rotation of complex vector in the op-
posite direction.

Xrec = T−1
U · Y (1.13)

1.2.2 Full unitary matrix

The length of used discrete signals is usually more than two samples. Further in this
paper signals whose length is N = 2n samples are considered. In N-dimensional space a
simultaneous rotation of N-dimensional vector can be easily performed inN/2 independent
planes. There are several ways to construct a matrix to perform mentioned rotations. One
of the ways is to use a stairs-like factorized matrix. Using the structure TU (ϕ, ψ, γ, 424),
the following 4× 4 unitary stairs-like matrix is obtained:

B(ϕ, ψ, γ) =

ceiψ se−iγ 0 0

0 0 ceiψ se−iγ

−seiγ ce−iψ 0 0

0 0 −seiγ ce−iψ

 (1.14)

where c = cos(ϕ), s = sin(ϕ)

For matrix presentation it is much more convenient to use blocks. By presenting a
matrix in such a way, independent rotation structures are easily recognized.

Bb(ϕ, ψ, γ) =

ceiψ se−iγ 0 0

−seiγ ce−iψ 0 0

0 0 ceiψ se−iγ

0 0 −seiγ ce−iψ

 (1.15)

However, a stairs-like matrix has an essential advantage in comparison to a block-like
matrix – when multiplying log2(N) stairs-like matrices, a “full” matrix, in common case
containing no zeros, is obtained. For example, a 4 × 4 Hadamard matrix (which is, by

24

the way, orthogonal, instead of orthonormal) can be obtained using two equal stairs-like
matrices (from Hadamard fast transform [16]):

HHad4 =
√
2·

1√
2

1√
2

0 0

0 0 1√
2

1√
2

1√
2

− 1√
2

0 0

0 0 1√
2

− 1√
2

·
√
2·

1√
2

1√
2

0 0

0 0 1√
2

1√
2

1√
2

− 1√
2

0 0

0 0 1√
2

− 1√
2

 =

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

(1.16)

A stairs-like matrix can be obtained from a block-like matrix (and vice versa), by
rearranging matrix rows – using an appropriate permutation matrix:

Bs(ϕ, ψ, γ) = P4 · Bb(ϕ, ψ, γ), (1.17)

where

P4 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (1.18)

Similarly to (1.16), from two stairs-like matrices a “full” 4×4 unitary transform matrix
is obtained (1.19). For each rotation it is possible to use a specific set of angles. For
convenience the following notation is introduced – Φk = (ϕk, ψk, γk).

H4 = Bs (Φ11,Φ12) · Bs (Φ21,Φ22) =

=

c11 c21 e

ψ11 i eψ21 i c11 s21 e
−γ21 i eψ11 i c22 s11 e

−γ11 i eψ22 i s11 s22 e
−γ11 i e−γ22 i

−c12 s21 eγ21 i eψ12 i c12 c21 e
ψ12 i e−ψ21 i −s12 s22 e−γ12 i eγ22 i c22 s12 e

−γ12 i e−ψ22 i

−c21 s11 eγ11 i eψ21 i −s11 s21 eγ11 i e−γ21 i c11 c22 e
−ψ11 i eψ22 i c11 s22 e

−γ22 i e−ψ11 i

s12 s21 e
γ12 i eγ21 i −c21 s12 eγ12 i e−ψ21 i −c12 s22 eγ22 i e−ψ12 i c12 c22 e

−ψ12 i e−ψ22 i

(1.19)

where

Bs (Φ11,Φ12) =

c12e

iψ12 s12e
−iγ12 0 0

0 0 c21e
iψ21 s21e

−iγ21

−s12eiγ12 c12e
−iψ12 0 0

0 0 −s21eiγ21 c21e
−iψ21

 (1.20)

The obtained matrix H4 is a unitary matrix for any values of parameters. It can be
verified by performing the scalar multiplication of complex matrix rows:

25

Hn,∗ ·Hn,∗ =
N∑
k=1

Hn,kHn,k = 1,

Hn,∗ ·Hm,∗ =

N∑
k=1

Hm,kHm,k = 0

(1.21)

where Hn – n-th row in matrix H.

Similarly complex orthonormal matrices of larger size can be obtained. The matrix
size must be:

N = 2n, n ∈ {1, 2, ...k} . (1.22)

The analytic notation (1.19) is too sophisticated even for N = 4. It is given here to
show how the generalized complex rotation-angle-based orthogonal transform (CRABOT)
matrix is obtained. The necessary number of parameters is npar = 3 · N2 · log2(N). Assem-
ble all possible parameters (that is, angles) into a single three-layered matrix (1.23) [P1],
[P5], [P8], [P10], [P11].

Φ =

Φ11 Φ12 Φ13 . . . Φ1n

Φ21 Φ22 Φ23 . . . Φ2n

Φ31 Φ32 Φ33 . . . Φ3n

.

ΦN
2
1 ΦN

2
2 ΦN

2
3 . . . ΦN

2
n

(1.23)

Denote with Φp the p-th column of matrix Φ. If

Φp =

Φ1p|=Φp

Φ2p|=Φp

· · ·
ΦN

2
p|=Φp

 = (ϕp, ψp, γp) , (1.24)

where Φp – p-th column in the angle matrix, Φp – set of
angles,

then one of the simplified angle-based transforms is obtained – CCRAIMOT (Complex
Constant Angle In Matrix Orthogonal Transform). Using this transform class, an indefi-
nitely large number, but not all possible, of complex orthogonal matrices can be obtained,
and it can be controlled using nPar = 3 · log2N parameters (angles).

An example of CCRAIMOT matrix for N = 8:

H8 = Bs(Φ3) · Bs(Φ2) · Bs(Φ1)

Φ1 = (60◦, 60◦, 60◦)

Φ2 = (60◦,−60◦, 60◦)

Φ3 = (60◦,−60◦,−60◦)

(1.25)

26

Figure 1.2 shows BFs for (1.25).

Figure 1.2: CCRAIMOT basis functions, N = 8,
ϕ = [60◦, 60◦, 60◦], ψ = [60◦,−60◦,−60◦], γ = [60◦, 60◦,−60◦]

If N = 2n, n > 2, n ∈ N, then (1.25) may be generalized as:

H =

1∏
p=l

Bs (Φp) , l = log2N (1.26)

The decomposition of N samples long signal in matrix form can be performed using
the fast algorithm [17], [18] – multiplying the input signal by log2(N) stairs-like matrices
(1.27).

Y = Bs (Φl) · Bs (Φl−1) ·... ·Bs (Φ1) · X, l = log2N (1.27)

Table 2 shows a comparison of fast and ordinary algorithms. The number of multipli-
cations (M) and the number of additions (A) are given. The number of multiplications
and additions, necessary to multiply an N × N complex matrix by an N samples long
complex vector, is calculated using the following formulas:

MC = 4 ·N2

AC = N · (2 ·N + (N − 1) · 2)
(1.28)

Using the fast algorithm, the number of arithmetic operations is the following:

MF = 23 ·N · log2(N)

AF = 6 ·N · log2(N)
(1.29)

27

Table 2: Comparison of fast and ordinary algorithms. The number of
arithmetic operations

N Fast Ordinary
M A M A

2 16 12 16 12
4 64 48 64 56
8 192 144 256 240
16 512 384 1024 992
32 1280 960 4096 4032
64 3072 2304 16384 16256

1.2.3 Haar-like complex orthogonal transforms

The MatLab Toolbox presented in [P8] (see Table 2 in [P8]) includes parametrical Haar-
like complex orthogonal transforms reviewed in this section. The construction of these
transforms is similar to the construction of real generalized, that is, parametrical, Haar-like
transforms, which is thoroughly described in [15]. Due to the restricted size of published
papers, [P8] and [15] do not present more detailed expressions for complex transform,
therefore a brief review is given here.

Using elementary complex rotation matrices, complex parametrical Haar transforms
can be obtained. In the special case when ϕ = π/4, ψ = 0, γ = 0, an elementary complex
rotation matrix is a usual elementary Haar matrix:

TU (814) =

[
seiψ ce−iγ

ceiγ −se−iψ

]
, TU (ϕ =

π

4
, ψ = 0, γ = 0, 814) = Φ2 =

√
2

2

[
1 1

1 −1

]
(1.30)

A Haar matrix of larger size differs from the matrices described in Section 1.2.2 – all
Haar functions (matrix rows), except first two, have a localized energy, that is, adjacent
matrix elements have nonzero values (in a local interval). The parametrical Haar matrix
is obtained from log2(N) factorized matrices, like in Section 1.2.2. For Haar transforms,
unlike for those in previous section, when the matrix size changes, the structure and the
number of parameters of factorized matrices also change. For example, the generalized
Haar-like matrix for N = 4 is obtained as follows:

28

HH(Φ11,Φ21,Φ12) =

=

s21e

iψ21 c21e
iγ21 0 0

c21e
−iγ21 −s21e−iψ21 0 0

0 0 1 0

0 0 0 1

 ·

s11e

iψ11 c11e
iγ11 0 0

0 0 s12e
iγ12 c12e

iψ12

c11e
−iψ11 −s11e−iγ11 0 0

0 0 c12e
−iγ12 −s12e−iψ12

(1.31)

In (1.31) the factorized matrix on the left side is made of an elementary unitary rotation
matrix, zeros and a unit matrix. For input parameters (ϕ = 0, ψ = 0, γ = 0), some blocks
of complex rotation matrix are a unit matrix. For convenience, further when Φk = 0,
those blocks of elementary rotation matrix are chosen, for which the following is valid:

TU (Φ|=0) = I2 =
[
1 0

0 1

]
, (1.32)

If the structure of factorized matrices is known, the Haar-like transform matrix for
N = 4 (1.31) can be expressed using the following angle matrix:

ΦH =

[
Φ11 Φ12

Φ21 0

]
(1.33)

In common case, when N = 2n, n > 2, n ∈ N and taking into account the condition
(1.32), the Haar-like transform matrix can be presented using the angle matrix [P3], [P5],
[P8] so, that the next column of angle matrix has twice less nonzero angles as the previous
one.

ΦH =

Φ1,1 . . . Φ1,n−2 Φ1,n−1 Φ1,n

Φ2,1 . . . Φ2,n−2 Φ2,n−1 0

Φ3,1 . . . Φ3,n−2 0 0

Φ4,1 . . . Φ4,n−2 0 0

Φ5,1 . . . 0 0 0

.

ΦN
2
1 . . . 0 0 0

(1.34)

Similarly to Section 1.2.2, Haar-like transforms also can be divided into subclasses. For
example, for a single angle set Φk for each factorized matrix, similarly to CCRAIMOT
class in Section 1.2.2, the CRAIM-HT – Constant Rotation Angle In Matrix - Haar
Transform can be obtained. Using the permutation matrix P4 (1.18), the universal no-
tation of complex matrix TU , a zero matrix 0 and a unit matrix I, then the 4-sample
CRAIM-HT transform, can be presented as follows:

29

. .P81 .P82

Figure 1.3: Graphical depiction of permutation matrices for Haar-like
transforms (N = 8)

Y = HH4(ΦH) · X =

[
TU (Φ2) 02

02 I2

]
· P4 ·

[
TU (Φ1) 02

02 TU (Φ1)

]
· X, (1.35)

where ΦH – angle matrix (1.33) for the transform, and an
index at I and 0 indicates the size of unit or zero matrix,
respectively.

To obtain the Haar-like transform matrix for N = 8, the structure of factorized ma-
trices, which depends on permutation matrices (whose formation algorithm can be found
in [15]) and the corresponding angle matrix, must be known. The use of permutation
matrices facilitates the notation of expressions, because it allows to present factorized ma-
trices using complex rotation matrix TU . The graphical depiction of permutation matrices

Figure 1.4: CRA-HT basis functions, N = 8,
ϕ = [30◦, 30◦, 30◦], ψ = [−30◦, 30◦,−30◦], γ = [−30◦, 30◦,−30◦]

30

(Figure 1.3) helps for understanding their construction, and it is important for obtaining
Haar-like transforms for N = 2n, where n > 2 and n ∈ N.

Using permutation matrices from Figure 1.3, the CRAIM-HT transform matrix is
expressed as follows:

HH8(Φ1,Φ2,Φ3) =

TU (Φ3) 02,6

06,2 I6

 · P82 ·

TU (Φ2) 02

02 TU (Φ2)
04

04 I4

 ·

·P81·

TU (Φ1) 02

02 TU (Φ1)
04

04
TU (Φ1) 02

02 TU (Φ1)

(1.36)

Figure 1.4 shows all CRAIM-HT basis functions for the angle matrix:

ΦH =

Φ1 Φ2 Φ3

Φ1 Φ2 0

Φ1 0 0

Φ1 0 0

 =

(30◦,−30◦,−30◦) (30◦, 30◦, 30◦) (30◦,−30◦,−30◦)

(30◦,−30◦,−30◦) (30◦, 30◦, 30◦) (0, 0, 0)

(30◦,−30◦,−30◦) (0, 0, 0) (0, 0, 0)

(30◦,−30◦,−30◦) (0, 0, 0) (0, 0, 0)

 (1.37)

Table 3 shows the division of Haar-like transforms into subclasses depending on the
restrictions on nonzero elements in the angle matrix ΦH . Formally, the description of
complex Haar-like transforms [P8] is similar to the description of real Haar-like transforms

Table 3: Summary of the subclasses of CRA-HT transforms [P3], [P5], [P8]

Subclass Restriction for angles Example (N=8)
Complex Constant

Rotation Angle HT
(CCRA-HT)

Φj = [

N/(2j)︷ ︸︸ ︷
Φ, Φ, ..., Φ, 0, , ..., 0︸ ︷︷ ︸

N/2

]T ΦH =

[
Φ Φ Φ
Φ Φ 0
Φ 0 0
Φ 0 0

]
Complex Constant
Rotation Angle In

Matrix HT
(CCRAIM-HT)

Φj = [

N/(2j)︷ ︸︸ ︷
Φj , Φj , ..., Φj , 0, , ..., 0︸ ︷︷ ︸

N/2

]T ΦH =

[
Φ1 Φ2 Φ3
Φ1 Φ2 0
Φ1 0 0
Φ1 0 0

]

Complex HT with
Reduced Sequences
of Rotation Angles

(CRSA-HT)

Φj = [

f(j)=N/(2j)︷ ︸︸ ︷
Φ1, Φ2, ..., Φf(j), 0, , ..., 0︸ ︷︷ ︸

N/2

]T ΦH =

[
Φ1 Φ1 Φ1
Φ2 Φ2 0
Φ3 0 0
Φ4 0 0

]

31

(a) CRAIM-HT un
CRA-HT

(b) RSA-HT

Figure 1.5: Trace of BFs vector end projections on the spread of surface of
one of the unit sphere 3-D projections [P5]

[P3], [P5].
It is hard to visualize a four-dimensional space (as well as any other multidimensional

space when N > 4). However, any three samples of four-dimensional BFs can be displayed
as projections in three-dimensional space. In total there are C3

4 = 4 3-D projections of 4-D
signal possible. By marking vector end projections on a 3-D sphere and then spreading
this sphere in a 2-D plane, a certain layout of BFs vector end projections is obtained
(see Figure 1.5). Fully covered spheres for all projections would signify that for the given
transform class, by changing angles, it is possible to obtain BFs of any shape. As can be
seen, the general tendency is such that by increasing the number of angles (parameters),
the coverage becomes more and more dense.

Summary

Obtained results

• Generalized notation for elementary unitary matrix has been introduced. As a result,
all possible structures for generalizations of Jacobi matrix are obtained (in case of
ϕ, ψ, γ ∈ [0, 45◦], 64 structures are possible).

32

Conclusions

• By changing angles ϕ,ψ and γ, an indefinitely large number of various phi-transforms
can be obtained.

• Modification of factorized matrices as a result of choosing a part of rotation angles to
be equal to zero, allows to obtain pulse-like BFs (generalized parametrical Haar-like
functions similar to wavelets).

• Using of fast algorithms essentially reduces the number of arithmetic operations for
the transforms described in Section 1.2.2 when N > 4, and for Haar-like transforms
when N > 8.

33

2 Implementation Architectures for Orthogonal Transforms

This chapter presents theoretical aspects of implementation architectures for phi-transforms6:

1. Parallel structure of transform implementation,

2. Serial structure of transform implementation,

3. Tree-like structure of signal decomposition/reconstruction system,

4. Signal decomposition using complex FIR filters.

2.1 Parallel structure of transform implementation

By directly implementing the expression (1.27), the parallel structure of transform is
obtained. The transform is performed by the following steps:

1. Collect a data block of N samples;

2. Multiply the samples by log2(N)-number of sparse stairs-like rotation matrices Bs;

3. Output the results and simultaneously collect samples for the next data block.

The Analyzer-Synthesizer from [P5] can also be regarded as parallel architecture of
transform implementation, because the transform is performed in a similar way as just
described. However, unlike previously, the collected pairs of samples are regarded as two-
dimensional signal vectors and rotated along several parallel CORDIC RE (see Section
3.3).

2.2 Serial structure of transform implementation

A serial structure of transform implementation is a structure when the transform is not
performed directly, but instead any value of the phi-transform matrix H can be obtained
using the below-described algorithm.

2.2.1 CRAIMOT BF generator [P1], [P4]

This section examines the generation of real CRAIMOT BFs and compares the following
two generators in respect to the use of arithmetic operations:

1. Generating of the matrix H for CRAIMOT transform, using the fast algorithm.

2. Generating of BF samples, using sin/cos products.
6The developed experimental devices are described in Chapter 4.

34

The number of arithmetic operations required for calculation of real transform matrix
using the fast algorithm, is determined as follows [P4]:

MFT = 2 ·N · log2(N),

AFT = N · log2(N)
(2.1)

To store all BFs, considerable memory resources (N2 memory cells) are required. Using
the sin/cos algorithm, the number of operations for generating a K-number of BFs is
determined as follows [P4]:

MM = K ·N,
AM = K · (N − 1).

(2.2)

The serial architecture is based on generating any BF using sin/cos products – the
t-th value of the p-th BF is obtained by the following formula [P1], [P4], [3]:

H (p− 1, t− 1) =

log2(N)∏
j=1

(−1)aj(p,t) · smj(p,t)
j · ckj(p,t)j (2.3)

The values of powers (aj , mj un kj) depend on the structure of elementary rotation
matrix (see Table 4).

Table 4: Expressions for the powers of sine and cosine (taken from [3],
complemented)

Rotation matrix ID aj(p, t) mj(p, t) kj(p, t)

TU (ϕ, 0, 0, 421) TG+ pj · tj pj · tj + pj · tj pj · tj + pj · tj
TU (ϕ, 0, 0, 721) TG− pj · tj pj · tj + pj · tj pj · tj + pj · tj
TU (ϕ, 0, 0, 611) TR+ pj · tj pj · tj + pj · tj pj · tj + pj · tj
TU (ϕ, 0, 0, 821) TR− pj · tj pj · tj + pj · tj pj · tj + pj · tj

For example, by choosing angles ϕ = [45◦, 30◦, 60◦, 60◦] and TR+ rotation matrix,
the 13th value (t = 13) of the 6th BF (p = 6) can be obtained, using (2.3) and Table 5:

H (5, 12) = H ({0101}2, {1100}2) = c4 · (−1) · s3 · s2 · c1 = (2.4)

= − cos(60◦) · sin(60◦) · sin(40◦) · sin(45◦) =

= −0.5 · −0.866 · 0.5 · 0.707· = −0.1531,

where {...}2 – binary representation of indexes.

To generate all BFs using the described algorithm, more arithmetic operations are
required than in the case when using the fast transform (FT). The coefficient of efficiency

35

Table 5: The details of example (2.4) [P1]

j-tais pakāpes
koeficients

Binārā
izteiksme Vērtība

a1 (LSB) 1 · 0 = 0 (−1)0 = 1

m1 (LSB) 1 · 0 + 0 · 1 = 0 (s1)
0 = 1

k1 (LSB) 0 · 0 + 1 · 1 = 1 (c1)
1 = c1

a2 0 · 0 = 0 (−1)0 = 1

m2 0 · 0 + 1 · 1 = 1 (s2)
1 = s2

k2 1 · 0 + 0 · 1 = 0 (c2)
0 = 1

a3 1 · 1 = 1 (−1)1 = −1

m3 1 · 1 + 0 · 0 = 1 (s3)
1 = s3

k3 0 · 1 + 1 · 0 = 0 (c3)
0 = 1

a4 (MSB) 0 · 1 = 0 (−1)0 = 1

m4 (MSB) 0 · 1 + 1 · 0 = 0 (s4)
0 = 1

k4 (MSB) 1 · 1 + 0 · 0 = 1 (c4)
1 = c4

of arithmetic operations for this algorithm, by comparing to FT [P4]:

rops =
MM +AM

MFT +AFT

(2.5)

If
rops(Kmax, N) = 1, (2.6)

then the number of arithmetic operations is the same for both ways of generating BFs.
Using (2.1), (2.2) and (2.6)„ the maximum number (Kmax) of BFs can be obtained, for

.. t_counter . pow . sin_cos

. angle_reg

. mult

. reg

.n

.clk

.fi_ind(j)

.a
.m, k

.p

.t

.mult_clk

.BF_out

.sin_clk

.angle(ϕ)

.[s, c,−s,−c]

.

Figure 2.1: Simplified block diagram of the CRAIMOT BF generator [P1]

36

which individual generation, using the described algorithm, is as much efficient as using
FT [P4]:

Kmax = (3/ ln(2)) · ln(N)/(2 ·N − 1) (2.7)

For practical use it is more convenient to use the following formula:

Kmax ≈ floor(1.44 · log2(N) + 0.48), (2.8)

where floor – way of rounding of a number (see Section
3.2.1).

Using (2.3) and Table 4, a BF generator (see Figure 2.1) can be constructed, which
each time calculates a single BF value. It enables even system operation and little memory
consumption, and allows to generate long (N = 232) BFs. On the basis of such a generator
we can build a simple signal synthesizer (see 2.2).

.. CRAIMOT
generator

. CRAIMOT
generator

. CRAIMOT
generator

.+

.p[1..N]

.≈

.ϕ

.≈

.p1

.p2

.pN

.y

....

Figure 2.2: Simplified block diagram of the CRAIMOT signal synthesizer

Error estimation for BF generator The source of errors in the described generator
lies with the method for calculation of sin/cos values. Māris Tērauds in his doctoral
thesis [3] analyzed errors of BFs and BF partial sums in case sin/cos values are calculated
using one of the two methods – linear interpolation (see Figure 2.3) or CORDIC. The
experiments proved that MSEs of BFs and BF partial sums for an FPGA-based generator
lay in the limits calculated by Tērauds [3], [P7].

The latest FPGAs have more and more internal memory, and, for that reason, the
using of sin/cos table, which is the fastest method to get sin/cos values, becomes more
effective. Since the estimation of errors arising when calculating sin/cos values using the
table does not appear in the publications and Tērauds’ Thesis [3], here follows a brief
review on that. In the sin/cos table all angles α ∈ [0, 90◦] (then the other sinuses and
cosines can be determined using sin(α)) are evenly divided into 2nα elements, where nα
– the number of bits in the binary representation of angle. Sin values are stored in Q1.x

37

Figure 2.3: Optimized linear interpolation of sine for ∆max ≈ 0.004 [P4]

fixed-point number format (x – FPA WL). Therefore, the sin/cos error depends on the
angular error and the FPA error. The angular error (αerr) is larger if the required angle
lays exactly in the middle between two angles specified in the table. The sine function is
most sensitive to the change of angle when the value of angle is near zero. Consequently,
the maximum error for sine angle in the table can be calculated. It is then scaled by the
sine range defined in the table (if α ∈ [0, 90◦], then sin(α) ∈ [0, 1]):

αerr =
90

2 · 2nα
, ϵα% = sin(αerr) · 100% (2.9)

The extent of FPA error depends on the wordlength of sine values and on the particular
rounding method being used (see Section 3.5). Usually, when building a sine table, the
most precise rounding (round) is used. The amount of memory (in bits) needed for sine
table is calculated as follows:

Nbits = 2nα · x, (2.10)

where 2nα - the number of table elements, x - Q1.x FPA WL.

2.2.2 CRAIMOT spectrum analyzer [P2]

A simple spectrum analyzer (see Figure 2.4) can be constructed on the basis of BF gener-
ator. It allows to calculate a particular spectrum coefficient using scalar product of signal
and corresponding BF. It requires some time to calculate all the spectrum coefficients,
because incoming input signal samples are stored in the signal register and then N -times
the scalar multiplication of vectors is performed, that is, the signal vector is multiplied by
all BFs.

Operations for spectrum calculation in the analyzer described in this section are per-
formed sequentially in time, and therefore its operation speed is rather low. Section 2.3

38

.. CRAIMOT
generator . Multiplier

adder

. Signalreg . Output
reg

.y

.Hp, t.p

.ϕ

.x

Figure 2.4: Simplified block diagram of the CRAIMOT spectrum analyzer
[P2]

deals with a tree-like algorithm for calculating signal spectrum. Its operation speed is
much faster, because all spectrum coefficients are calculated concurrently.

Summary on papers [P1], [P2], [P4]

Obtained results

• A serial architecture for CRAIMOT generator, based on sin/cos products, is cre-
ated. An architecture for the corresponding signal synthesizer is created.

• A serial architecture for CRAIMOT spectrum analyzer is created.

• Three different algorithms for obtaining sin/cos values have been examined.

Conclusions

• Generation of a small number of BFs (2.7),(2.8), using sin/cos products, is more
effective than using the fast algorithm. For example, when N = 64, using the
serial algorithm to generate less than 9 BFs requires a smaller number of arithmetic
operations than using the fast transform.

• Both the amount of errors and necessary resources (in FPGA – logical elements,
memory bits, DSP elements) depend on the method used to calculate sin/cos values.

• A signal spectrum analyzer, based on BF generator, can be easily constructed, but
it has a low operation speed. For each spectrum value the scalar multiplication of
N -sample long vectors must be executed, one at a time.

2.3 Tree-like structure of signal decomposition/reconstruction system

A tree-like structure allows to perform transforms using pipelining [19], which utilizes
computing resources (in this case, FPGA) very effectively.

39

2.3.1 Signal decomposition [P10],[P11]

This section deals with the correspondence between the matrix form and the tree-like
structure of signal decomposition system. Figure 2.5 shows a simplified block diagram of

.. .

.

.

.T11

.T12

.T22

.

. .–EGU rotator unit

.Stage 1 .Stage 2

.x1, x2, x3, x4

.Φ1

.Φ2

.Φ2

.y11, y21

.y31, y41

.y12

.y32

.y22

.y42

Figure 2.5: CCRAIMOT DE (for N=4) simplified block diagram [P11]

the tree-like structure of signal decomposition. Parameters for rotator units can change
in time, and thus the spectrum of CRABOT class is obtained. A timing diagram in
Figure 2.6 shows changing of parameters (N = 4). And a tree-like structure in Figure 2.7
also shows changing of parameters (N = 8). Although each structure of rotation matrix
has its own rotator unit, these units can be easily obtained using the automatic algorithm
described in section 3.6.

A 4-sample signal spectrum in matrix form can be obtained using fast CCRAIMOT
transform – two stairs-like matrices with the same structure, where each matrix contains

. .t

.t

.t

.t

.t

.t

.t

.x1 .x2 .x3 .x4

.y11 .y21

.y31 .y41

.y12

.y22

.y32

.y42

.Φ11 T11 .Φ21 T21

.Φ12 T12

.Φ22 T22. 1th stage
output

. 2nd stage
output

Figure 2.6: Simplified timing diagram [P11]

40

..p = 1

.p = 2

.p = 3

.
T11, T21, T31, T41,
q = 1, r ∈ [1, 4]

.
T12, T22,

q = 1, r = 1, 2

.

. T13

q, r = 1

.

. T23

q, r = 2

.
T32, T42,

q = 2, r = 3, 4

.

. T33

q, r = 3

.

. T43

q, r = 4

Figure 2.7: Decomposition tree structure and addressing example N = 8 [P11]

the same rotation parameters:

Y4 = Bs (Φ2) · Bs (Φ1) · X4 (2.11)

Written with all matrix elements, the product of the signal and the first matrix is:

Y1 = Bs(Φ1) · X =

c1e

i s1e
−i 0 0

0 0 c1e
i s1e

−i

−s1ei c−i1 0 0

0 0 −s1ei c−i1

 ·

x1

x2

x3

x4

 =

=

c1e

i · x1 + s1e
−i · x2

c1e
i · x3 + s1e

−i · x4
c1e

i · x2 − s1e
−i · x1

c1e
i · x4 − s1e

−i · x3

 =

y11

y21

y31

y41

 (2.12)

When implementing signal decomposition in the pipeline architecture, decomposition
of 4-sample signal requires two stages. The first of them is shown in Figure 2.8.

.. ..x1, x2, .x3, x4

.y11 y21

.y31 y41

Figure 2.8: First stage of decomposition of 4-sample signal

41

Samples enter the rotator input consecutively, and in the same order they are then
in pairs processed. From two consecutively incoming samples two parallel intermediate
results having twice as low frequency are produced. Mathematically, it is the product of

two independent 2× 2 (TU) rotation matrices and vectors
[
x1

x2

]
and

[
x3

x4

]
, or the product

of 4-sample long signal and block-like rotation matrix (1.15):

Yb1 = Bb(Φ1) · X =

c1e

i s1e
−i 0 0

−s1ei c−i1 0 0

0 0 c1e
i s1e

−i

0 0 −s1ei c−i1

 ·

x1

x2

x3

x4

 =

=

c1e

i · x1 + s1e
−i · x2

c1e
i · x2 − s1e

−i · x1
c1e

i · x3 + s1e
−i · x4

c1e
i · x4 − s1e

−i · x3

 =

y11

y31

y21

y41

 (2.13)

Then the intermediate result and the second stairs-like matrix can be multiplied (2.14).
The sequence of spectrum obtained in such a way will be regarded as correct.

Y = Bs(Φ2) · Y1 =

c2e

i s2e
−i 0 0

0 0 c2e
i s2e

−i

−s2ei c−i2 0 0

0 0 −s2ei c−i2

 ·

y11

y21

y31

y41

 =

=

c2e

i · y11 + s2e
−i · y21

c2e
i · y31 + s2e

−i · y41
c2e

i · y21 − s2e
−i · y11

c2e
i · y41 − s2e

−i · y31

 =

y12

y22

y32

y42

 (2.14)

The second stage of pipelined decomposition is shown in Figure 2.9a. The second stage
consists of two complex rotators. Similarly to the first stage (see Figure 2.8), from two
consecutive samples at input two parallel samples are produced at output. To obtain both
input samples (y11 and y21) for the first complex rotator in the second stage all of the four
input signal samples (x1, x2, x3, x4) (2.13) are required. The same applies to the second
rotator.

It can be considered that by joining complex rotators in a cascade of stages, a permu-
tation of samples in intermediate results is performed (similarly to (1.17), (1.18)). Figure
2.9b shows a graphical depiction of permutation matrices for N = 4. In the second stage
four samples are rotated in pairs using two separate rotators, and it is expressed as follows:

42

.. .

.

.

.y11, y21

.y31, y41

.y12

.y32

.y22

.y42

(a) The second
stage

. .P41 .P42

(b) Graphical depiction of
permutation matrices

(N = 4)

Figure 2.9: Decomposition of 4-sample signal

Yb = Bb(Φ2) · P4 · Yb1 =

c2e

i s2e
−i 0 0

−s2ei c−i2 0 0

0 0 c2e
i s2e

−i

0 0 −s2ei c−i2

 ·

y11

y21

y31

y41

 =

=

c2e

i · y11 + s2e
−i · y21

c2e
i · y21 − s2e

−i · y11
c2e

i · y31 + s2e
−i · y41

c2e
i · y41 − s2e

−i · y31

 =

y12

y32

y22

y42

 (2.15)

Using expressions (2.15) and (2.13), the results of the structure in Figure 2.5 are
produced in an order that is most convenient for checking decomposition system operation
(no permutations are needed).

Increasing the number of stages n increases the number of samples to be processed and

. .P81 .P82 .P83

Figure 2.10: Graphical depiction of permutation matrices matrices (N = 8)

43

changes the structure of permutation matrices. In the case of 4-samples, both permutation
matrices are equal, in all the other cases (for N > 4) all permutation matrices are different.
Figure 2.10 shows a graphical depiction for N = 8.

Using permutation matrices, it is possible to obtain intermediate results of transform
implemented using the pipeline approach (by using sparse rotation matrices with a block-
like structure), after each stage. Intermediate results being calculated mathematically
essentially facilitates performing of parametrical transform. To obtain block-like rotation
matrices, the Kronecker product can be used:

Bb(Φ1) = I4 ⊗ TU (Φ1, ID) =

TU (Φ1, ID) 02 02 02

02 TU (Φ1, ID) 02 02

02 02 TU (Φ1, ID) 02

02 02 02 TU (Φ1, ID)

∣∣∣∣∣∣∣∣∣∣
ID=424

=

=

c1e
i s1e

−i 0 0 0 0 0 0

−s1ei c1e
−i 0 0 0 0 0 0

0 0 c1e
i s1e

−i 0 0 0 0

0 0 −s1ei c1e
−i 0 0 0 0

0 0 0 0 c1e
i s1e

−i 0 0

0 0 0 0 −s1ei c1e
−i 0 0

0 0 0 0 0 0 c1e
i s1e

−i

0 0 0 0 0 0 −s1ei c1e
−i

(2.16)

Using permutation matrix P81, a stairs-like rotation matrix can be obtained from a
sparse block-like rotation matrix. The sequence of spectrum coefficients Yb calculated
during signal decomposition with pipelining differs from that which is obtained using
three stairs-like factorized matrices. It applies also for N = 8. Yb is calculated using P81

and P82:

Yb = Bb(Φ3) · P82 · Bb(Φ2) · P81 · Bb(Φ1) · X (2.17)

Due to simple notation, this section discusses orthogonal transforms of one particular
class (CCRAIMOT) only. In general case (CRABOT class), a factorized block-like
rotation matrix (for N = 4) is expressed, using Kronecker product [3], as follows:

Bb(Φk) = {I2} ⊗ {TU,1k(Φ1k, ID1k),TU,2k(Φ2k, ID2k)} =

=

[
TU,1k(Φ1k, ID1k) 02

02 TU,2k(Φ2k, ID2k)

]
(2.18)

Note that a full orthogonal transform requires n = log2(N) sparse rotation matrices.

44

2.3.2 Signal reconstruction

Figure 2.11 shows a simplified block diagram of CCRAIMOT reconstruction. While
for decomposition parallel outgoing samples are obtained from consecutively incoming
samples (fan-out tree-like structure), in case of reconstruction there are parallel incoming
samples and consecutively outgoing samples (fan-in tree-like structure). Besides, for each
RE block the discretization frequency of consecutive samples is twice as high as that of
parallel samples (independent of the fact whether consecutive samples are at the input or
the output of RE).

..

.

.

.

.T12

.T22

.T11

.Stage 2.Stage 1

.y1, y2, y3, y4
.Φ2

.Φ2

.Φ1

.y11, y21

.y31, y41

.x1

.x3

.x2

.x4

Figure 2.11: Simplified block diagram of CCRAIMOT reconstruction,
N = 4

Summary

Obtained results

• Analysis of the structure and operation of multilevel parametrical tree-like signal
decomposition/reconstruction system [P10], [P11].

Conclusions

• Each structure TU (ϕ, ψ, γ, ID) of elementary rotation matrix has its own corre-
sponding RE.

• RE performs a rotation of two-dimensional signal vector, therefore samples are fed
to the RE input in pairs – as N = 2-sample long vectors.

• System reconfiguration is done by changing RE parameters.

45

• There are at least two possible architectures how to implement RE – the traditional
algorithm and the CORDIC algorithm (see Section 3.3).

• In a tree-like signal decomposition system, after each a decimation is performed (the
clock frequency reduces twice). It allows to reduce sample processing time.

• In a tree-like signal reconstruction system, after each stage the upsampling is per-
formed (the clock frequency increases twice). It means that at the last stage samples
must be processed at the same rate as at the first stage of decomposition system.

2.4 Signal decomposition using complex FIR filters

Signal decomposition using RE described in previous section can be implemented using
complex FIR filters, too. So, at first, this section deals with the parameters for com-
plex FIR filters obtained from the rotation matrix (1.3). After that, the design of de-
composition/reconstruction system is presented and its advantages and disadvantages in
comparison to that described in Section 2.3 assessed.

2.4.1 2.4.1. Transfer functions of complex filters

Orthogonal filters can be used to decompose an input signal into components. In wavelet
processing, each pair of orthogonal filters decomposes a signal into the approximation
component (low frequencies) and the detail component (high frequencies). Orthogonal
filters are used not only for wavelets, but also, for example, when performing the Hilbert
transform [20], where complex and real FIR filters are joined into a single orthogonal filter
system.

Complex orthogonal filters and their properties are discussed in [8]. Time-varying real
filter banks for different structures are discussed in [21], [22] and [23] and in many other
papers. The transfer function of digital filters [24] is expressed as follows:

H(z) =
b0 + b1z

−1 + · · ·+ bNz
−N

1 + a1z−1 + · · ·+ aNz−N
(2.19)

Given the transfer function, the frequency transfer response of a filter can be calculated.
Since FIR (finite impulse response) filters are used, the frequency transfer response is
calculated as follows:

H(ω) =

M−1∑
k=0

b(k)e−jωk (2.20)

The frequency transfer response is complex. Its modulus (usually, in decibels) is
named as the filter magnitude-frequency response. The filter phase-frequency response is
calculated as follows:

46

Θ(ω) = tan−1

(
ImH(ω)

ReH(ω)

)
(2.21)

The complex rotation matrix (1.6) can be interpreted as two filters (followed by down-
sampling), where the first row of the matrix corresponds to the approximation filter Lo
in Figure 1.1 and the second row – to the detail filter Hi. Using (2.20) and (2.21), the
magnitude- and the phase-frequency transfer response for both filters can be calculated.
For example, the frequency transfer response of Lo filter is calculated as:

H(ω) = b(1) + b(2)e−jω = cos(ϕ)ejγ + sin(ϕ)e−jψe−jω =

= cos(ϕ)ejγ − sin(ϕ)ejψ
ejω

, (2.22)

where ω ∈ [0, π], (ϕ, ψ, γ) – filter parameters

For arbitrarily chosen filter parameters Φk = (ϕk, ψk, γk) =
(
π
4 ,

π
3 ,

π
4

)
, the magnitude-

and the phase-frequency response curves7 of the respective approximation and detail filters
are shown in Figure 2.12.

Using the transposed matrix (1.12), the reconstruction filters can be obtained (see
Figure (2.13).

7Frequency values (x-axis) are scaled by Fs
2

Figure 2.12: Magnitude- and Phase-frequency response curves of the
approximation and detail filters (Decompozition), ϕ = π

4 , ψ = π
3 , γ = π

4

47

Figure 2.13: Magnitude- and Phase-frequency response curves of the
approximation and detail filters (Reconstruction), ϕ = π

4 , ψ = π
3 , γ = π

4

By joining into a single system the filter pair obtained from the direct rotation and the
filter pair obtained from the transposed matrix, a decomposition-reconstruction system
(see Figure 2.14) can be built, which allows to reconstruct a signal fully. To achieve a
lossless reconstruction, the following condition must hold [22]:

LoD
THiD + LoR

THiR = I (2.23)

By changing parameters, it is possible to obtain a practically unlimited number of
various real and complex first-order FIR filter pairs (see Figure 2.15). In the case of
complex filters (Figure 2.15b), some common trends can be identified in the dependence
of magnitude-frequency response8 on the angles, that is, parameters:

• Magnitude-frequency response curves for complex filters are much more complicated
as those for real filters.

8Note that filtering is followed by downsampling

.. .

.LoD

.HiD

.↓

.↓

.↑

.↑

.LoR

.HiR

.
+

.x(n) .̂x(n)

Figure 2.14: De–Re filters

48

• Magnitude-frequency response curves for complex approximation/detail filters (Lo/Hi)
can take the form of band-pass or band-stop filter, depending on the elementary ro-
tation matrix ID.

• The angle ϕ determines the bandwidth of band-stop filters. However, there are no
exact formulas yet.

• The angles ψ and γ determine the pass-band/stop-band frequency of band-pass/band-
stop filters. However, there are no exact formulas yet.

(a) Real filters
(TU (ϕ, 0, 0, 812))

(b) Complex filter
(TU (ϕ, ψ, γ, 812))

Figure 2.15: Magnitude response curves of the approximation and detail
filters (Decomposition), taken partly ((a)) from [P3], [P6] un [P8])

2.4.2 Cascading of complex orthogonal filters

Let’s construct a complex FIR filter (Figure 2.16). Its simplified version (using real coeffi-
cients calculated inside the filter) is used in four different roles in a Haar-like decomposition-
reconstruction system shown in Figure 2.17 – both the approximation filter (AD) and the
detail filter (DD) of decomposition, and both the approximation filter (AR) and the detail

Figure 2.16: Simplified Simulink model of complex FIR filter

49

Figure 2.17: The RA-HT DeRe filter block diagram in Simulink [P3]

filter (DR) of reconstruction. To implement complex FIR filters, the direct-form digital
filter structure is used [26]. Note that in this system an input signal and all filter coeffi-
cients are complex quantities, and their mutual multiplication is a complicated operation
[27].

However, the main disadvantage of such a system is a complicated tuning of the filters,
because filter coefficients are calculated from three real parameters – angles ϕ, ψ and
γ. In the system in Figure (2.17 the matrix TU (ϕ, ψ = 0, γ = 0, 424) is used to obtain
all filter coefficients. Depending on the structure of complex matrix (1.3), different filter
coefficients can be obtained. A diagram for the calculation of filter coefficients for a
particular structure is shown in Figure 2.18.

An advantage of such a system is that it does not change for different structures of

Figure 2.18: Simulink model for obtaining the complex matrix
TU (ϕ, ψ, γ, 424) (filter coefficients)

50

Figure 2.19: Simulink model of the cascading of decomposition stages, using
two FIR filters

complex rotation matrices – only the filter coefficients vary. However, as seen in Figure
2.18, calculating the coefficients for orthogonal filters is a relatively complicated task, and
a tunable system built in such a way cannot be regarded as optimal.

When building a decomposition-reconstruction system using filters, the downsampling
must be taken into account. Using two FIR filters, the sampling frequency must be
decreased twice. Figure 2.19 shows a Simulink model of the first stage of signal decom-
position. The corresponding Simulink timing diagrams, if real part of input signal is
sinusoidal, but imaginary – saw-like, are shown in Figure 2.20.

For signal reconstruction, the transposed matrix of the complex matrix TU is used –
the complex conjugates of the coefficients are used, the rows and columns are swapped,
and the sampling frequency must be increased twice (upsampling). Figure 2.21 shows a
Simulink model of signal reconstruction, where In1 is the signal outAD and In2 is the
signal outDD in the decomposition model.

Figure 2.20: Simulink timing diagrams of input signal decomposition,
[ϕ = π

4 , ψ = π
3 , γ = π

6]

51

Figure 2.21: Simulink model of signal reconstruction

Summary

Obtained results

• Provisional analysis of suitability of the alternative decomposition-reconstruction
system based on FIR filters for implementation in FPGA.

Conclusions

• The structure of filters does not change by changing system parameters.

• The system operates with sequential input data – input samples need not to be
divided into N-sample blocks.

• All first order complex filters consist of 16 multipliers and 12 adders, not allowing
to perform simplifications.

• In the case of complex filters, each coefficient of both filters (Lo and Hi) depends on
all three angles (parameters). This complicates the tuning of the system and makes
it resource-intensive.

• The coefficients of real filters depend only on one angle ϕ, making the system rela-
tively easy tunable.

• In the further research on 1-D signal transforms complex quantities are being used.
Therefore, in view of previous conclusions, signal decomposition using complex filters
is, for the time being, assumed to be inefficient.

• It can be considered that also in the decomposition/reconstruction using RE, the
mentioned manipulations with input signal – filtering using Lo and Hi filters and
downsampling9 – are performed.

9for reconstruction, increasing the sampling frequency, respectively

52

3 FPGA Implementation of the Phi-Transform Algorithms

The implementation of the algorithms described in Chapters 1 and 2 into FPGA chips
is an essential part of this research. This chapter deals with different methods of im-
plementation and the problems associated with them. After considering the advantages
and disadvantages of the architectures described in Chapter 2, it has been decided to
investigate further signal decomposition-reconstruction systems using RE.

3.1 Floating- and fixed-point arithmetic

Although floating-point arithmetic is being increasingly implemented in FPGA chips [35]-
[38], in the algorithms proposed in this research fixed-point arithmetic (FPA) is used.
Further, both these methods of representing and calculating real numbers will be supported
[39]. But the use of floating-point arithmetic does not solve all precision problems [40],
and it complicates, for example, the simulation of VHDL code.

Algorithm implementation using fixed-point arithmetic involves fixed-point errors [41].
The estimation of fixed-point errors for RE is described in Section 3.5.

3.2 FPGA implementation of DSP elements

3.2.1 Multiplier with variable output wordlengths (WL)

When performing a multiplication in FPGA using fixed-point arithmetic (practically all
the latest generations of Altera FPGAs have fixed-point multipliers [42]), output signal
has a twice as large WL as in input. By implementing algorithms consisting of several
multipliers, it would create numerous problems because of excessive increasing of signal
WLs. Usually, a scaling is done, which includes bit truncation. In Q1.x arithmetic [43],
when truncating the number of bits to w bits (truncating the lowest bits), the precision
of the result decreases. It is determined by the quantization step [43]:

ϵx =
1

2x
(3.1)

where x – the number of fractional bits in Q1.x FPA (x =

w–1).

Bit truncation can be performed using four different rounding modes:

• floor – the result is rounded down towards −∞ till equivalent integer,

• fix – the result is rounded toward zero till equivalent integer,

• ceil – the result is rounded up towards +∞ till equivalent integer,

• round – the result is rounded to nearest equivalent integer.

53

(a) fix rounding (b) floor
rounding

Figure 3.1: RTL description of multipliers using bit truncation, generated by
HDL Coder

Each of these rounding modes is implemented in a different way, and, consequently,
the number of additionally required logic elements differs as well. Using Simulink HDL
coder and fi() object in MatLab, it is easy to choose the most suitable rounding mode.
Figure 3.1 shows a hardware model of fix and floor rounding for bit truncation from 16

to 8 bits. Floor is the only rounding mode that does not require additional logic elements
(see Table 7).

3.2.2 Serial-to-parallel and parallel-to-serial converters

For automation of synthesis of different rotator structures, arithmetic operations are de-
fined as expressions – matrix transforms and it means that two samples must be taken at
the input simultaneously. For that reason, in real devices, a converter is needed before

Figure 3.2: Serial-to-parallel converter (Simulink block diagram)

each rotator, which converts data incoming in series into data occurring simultaneously.
The code for such converter could be directly written in VHDL, however, it is more con-
venient and visually understandable to use Simulink and HDL Coder, in order to obtain
the VHDL code corresponding to the block diagram in Figure 3.2.

Table 6: The number of logic elements

S2P P2S
LUT’s 50 49
ALUT’s 34 18

54

Figure 3.3: Timing diagram of the serial-to-parallel converter

A ModelSim timing diagram of the generated VHDL code is shown in Figure 3.3. Mod-
elSim is a widely used tool for HDL code simulation [28]-[34]. A more detailed description
of VHDL code generation using Simulink HDL Coder is given in Section 3.6. In addition to
the complex input and two outputs, the HDL coder adds standard digital device outputs
– clock pulse clk, operation enabling clk_enable and reset.

A parallel-to-serial data conversion is done in a similar way – Figure 3.4 shows a
Simulink block diagram to perform the opposite operations. A ModelSim timing diagram

Figure 3.4: Parallel-to-serial converter (Simulink block diagram)

of the parallel-to-serial converter is shown in Figure 3.5.
Since there are different programmable elements for different FPGA families, the num-

ber of logic elements required for one and the same algorithm may vary. On Altera FPGAs
two kinds of programmable logic elements are possible: LUT – Look Up Table and ALUT
– Adaptive Look-Up Table [44]. The advantage of ALUT is that these elements can be
combined in groups. Table 6 shows the number of LUTs and ALUTs required for imple-
mentation of serial-to-parallel (S2P) converter and parallel-to-serial (P2S) converter.

Figure 3.5: Timing diagram of the parallel-to-serial converter

55

Summary

This section reviews the issues, which, in author’s opinion, facilitate understanding of
this study. They concern the material in Sections 3.3 and 3.5 and cannot be regarded as
research results.

Conclusions

• To prevent that the wordlengths of signal samples increase too much, bit truncation
must be done after each multiplication.

• The rounding mode used for bit truncation affects the number of used LEs (see
Section 3.3) and the error of elementary spectrum calculation (see Section 3.5)

• The kind of logic combination schemes (LUT or ALUT) in an Altera FPGA affects
the number of used LEs – in case of ALUT a smaller number of LEs is needed (on
average ≈ 25%).

3.3 Implementation of the generalized Jacobi rotator

This section deals with two possible ways – traditional and using CORDIC algorithm –
how to implement into FPGA chips the complex Jacobi rotator represented by the complex
rotation matrix (1.3).

3.3.1 Traditional implementation using multipliers and adders [P9]-[P12]

For implementation of a single complex rotation 16 multipliers and 12 adders are needed
(see Figure 3.6), if separately calculated products of sines and cosines (3.3) are being used.
Given the fact that, in real systems, the real and the imaginary part of a complex signal are
processed separately, the multiplication of a complex signal by the complex rotation matrix
TU (ϕ, ψ, γ, 424) can be rewritten as follows, split into real and imaginary components:

y1Re = x1Re · ccg − x1Im · csg + x2Re · scp+ x2Im · ssp
y2Re = x2Re · ccg + x2Im · csg − x1Re · scp+ x1Im · ssp
y1Im = x1Im · ccg + x1Re · csg + x2Im · scp− x2Re · ssp
y2Im = x2Im · ccg − x2Re · csg − x1Im · scp− x1Re · ssp

, (3.2)

where

ccg = cos(ϕ) · cos(γ), csg = cos(ϕ) · sin(γ),
scp = sin(ϕ) · cos(ψ), ssp = sin(ϕ) · sin(ψ).

(3.3)

56

Figure 3.6: RTL description of the Jacobi rotator (no bit truncation)

Figure 3.7 shows, for the sake of simplicity, only the calculation of the YRe component
using fix rounding.

When implementing algorithms into real devices, it is important to estimate the calcu-
lation time – the time required for a signal to pass from the input to the output. In case
of FPGA, the number of used logic elements has to be also estimated. Table 7 shows the
signal delay time and the number of used logic elements in dependence of the rounding
mode and the wordlength of signal samples. In the table, win denotes the WL of input
signal, wmult – the WL of intermediate result after multiplication (if no bit truncation is

57

Figure 3.7: RTL description of the YRe component calculation, using fix
rounding (win = 8, wmult = 12, wout = 8)

done, wmult = 2 · win), wout – the WL of output signal. Note that changing the round-
ing mode and/or the WL of signals affects also the extent of FPA error (FPA errors are
discussed in detail in Section 3.5).

Since parametrical angle-based transforms consist of several REs (see Section 2.3), it
is important to keep FPGA resource consumption of each RE as low as possible. In view
of that, floor rounding is accepted as optimal rounding mode for bit truncation (see Table
7). It is also the fastest of hardware rounding modes.

Table 7: Comparison of resource consuming, TPD and the number of LEs for
some wordlengths and rounding modes, EP2C35F672C6 (taken from [P12],

complemented)

Word lengths worst-case tpd LEs
win wmult wout

Fix
8 8 8 26.023 ns 334
8 16 8 24.949 ns 251
8 16 16 22.782 ns 192

Floor
8 8 8 20.551 ns 108
8 16 8 22.494 ns 192
8 16 16 22.782 ns 192

Round
8 8 8 26.483 ns 334
8 16 8 25.799 ns 251
8 16 16 22.782 ns 192

Nearest
8 8 8 22.762 ns 268
8 16 8 23.188 ns 224
8 16 16 21.577 ns 192

3.3.2 Implementation using CORDIC algorithm

For the time being, implementation of complex rotation using CORDIC algorithm is de-
scribed only theoretically [45]. Therefore it is not possible to perform a precise comparison
of required logic elements between this and the traditional way of implementation (see

58

Section 3.3.1). The load of programmable logic can be estimated from the real CORDIC-
based implementation [P4]-[P7], [P9], because a single complex rotation can be performed
as four real rotations [45].

The CORDIC algorithm is based on simplifying the elementary rotation expressions
in a more convenient form for processing [46]. By transforming the elementary rotation
expressions, the following is obtained:

xi+1 = Ki(xi − yi · di · 2−i)
yi+1 = Ki(yi + xi · di · 2−i)

, (3.4)

where Ki = cos(tan−1 2−i) = 1√
1+2−2i

,
di = ±1 (determines the rotation direction of the vector).

The rotation angle of the vector depends on the iteration index:

ϕi = tan−1(2−i), i = {0..k} (3.5)

There are two approaches to implement the CORDIC algorithm in FPGA:

1. Unrolled – The elements of all CORDIC iterations (determination of the rotation
direction, bit shifting, addition) are physically located on the FPGA. By varying
the number of iterations (to obtain different precision), the number of used LEs
varies considerably. The CORDIC algorithm implemented in such a way is easier
to manage, but the time required to obtain the result depends on the number of
iterations and the operation speed of FPGA.

2. Iterative – There are only the elements of one CORDIC iteration on the FPGA. On
each clock pulse the results obtained in previous clock cycle are sent to the same
CORDIC elements. If the CORDIC algorithm is implemented in such a way, even
though several clock cycles are needed to obtain the result, the duration of each
iteration depends only on the operation speed of FPGA. The number of iterations
practically has no impact on the number of FPGA LEs used.

Table 8: Parameters of FPGA implementation of the CORDIC algorithm
[EP2C35F672C6]

Number of iterations
3 5 7 9 11 13

LE unrolled 44 137 258 372 479 579
iterative 234 273 274 299 302 304

min Ts (ns) unrolled 13.4 22.9 31.5 42 49.3 62
iterative 8 7.4 9 7.4 7.3 7.4

max angular
error (%) 7.8 2 0.5 0.12 0.03 0.008

59

Table 8 shows the quantities concerning implementation of the CORDIC algorithm in
FPGA. Depending on the selected architecture (unrolled or iterative) and the number of
CORDIC iterations, the number of used LEs and also the maximum clock pulse frequency
vary. In case of unrolled architecture, after time Ts shown in the table, the rotated vector is
obtained, but in case of iterative architecture – the result of one iteration. By multiplying
Ts by the respective number of iterations, the time can be calculated which is required to
obtain the result in the iterative architecture of CORDIC. Table shows also the maximum
possible angle error for CORDIC algorithm, expressed in percentages within the CORDIC
operation range [−90◦, 90◦].

It is not the most efficient approach to use only the CORDIC algorithm for rotation-
angle-based transforms, because, besides LEs, FPGAs contain also DSP elements [42],
which can perform comparatively fast FPA multiplication operations (∼ 20 ns on
EP2C35F672C6). When implementing transforms in pipeline architecture, the most effi-
cient resource utilization can be achieved, using, at the first stages (see Section 2.3), the
algorithms using DSP elements (because of their high operation speed), at the remaining
stages – combinations of CORDIC (no need for DSP elements, the number of which is
very limited on FPGA) and algorithms using DSP elements.

Summary on papers [P5], [P6], [P9]-[P12]

Obtained results

• Analysis of two ways of implementation of the complex elementary rotation in FPGA:

– traditional, using multipliers and adders,

– using CORDIC.

Conclusions

• When performing the rotation using CORDIC algorithm, no DSP elements are used.

• To perform the complex rotation with three parameters (variable angles ϕ, ψ un γ),
20 multiplications and 12 additions are required.

• Any way of implementation of the CORDIC algorithm (with five or more iterations –
specifically, using the chip EP2C35F672C6) is slower than the vector rotation using
DSP multipliers. It is characteristic for all Altera chips with integrated multipliers.

• An acceptable rotation precision can be achieved with at least nine CORDIC itera-
tions, that is, with 9 iterations the maximum angle error is 0.12%, but, for example,
with 13 iterations – 0.008%.

60

• The number of DSP elements on FPGA is limited – when no more DSP elements are
available, multiplication is performed using LEs. That increases LE consumption
considerably – ≈ 110 LEs per one 9-bit DSP element.

• When the traditional implementation of RE is used at the first stages of tree-like
algorithms, the highest operation speed is achieved. But if the CORDIC algorithm
is used, the number of required DSP elements decreases. It is recommended that
when developing devices with the highest possible operation speed, at the first stage
(for signal reconstruction – at the last stage) the traditional algorithm should be
used and at the remaining stages – CORDIC.

• Using the traditional algorithm, the chosen rounding mode for bit truncation affects
both the number of used LEs and the operation speed – floor rounding does not
require additional LEs and in this case the algorithm is executed with the highest
operation speed. For example, comparing floor and round rounding – if the WLs of
signal samples are (win = 8, wmult = 8, wout = 8), then floor needs three times less
LEs and the result is obtained in 20% less time (EP2C35F672C6).

• The complex rotation using CORDIC is not yet implemented in EGURIT, still it is
obvious that the complex rotation can be performed using four real rotations (that
is, real CORDICs). It means that the results, obtained in this research, concerning
resource consumption of the real CORDIC can be applied also to the CORDIC-based
complex rotations.

3.4 Simplifications of the elementary generalized complex rotation ma-
trix

The research has shown that it is not always necessary to implement the whole 3-parameter
complex rotation matrix (EGURM). There are a number of transforms for which a sim-
plification of the matrix, where some parameter is substituted by a constant, is sufficient.
For example, if ψ = π

2 and γ = 0, then (1.6) reduces to:

T(ϕ, ψ =
π

2
, γ = 0, 424) =

[
cos(ϕ) −i · sin(ϕ)

−i · sin(ϕ) cos(ϕ)

]
(3.6)

By splitting the product of a complex vector
[
y1

y2

]
and the complex matrix (3.6) into

real and imaginary parts, the following equations are obtained:
y1Re = x1Re · cos(ϕ) + x2Im · sin(ϕ)
y2Re = x1Im · sin(ϕ) + x2Re · cos(ϕ)
y1Im = x1Im · cos(ϕ)− x2Re · sin(ϕ)
y2Im = −x1Re · sin(ϕ) + x2Im · cos(ϕ)

(3.7)

61

.

.

.

.
.

cos

sin
.

.×

.×

.×

.×

.
.

.

.x1Re, x2Re

.x1Im, x2Im

.ϕ

.+

.+

.+

.−

Figure 3.8: Simplified block diagram of serial EGURM -rotator for (ϕ, ψ = π
2 ,

γ = 0, ID=424) [P9]

These expressions are used for implementation of rotation element (RE) into FPGA.
Figure 3.8 shows a simplified block diagram of implementation of the equations (3.7). For
each simplification and structure of the rotation matrix a separate VHDL code must be
created, and, therefore, their number can reach several thousands [P12]. This task would
be very time-consuming, so an automated system has been created (see Section 3.6) to
check all structures and simplifications of the rotation matrix and generate corresponding
VHDL code.

Table 9: The number of operations for some sets of angles and rotators
without using memory [P11]

ϕ var var var π/2 var var π/2

ψ var var π/4 π/4 0 π/2 π/2

γ var 0 π/4 var 0 π/2 any
M 20 14 8 0 8 0 0
A 12 8 4 4 4 4 0
MC 0 0 4 4 0 0 0

The using of simplifications reduces the number of necessary arithmetic operators.
Table 9 shows the number of multiplications and additions, including the mutual products
of sines and cosines (3.3), needed for the complex rotation.

Summary on papers [P9], [P11] un [P12]

Obtained results

• A symbolic math algorithm, built in EGURIT [P12], which allows to find , for a
given set of angles, all the possible EGURM simplifications (faces) and expressions
for the corresponding elementary spectrum.

62

Conclusions

• By fixing any of the parameters (ϕ, ψ or γ) to a constant value, it is possible to
reduce essentially the number of multiplications and additions needed for vector
rotation. But it also means that the number of possible variations of RE increases.
For example, by setting six different values (variable, 0, π/6, π/4, π/3, π/2) for
each parameter and applying it for all the possible RE structures (shapes), it can be
calculated that the total number of different RE modifications is 6880 [P12].

• Choosing constant values to be, for example, 0, π
4 ,

π
2 , some (up to 7) variations of

standardized expressions can be obtained. They differ by the number of M , A and
MC.

• To manage the immense amount of EGURM simplifications and corresponding ele-
mentary spectra, it is necessary to automate the process of generating these expres-
sions.

3.5 Fixed-point error

This section discusses a fixed-point error at the output of RE element, depending on the
wordlength (WL) of input signal samples and intermediate signal samples (inside RE).

One of the sources of fixed-point errors is the truncating of signal sample WL. The
scaling of WLs must be done when implementing algorithms in fixed-point devices. De-
pending on the WL of input, intermediate and output signals, the error for obtaining the
output signal (spectrum of two samples) varies. Table 7 in Section 3.3.1 shows how the
number of used logic elements vary for different signal WLs.

(a) win = 8, wmult = 12,
wout = 16

(b) win = 8, wmult = 12,
wout = 8

Figure 3.9: Fixed-point errors for a 250-samples long noise-like signal

63

Figure 3.9 shows fixed-point errors for each sample of a 250-samples long noise-like
signal, when the number of bits in intermediate results after multiplication increases by
4 bits. The errors are expressed in percentages of the fixed-point dynamic range and
calculated according to the following formula:

ϵ% = ϵk · 100% =
v̂ − v
r

· 100%, (3.8)

where v̂ – signal with a fixed-point error, v – signal with no
fixed-point error (obtained using MatLab floating point), r –
fixed-point range.

An FPA error distribution histogram, obtained for a 100000-samples long noise-like
input signal, is shown in Figure 3.10.

Figure 3.10: Distribution of FPA errors (win = 8, wmult = 8, wout = 8, floor
rounding)

For comparisons it is much more convenient to use the mean square error, which is
calculated as follows:

ϵMSE =

√√√√ 1

N

N∑
k=1

ϵk2 (3.9)

Also the chosen rounding mode (see Section 3.2.1) affects the extent of fixed-point
error. Table 10 shows fixed-point MSE and Table 11 – maximal FPA error modulus for all

Table 10: Fixed-point MSE ϵMSE

Signal properties Rounding Type
win wmult wout Floor Fix Round Nearest
8 8 8 0.39% 0.40% 0.21% 0.22%
8 16 8 0.30% 0.32% 0.19% 0.19%
8 16 16 0.16% 0.16% 0.15% 0.15%

64

Table 11: Maximal fixed-point error modulus max(abs(ϵ%))

Signal properties Rounding Type
win wmult wout Floor Fix Round Nearest
8 8 8 1.29% 1.38% 0.89% 0.96%
8 16 8 0.95% 0.96% 0.82% 0.83%
8 16 16 0.65% 0.68% 0.65% 0.66%

possible rounding modes and different signal WLs. To calculate the mean square error and
the modulus of maximal error, 100000-samples long data sequences are used, generated
using the MatLab built-in noise generator with mrg32k3a algorithm.

Figure 3.11 shows how FPA errors change by varying WLs in different ways. The

(a) w = {4..16} (b) w = {8..16}

Figure 3.11: Fixed-point MSE, for different WL (floor rounding)

notation “nnn“ (“winwmultwout“) means that WLs of input signal (win), signal after mul-
tiplication (wmult) and output signal (wout) are varied equally. “8n8“ means that WL of
input and output signals are fixed to 8 bits, but the WL of signal after multiplication is
varied. ”816n” – the WL of input signal is 8 bits, after multiplication – 16 bits, and the
WL of output signal is varied.

Summary (the results have not been published)

Although the results (graphics, tables, formulas) have not been published, a tool for error
estimation is included in EGURIT ([P12]).

Obtained results

• A tool for RE FPA error estimation.

65

Conclusions

• The developed tool allows to calculate mean square errors, arising in performing an
EGU -rotation, for different:

– wordlengths of input signals, intermediate signals (after multiplication) and
output signals,

– rounding modes.

• The developed tool should (is planned) be improved to allow to determine automat-
ically optimal wordlengths and rounding modes for a given error.

3.6 Automation of implementation of EGU-rotator [P11], [P12]

As mentioned in Section 1.2.1, the number of rotation matrix structures (shapes) is 32,
when ϕ, ψ, γ ∈ [0, 90◦]. Considering all the possible modifications of EGU -rotation matrix,
the total number of different EGU -rotator realizations can reach even several thousand.
Thus it is evident that the manual management of implementation of EGU -rotator cannot
be real. This confirms the necessity for the implementation automation.

The following software is used for implementation automation: MatLab/Simulink,
Quartus II and ModelSim. The main tasks for each software are as follows:

• MatLab – Automation control, EGU -rotation matrix shape unitarity test, equation
simplification and separation into real and imaginary parts (by using Symbolic Math
Toolbox(SMT)), results calculation in floating point (double precision) and fixed
point arithmetics.

• Simulink – System simulation in FPA, VHDL code generation using HDL coder.

• ModelSim – VHDL code simulation.

• Quartus II – VHDL code compilation for chosen FPGA, FPGA programming.

MatLab/Simulink is the default standard for complex DSP tasks. Quartus II software
is chosen mainly because of practical experience with it and availability of adequate FPGA
design kits (which are purchased while working on several projects). Mentor Graphics
ModelSim is Altera’s recommended simulation tool. Command line scripting is available
for both Quartus II andModelSim software. This allows to perform VHDL code simulation
and compilation directly from MatLab. We can split the whole automation process into
several activities (more detailed described in Section 3.6.1):

• Using Symbolic Math Toolbox,

• FPA WL choice,

66

• MatLab function generation,

• HDL code generation,

• Testing.

3.6.1 Design automation steps

The main design flow is depicted in Figure 3.12, where “EGURM shape“ stands for
EGURM shape selection, “EGURM face“ – modification choice, “Text proc.” – symbolic
calculation and simplification of basic expressions, “FPA fi()“ – MatLab’s FPA object
construction for obtained equations.

Figure 3.12: Simplified design automation flow chart [P12]

Using symbolic math toolbox The first thing in this activity is the orthogonality
(unitarity) test for all possible structures (in developed tools (see Figure 3.13) indicated
as ”shapes”) of complex rotation matrix (1.3). Orthogonal structures then are saved
in database. Next, the simplification (“Face“, see Figure 3.13) is chosen, for instance,
(ϕ, ψ = π

4 , γ). With MatLab function latex() the LATEXform of equations is obtained.
Then, similar to (3.7), complex equations are separated into real and imaginary equa-

tions. Finally, obtained equations need to be split into basic expressions in such a way, that
each expression consists of one multiplication or one addition. For example, by splitting
(3.7), y1Re is obtained as follows:

m1Re 1 = x1Re · cos(ϕ)
m1Re 2 = x2 Im · sin(ϕ)
y1Re = m1Re 1 +m1Re 2

(3.10)

67

FPA WL choice In this activity WLs for intermediate results are obtained. This can
be done manually or using special algorithm. When MatLab’s fi() object is used we should
enter both the total WL of signal and the fraction WL. We should keep in mind that
vector rotation is done by algorithm. Because of that, without input signal vector length
scaling, output signal can exceed Q1.x FPA format limits (when input signal is in Q1.x

FPA format). For example, when the vector [−1, −1] is rotated clockwise by 45◦ we
obtain [0, −

√
2]. This is the reason why output signal is in Q2.x FPA format, which gives

range [−2, 2− 1
2x]. Q3.x or Q4.x FPA formats could be needed for intermediate results

(depending on adders count).
The following principles are used for signal WL calculation algorithm:

• Chosen multiplier output signal WLs are set (wmult), keeping Q1.x FPA format.

• When signal is multiplied with a constant coefficient, the WL and the number of
fraction bits stay unchanged,

• The adder output signal WL is increased in such a way, that the number of fraction
bits stays unchanged.

MatLab code generation From symbolic equations and FPA WLs a MatLab function
for HDL code generation must be obtained. The using of Embedded MatLab Function
(EMLF) in Simulink is more preferable than building corresponding Simulink block di-
agram using add_block() function. A MatLab function can be used as EMLF when
%#eml compilation directive is added in function kernel.

HDL code generation The EMLF with the reference to the external MatLab func-
tion is inserted into Simulink model. All outputs (X1Re, X1Im, cf, etc) must be added
and the Q1.x FPA WL of input signals must be specified. Symbolic expressions are con-
structed so that they contain only real multiplication and addition operations, and there-
fore, input parameters include also sin(ϕ), cos(ϕ), sin(ψ), etc. In order to have as few as
possible multipliers in the rotator module, the necessary sin/cos products, for example,
ccg = cos(ϕ) · cos(γ), are also given as input parameters. The corresponding HDL code is
generated by calling MatLab function makehdl(). When correspondingly configured, it
generates also Quartus II and ModelSim scripts (see also Section 3.6.2).

Testing Three different tests are used:

• MatLab floating point test,

• Simulink with FPA test,

• HDL code ModelSim test.

68

Input signals for all tests are generated using MatLab random number generator with
mrg32k3a algorithm (uniform distribution). This algorithm has multiple stream support
and approximate stream period is 2127 samples. Generated input signal streams are formed
– asMatLab vectors for floating point test, as a structure inMatLab workspace for Simulink
test, and as a *.do file for ModelSim test. Floating point and Simulink test results are
used for MSE calculations. ModelSim test results are compared to Simulink test results
to make sure that VHDL code works properly.

3.6.2 Automation tools

The developed automation tools (MatLab GUIs) and their main functions are listed below.

Rotation Matrix Viewer (see Figure 3.13) (∼ 750 Matlab lines)

• EGURM shape choice,

• EGURM face choice,

• Face parameter combination choice,

• LATEXrepresentation of symbolic equations.

This tool is used to choose an EGURM shape to be implemented in FPGA. It uses
a database of all valid shapes, created beforehand. This tool allows also to obtain a
simplifications (face), if needed, for a chosen shape.

Figure 3.13: Rotation Matrix Viewer Graphical User Intarface GUI [P12]

69

Figure 3.14: Spectrum Expressions GUI [P12]

Spectrum Expressions (see Figure 3.14) (∼ 2100 MatLab lines)

• LATEXrepresentation of spectrum calculation expressions,

• Spectrum coefficient choice and ASCII expressions for calculation,

• Automatic/manual setting of signal WL,

• Generation of Embedded MatLab function.

This tool is used to set FPA WLs and generate a MatLab function for HDL code
generation. This function is used in the Simulink model shown in Figure 3.15.

HDLCoderGUI (see Figure 3.16) (∼ 600 MatLab lines)

• Floating point and Simulink test,

• Configuration of Simulink HDL coder,

• Generation of VHDL code and Quartus II and ModelSim scripts,

• Creation of Quartus II project folders,

• ModelSim test and comparison of Simulink and ModelSim test results,

70

Figure 3.15: Simulink model for EGU -rotator VHDL code generation [P12]

• Quartus II compilation,

• Display results.

After HDL coder configuration the following files are generated automatically: Quartus
scripting file projNosaukums_quartus.tcl andModelSim scripting file projNosaukums_compile.do.
These two files are used for Quartus and ModelSim project creation and compilation on
the command line. When the ModelSim project is compiled, simulation is performed.
Simulation results are saved in *.lst file.

The capability to perform Quartus and ModelSim on the command line allows to exe-
cute Quartus and ModelSim software from MatLab, by using MatLab function system().
Each EGU -rotator project is compiled in a separate folder, which name contains informa-
tion on time and date.

Some time resources needed for the EGURIT compilation and simulation can be found
in Table 12. When performing EGU -rotator automation, we need to pay attention to

Figure 3.16: HDLcoderGUI Graphical User Interface

71

Table 12: Compilation/simulation time (Linux, Dell Latitude D 820) [P12]

Action Approx. time (s)
Simulink simulation (2500 points)
with EMLF code generation 4.5

Simulink simulation (2500 points) 0.7
VHDL code and script file generation
from Simulink model 2

Folder creation 0.003
ModelSim simulation 2

Quartus project compilation
(time depends on the used de-
vice and algorithm)

38 - Cyclone C12, FA*
545 -StratixIV E820, FA
28 - Cyclone II C35, SA*
45 - Cyclone II C35, FA

*FA – the full algorithm, SA –the simplest algorithm

Quartus project compilation time as it heavily depends on the parameters of chosen FPGA.
It is not practical to choose very powerful FPGAs (Stratix IV E820, for example) for FPA
error estimation.

Summary on papers [P11] and [P12]

Obtained results

• Situation in automation tool design, that is oriented to VHDL codes synthesis related
to Jacobi rotations, has been analyzed.

• The automation tool EGURIT for EGU -rotator VHDL code synthesis in Altera’s
FPGA has been developed. The following software is used for EGURIT :

– MatLab/Simulink,

– Altera Quartus II,

– Mentor Graphics ModelSim.

Conclusions

• In available literature no information on tools similar to EGURIT is found.

• Analysis of available literature shows that MatLab/Simulink software is the most
common environment for automated DSP system development.

• Analysis of available literature shows that, most commonly, Altera’s and Xilinx’s
FPGA are used for DSP, and VHDL codes are synthesized for FPGAs manufactured
by these companies.

72

• Quartus II and ModelSim command line scripting allows development of effective
automation tools.

• The developed automation tool allows synthesizing of VHDL codes and their imple-
mentation in FPGA for any of several thousand of EGU -rotator shapes and faces
(see summary of Section 3.4 or [P12]). The consumption of FPGA resources (the
number of LEs and DSP elements, timing parameters) can be determined using this
tool, as well.

• In a relatively short time EGURIT allows:

– To obtain parameters for a huge number of different RE shapes and faces,

– To estimate implementation options of rotation-angle-based transforms for N >

2 (to estimate potential FPGA resources – LEs, DSP elements, timing param-
eters).

• Time performance of the developed tool is determined by Quartus II project com-
pilation time (from some seconds to several minutes). This, in its turn, mainly
depends on FPGA chip complexity and computer performance. It is recommended
to choose chips with a smaller number of LEs for FPGA resource estimation.

• The developed automation system can also be adapted for FPGA development soft-
ware from other manufacturers, for instance, Xilinx ISE, Synopsis, etc. (generally
speaking, for such development software which allows command line scripting).

73

4 Experimental Devices

4.1 FPGA implementation of experimental CRAIMOT function gener-
ator

[P1] and [P4] describe the details about CRAIMOT BF generator. We can implement a
generator depicted in Figure 2.1 using Quartus II software (see Figure 4.1). The Quartus
II graphical environment has not been used in further versions of the devices because it is
more efficient to write directly in VHDL (all blocks of depicted block diagram are written in
VHDL (≈ 300 strings), but graphical environment is used only for block interconnection),
and simulation in graphical environment is not supported starting from Quartus II ver.
10.0.

Figure 4.1: CRAIMOT BF generator implemented using Quartus II 6.0
graphical environment

The parameters of the generator FPGA implementation are summarized in Table 13.
Simulation timing diagrams of BF generator are shown in Figure 4.2. For demonstra-

Table 13: The list of parameters of BF generator with serial architecture [P1]

Parameter Value
External clock used fclk = 48 MHz

Maximal number of angles n = 32

Max. BF length (samples) N = 2n = 4294967296

Wordlength for BF values w = 10 biti, Q1.x FPA
BF sample duration time TsBF = (3 · n+ 1)/(fclk/4)

BF repeating period TBF = 1/(N · Ts)

74

Figure 4.2: Simulation timing diagram for CRAIMOT BF generator (from
Quartus II 6.0) [P1]

tion purposes, a digital signal is converted to analog signal and shown on the oscilloscope
screen using the audio codec from the FPGA development kit. Figure 4.3 shows a com-
parison of the data imported from oscilloscope and the data generated by MatLab.

Figure 4.3: Shapes of ideal BF and experimental BF for p = 6 and N = 16
(the shape of captured BF is shifted up slightly for better comparison) [P1]

The CRAIMOT BF generator with serial architecture [P1] is one of the first from
practically implemented experimental angle-based devices.

Table 14: Consumption of hardware resources for sin/cos block ([P4],
improved)

Logic elements (LE) 9-bit Multipliers RAM bits
9-bit CORDIC n · 372 0 0
Linear Interpolation with 6
knots

n · 161 n · 10 0

RAM-based table 0 0 n · 2nα · w

75

Table 15: The list of parameters of BF generator with parallel architecture
[P4]

Parameter Value
External clock used fc = 100 MHz

Maximal number of angles n = 6
Max. BF length (samples) N = 2n = 64
Wordlength for BF values w = 10 bits, Q1.x FPA

BF sample duration time (ns) TsBF = 40 · (n− 1)
BF repeating period TBF = 1/(N · Ts)

Also the BF generator with parallel architecture [P4] was developed at the same time.
The sin/cos value generation component is included in the both architectures. BF value
error and the amount of used resources (see Table 14) depend on the kind of sin/cos
generation (linear interpolation, internal RAM, CORDIC). VHDL codes have been con-
tinuously improved, due to growing professional competence. This is a reason why data
in Table 14 differ from data provided in [P4]. In implementation of BF generator with
parallel architecture an FPGA advantage can be exploited – parallel structured elements,
which ensure higher performance in comparison with serial architecture (see Table 15).
The number of LEs depends on the BF length, because for the generation of BF sample
are necessary n = log2(N) sin/cos blocks simultaneously (see Figure 4.4).

Figure 4.4: Simplified block diagram of CRAIMOT BF generator with
parallel architecture [P4]

Summary on papers [P2] and [P5]

Obtained results

• Two versions of FPGA-based CRAIMOT BF generator.

76

• An expression for the calculation of BF minimal sample time (for implementation
into EP1C12 chip at 48 MHz clock).

• Estimation of consumed resources for three kinds of sin/cos value generation:

– using CORDIC algorithm,

– using optimized linear interpolation (LININT),

– using RAM table.

Conclusions

• The serial architecture of generator allows forming of very long BFs (N = 232) for a
relatively small number of allocated LEs.

• The minimal sample time changes linearly in dependence on the number of angles
(n). E.g., if the number of angles is varied from 5 to 12, the minimal sample time
changes from ∼ 1 up to 3 microseconds.

• The length of BF does not impact the number of used LEs for BF generator with
serial architecture.

• Performance of BF generator with serial architecture is more than sufficient for the
synthesis of audio signals.

• The sampling frequency of implemented BF generator with parallel architecture [P4]
is five times higher than that of BF generator with serial architecture [P1].

• The number of used LEs for implemented BF generator with parallel architecture
depends linearly on the number of angles (or logarithmically, on the length of BF)
and a sin/cos value generation method. E.g., for CORDIC algorithm, the number
n of used LEs is equal to n · 372.

• It is ascertained that the sin/cos component(s) (block(s)) consume(s) most of FPGA
resources used for the generator.

• The RAM table is the most efficient for sin/cos value generation, taking into ac-
count further technology development and increasing of the number of RAM bits on
FPGAs. LEs and DSP blocks are not used in this case.

• The algorithm of optimized linear interpolation is useful for sin/cos value generation
only if there are unallocated multipliers on the chip.

77

4.2 FPGA implementation of experimental signal spectrum analyzer

4.2.1 Signal spectrum analyzer with serial architecture [P2]

[P2] describes the details about implemented CRAIMOT spectrum analyzer that includes
BF generator. Table 16 shows the list of parameters for the real-time spectrum analyzer
based on BF generator.

Table 16: The list of parameters of spectrum analyzer [P2]

Parameter Value
External clock used fclk = 48 MHz

Signal block length for:

•real-time mode: N = 32, for Fs = 44.1kHz
N = 64, for Fs = 8.2kHz

•capture mode: N = 1024

Woedlength for signal
samples and spectrum
coefficients

w = 10 bits,
Q1.x FPA

A simple VGA video controller is added to the analyzer for demonstration of input
signal and obtained CRAIMOT spectrum on LCD. Figure 4.5 shows respective screen
snapshots.

This 1-D spectrum analyzer is the first of such a kind of experimental FPGA-based
devices, and it has established the ground for further development of DSP devices based
on more efficient algorithms (e.g., using RE).

(a) a) Piece of the input
signal of spectrum

analyzer

(b) CRAIMOT domain
spectrum

Figure 4.5: LCD snapshots [P2]

78

4.2.2 RE-based signal spectrum analyzer-synthesizer [P5]

This spectrum analyzer performs the calculation of spectrum using parallel input data.
A simplified spectrum calculation block diagram is shown in Figure 4.6. By ”CORDIC

Figure 4.6: Simplified block diagram of the RA-HT spectrum analyzer [P5]

block” is meant an array of REs, where the number of CORDIC REs is determined by the
chosen version of architecture for analyzer-synthesizer (see Table 17). This, in its turn, is
determined by the number of FOR loops. The use of loops:

• eases the implementation of Phi-transform. For example, for version 1 (see Table
17) only one clock pulse is needed to get the spectrum,

• increases the number of used LEs, because the transform is spread over the parallel
FPGA structure.

Summary

Obtained results

• The first experimental FPGA-based 1-D CRAIMOT spectrum analyzer with serial
architecture.

• Three experimental RE-based FPGA versions of RA-HT spectrum analyzers with
parallel architecture. In [P5] the RE array is labeled as CORDIC block.

Table 17: Comparison of analyzer/synthesizer versions [P5]

FOR
loops

CORDIC
cells

Logic
elements

Calculation
time (ns)

1. 2 nC = n · 2n−1 ≈ 800 + 600 · nC ≈ 70 · n, (n ≤ 3)
2. 1 nC = 2n−1 ≈ 800 + 600 · nC ≈ 70 · n
3. 0 nC = 1 ≈ 700 + 600 · nC + 50 · n · 2n−1 ≈ 70 · n · 2n−1

79

Table 18: The list of parameters of SANSYN [P5]

Parameter Value
External clock used fc = 50(100) MHz

Maximal number of angles nφ = n ·N/2 = 5 · 16 = 80
Maximal block length (samples) N = 2n = 32
Wordlength for sample values w = 10 bits, Q1.x FPA

CORDIC rotation time TCORDIC = 70 ns
Sample (also processing) time Ts = n · TCORDIC

Conclusions

• Performance of signal spectrum analyzer based on BF generator is poor, but can
be practically useful, for example, for rapid-analysis of telephony (Fs = 8kHz) or
biomedical signals (for example, EEG).

• Operation of implemented analyzer with serial architecture is spread in time (see
Section 2.2.2). For that reason, a relatively small number of LEs is used and the
analyzer is useful for low power devices.

• Since RE-based analyzer version is spread over the parallel FPGA structure, the
RE‑based signal spectrum analyzer is much faster (≈ 65 times for n = 5) than the
serial spectrum analyzer.

• It is possible to modify and use the RE-based spectrum analyzer as RABOT (or
some RABOT subclass, e.g., CRAIMOT) spectrum analyzer also.

• Both serial and parallel architectures are useful not only for spectrum analyzers but
for synthesizers also.

• It has been experimentally ascertained that implemented analyzer/synthesizer ver-
sion 1 (using two FOR loops) has the highest performance, but it needs the largest
number of REs and LEs. Taking into account that the system performs both spec-
trum calculation and signal reconstruction, the number of used LEs is equal to
≈ 16000, if n = 3 (for version 1). Version 3 is the most economic in regard to
resource consumption (≈ 3800 LE for n = 3), but it is also the slowest. For version
2 (one FOR loop), which may be regarded as tradeoff between the number of LEs
and implementation complexity, are needed ≈ 6400 LEs. The number of LEs grows
rapidly by increasing n, for example, version 1 is not implementable on the chosen
FPGA (EP2C35F672C6), if n = 4.

4.3 Signal analyzer-synthesizer

The virtual speech analyzer-synthesizer (SANSYN) (see Figure 4.7) based on rotation an-
gle transforms was developed within the framework of author’s master thesis [14]. SAN-

80

Figure 4.7: Example of speech signal compression

SYN has been firstly mentioned in [50]. This tool is included in the corresponding MatLab
Toolbox [P8]. Additionally, SANSYN is an essential help for the prototyping of experi-
mental FPGA devices, e.g., for the implementation of experimental spectrum analyzer
[P2]. In the depicted tool, the search for optimal parameters (angles) is performed half-
automatically, by testing the angles one by one. In the latest versions of the developed
tool is built-in also nonlinear optimization function that allows to find the optimal trans-
form automatically. In the depicted example the spectrum calculation for Latvian vowel
”U” is performed in domain of angle-based transforms. For optimal angles, 95% of signal
energy are concentrated in 20% of BFs (25 out of 128). The developed tool allows also
to show and play an audio signal that is synthesized from spectral coefficients. The tool
allows to operate not only with audio but also with any other acoustic signals, including
also biomedical signals [51]. Time diagrams and spectrums obtained using the tool are
presented in [P1], [P2], [P8] and [3].

Summary

Obtained results

• A virtual tool for acoustic signal analysis and synthesis. It is included in the corre-
sponding MatLab Toolbox [P8] (phiansyn).

81

Conclusions

• Parts of the developed tool are used for the building ofMatLab Phi-transform toolbox
[P8]. The tool is very important for the implementation of FPGA devices, because it
allows to implement into FPGA different transforms, get spectrums and synthesize
signals.

• A function is built in the latest versions of the tool that allows to find the optimal
Phi-transform for chosen signal and offers new possibilities in signal compression.

• After finding of optimal angles, it is possible to get a good quality (by subjective
assessment) speech signal using a relatively small number of BFs (≈ 20%) [P1], [P2],
[P8]. It is approved also by experiments with FPGA synthesizer (the material is not
yet published).

• The modularity and open structure of the tool makes it a handy help for the proto-
typing of FPGA devices in future.

4.4 Haar-Like filters

In papers [P3], [P6] and [P8] novel orthogonal filters are described. The structure of these
filters are alike the structure of orthogonal wavelet decomposition-reconstruction filters.
The main difference is that the filters described here are tunable using parameters (rotation
angles). In the classical wavelet filters some specific orthogonal wavelet transform is used,
but in the novel filters can be used practically an infinite number of changeable transforms.
The filters can be run in extraction/rejection, spectrum analyzer/synthesizer and in other
modes. Probably, in [P6] and [P8] is firstly described the Signal Shape Resonance (but it
is outside the theses for defense). It is possible to extract a chosen signal ideally, if the
filter is tuned to selected signal shape, this signal is orthogonal to distortion signal and the
signal amplitude is greater than rounding error. In the case of rejection, the amplitude of
undesired signal may be maximal but it must be under saturation level. Filtration quality
depends on the orthogonality level of signals to be separated [P8]. In the mentioned papers
[P3], [P6] and [P8] three different examples are given for illustrative purposes:

• pulse-like signal extraction from additive noise,

• pulse-like signal extraction from the masking pulse train,

• rejection of pulse-like distortion from a corrupted sine wave.

The example in Figure 4.8 shows how a pulse-like signal is extracted from an additive
noise using rotation-angle-based orthogonal filters. If the pulse-like signal is orthogonal to
the noise (such a case appears in real life with a very low probability) and the parameters
of the transform are set so that the signal shape coincides with some of transform BFs,

82

Figure 4.8: Extraction of single 2nd CRA-HT BF from noise (SIMULINK
diagram) [P3]

the signal can be extracted from the noise ideally, even if its amplitude is considerably
less than the noise amplitude but greater than rounding error. For this demonstration it
is artificially ensured that the added pulse-like signal is orthogonal to the noise.

Figure 4.9 shows signal filtering timing diagrams. But Figure 4.10 demonstrates a
refinement of sine wave corrupted by a pulse-like signal, when the pulse amplitude exceeds
by far the sine amplitude. This example does not provide orthogonality, but the filtering
effect is outstanding anyway. The THD for the corrupted sine is 100% (a specially chosen
distortion amplitude), but after the filtering it falls down to 0.0004%! Whereas, we obtain
12.5% for the Haar wavelets and it is thousand times worse. In the figure are shown
simulation data and oscillograms obtained from FPGA.

The developed filter can be used as an efficient tool for the real-time pulse extrac-
tion/rejection. It is also possible to adapt the filter for non-pulse-like signals, and the
filtering quality, as in the case of pulse-like signals, depends only on the mutual orthog-

Figure 4.9: Extraction of single CRA-HT BF from additive noise [P3]

83

(a) MatLab simulation (b) Experimental results

Figure 4.10: Filtering of sine wave corrupted by pulse [P6]

onality level of the signal and distortion. Table 19 summarizes the parameters of DeRe
filters (for two different implemented versions [P6]) and consumption of FPGA resources.
The shape of filtered pulses is determined by the filter parameters (angles). By modify-
ing the depicted CRA-HT filter, it is possible to get the CRAIM-HT filter (see Section
1.2.3), which operates with a larger number of control parameters and, for that reason, the
diversity of filtered pulse shapes is larger, too. In our opinion, in the case of CRAIM-HT
we have the best ratio between the diversity of pulse shapes un the number of parameters.

Table 19: The list of parameters of DeRe filter [P6]

Parameter Value
External clock used fc = 50(100) MHz
Wordlength for sample values w = 10 bits, Q1.x FPA
Sample time (processing time
per stage) Ts = 70 ns

Maximal
number of
stages

version 1
version 2

n = 3
n = 9

Maximal
number of
angles

version 1 nφ = n ·N/2 = 12
version 2 nφ = (2n+2 − 2) = 1022

v.2, CRA-HT nφ = 1
v.2, CRAIM-HT nφ = n
v.2, RSA-HT nφ = 2n−1

Number of
logic elements

version 1
version 2

700 · (2n+2 − 4)
1400 · n+ 15 · (2n+1 − 2)

84

Summary on papers [P3], [P6] and [P8]

Obtained results

• FPGA-based experimental parametrical orthogonal RA-HT filters.

• A set of parameters for FPGA implementation of two parametrical filter architec-
tures.

Conclusions

• Literature analysis shows that the developed parametrical filters are original designs.

• The decomposition part of the created filters can be used also as a spectrum analyzer
and the reconstruction part – as a signal synthesizer in the domain of corresponding
transform.

• The created filters are similar to the classical wavelet filters. The difference between
them are such that a particular orthogonal transform for wavelet filters is fixed, but
for phi-filters – changeable.

• The experiments with implemented CRA-HT and CRAIM-HT show that these
filters are very effective for extraction/rejection of different pulse-like signals. The
filtration efficiency depends on the mutual orthogonality between filtered signal and
noise. So, for example, the THD for a corrupted sine wave (a pulse-like signal is
used for distortion) could be reduced more than 200000 times, and it is 30000 times
better than using a wavelet filter.

• Modification of the created filters allows to use them also for filtering signals having
in time (space) spread energy (for example, signals with CRAIMOT BF form).
The filtering efficiency depends on the orthogonality level of signals to be separated.

• It is found that the processing time for one sample practically does not depend on the
clock frequency, when phi-filters are implemented in FPGA using enrolled CORDIC
algorithm ([P4]-[P7], [P9]). The processing time is ∼ 70 (40) ns (for 9 iterations)
when implemented on EP2C35F672C6.

• Parameters of two FPGA implementation architectures (depending on the number
of REs) are collected. It is found that minimal consumption of FPGA resources (for
Ts = 70ns) is obtained using version 2 architecture [P6].

• Approximate experimental equations for LEs consumption assessment are found (see
Table 19). For example, if the number of filter stages n = 3, then LEs consumption
for ver. 1 is ∼ 19600, but for ver. 2 – ∼ 4320.

85

• It is found that although ver. 1 is easier to make, the consumption of LEs is so
large, that it is possible to implement 3 times less filter stages than for ver. 2, but
the timing performance is comparable.

• The use of several VHDL FOR cycles (ver. 1) facilitates the development of Phi-
filter, because in this case the result is obtained on every clock (the design is spread
over parallel FPGA structure, when VHDL FOR cycles are used). The reduction of
the number of FOR cycles reduces also the number of used LEs, but complicates the
management of Phi-filter, because the operation of filter is spread in time.

• No multipliers (DSP elements) are required, when the CORDIC algorithm is used.
This allows the Phi-filter implementation on lower-cost FPGAs (for instance, Cyclone
I), at the cost of the reduction of timing performance.

4.5 The prototype-simulator of data transmission system based on the
generalized orthogonal nonsinusoidal division multiplexing

In data transmission systems orthogonal frequency (sinusoidal) division multiplexing (OFDM)
is widely used, where the bits10 of data block (the length of the block depends on a par-
ticular OFDM) are modulated by a sinusoidal signal that is orthogonal to all other (also
sinusoidal) signals. This modulation scheme is preferable for data transmission in dis-
torted channels (mainly because of frequency selective fading). This modulation is per-
formed using IFFT. Nonsinusoidal signals also, for instance, different wavelets [47], may
be used for modulation. In literature such systems are named as Orthogonal Wavelet Di-
vision Multiplexing (OWDM) [48], [49]. [53] firstly compares classical OFDM and division
multiplexing system based on nonsinusoidal orthogonal functions (Hadamard). Japanese
researcher Oka [54] also describes the use of nonsinusoidal orthogonal transforms in data
transmission systems. Now, this research proves that it is possible to modulate data by
nonsinusoidal signals using parametrical transforms based on rotation angles. Since trans-
forms are parametrical, it is possible to change the shape of nonsinusoidal signal, and
in such a way also the sinusoidal spectrum structure of transmitting signal before the
up‑converter.

FPGA implementation of such a system (including implementation of data transmis-
sion channel) allows to simulate transmission of very long binary data sequences, which is
more time-consuming if other simulation environments (e.g. Simulink) are used. The ma-
jor drawback of this system – not only the angle-based transform should be implemented
into FPGA, but also the signal generator (PN Gen in Figure 4.11), measurement blocks
(BER counter and Power calculator), digital modulation elements (QPSK mod and QPSK
demod), transform control (ϕ) and data transmission channel (AWGN channel). On the
other hand, the major advantage of the system implemented in FPGA – simulation is

10usually, bits are modulated using some of quadrature modulation schemes (BPSK, QPSK, 4QAM, etc.)

86

.

.

.

. PN
Gen

. BER
counter

.QPSK
mod

.
CCRAIMOT

DE

.ϕ
.
AWGN
channel

. Power
calculator

.
CCRAIMOT

RE

.QPSK
demod

Figure 4.11: Simplified test scheme of digital part of CCRAIMOT GONDM
[P10]

performed in real time at 10 MHz clock frequency (for pn generator), and this means that
only one second is needed to get the Bit Error Rate (BER) with magnitude 10‑6.

..S/P

.Mapping .H .DAC .UC

.Channel

.DC.ADC.HT.Mapping

.P/S

.

.

. QPSK,
QAM, etc .CCRAIMOT, etc

.Transmitter

.Receiver

.Din

.Dout

Figure 4.12: Simplified block diagram of GONDM data transmission system
[P10]

For simulation two kinds of data transmission channels have been developed – a channel
with additive white Gaussian noise (AWGN channel) and combined channel with flat

Table 20: The list of parameters of design (Stratix III EP3SL1501152C2)
[P10]

Parameter Value
External clock used fc = 80 MHz
Sample (also processing) time 20 ns
Size of data block (N) 64
Wordlength for sample values w=11 bits, Q1.x FPA
Minimal step of angle 1◦

Hardware resources
DSP blocks (18-bit) 384(100 %)
Logic Utilization 25 %

87

Figure 4.13: Comparison of BER performances for different transforms and
AWGN channel [P10]

fading (FFC) and AWGN. By combining impacts of several FFCs a more complex channel
(FSFC) can be obtained, but then more sophisticated equalization algorithms would be
needed. The whole operation of system and the BER calculation are not possible without
these algorithms. The classical OFDM equalization and synchronization algorithms [52]
do not work in the case of GONDM [55].

As seen in Figure 4.13, the BER performance in the case of AWGN channel differs for
different transforms.

The Table 20 summarizes the parameters of the developed data transmission system.

Summary on papers [P10]

Obtained results

• Simulator-prototype of FPGA-based data transmission system based on generalized
orthogonal nonsinusoidal division multiplexing (GONDM). It includes:

– A modulator based on CCRAIMOT functions,

– A transmission channel simulator with additive white Gaussian Noise (AWGN),

– A combined channel simulator, which includes both forms – AWGN and flat
fading channel (FFC),

– A pseudo noise generator (pn-generator),

– Different auxiliary modulators (QPSK, QAM, etc.),

– A power calculator and a BER counter.

88

• Provisional experimental BER curves have been obtained using the developed simulator-
prototype.

Conclusions

• It is easy to use the DEcomposition/REconstruction filter architecture in GONDM
modulator, which minimizes LE consumption in comparison to parallel architecture.

• GONDM is a promising alternative for classical OFDM, because it significantly (in
fact, unlimitedly) extends the variety of orthogonal modulation schemes used in or-
thogonal division multiplexing. Provisional experiments show, that CCRAIMOT
functions can be adjusted to transmitted signal and transmission channel, thereby
decreasing the BER at least 10 times at signal/noise ratio more than 12 dB.

• Due to a relatively large consumption of FPGA resources (all DSP elements are used
for the simulator-prototype (specifically, EP3S150L1152C2), but multiplier creation
using LEs is highly ineffective – as mentioned in conclusions of Section 3.3), the
described 64-channel GONDM system could be implemented only in relatively high-
class FPGAs (Stratix III and more powerful).

• When implemented in FPGA, the system simulation platform allows to obtain BER
curves with the order of 10−6 in a very short time. That is hundreds of times
faster than using Simulink (20-40 min) or dozens of times faster than using Simulink
Real-Time Workshop (RTW).

• Valuable experience has been acquired when developing the simulator-prototype.
It can be generalized and used also in other fields demanding huge computation
resources (for example, in materials science). The FPGA simulator-prototype is a
promising alternative to parallel computers, because it allows to design real-time
devices for different uses.

• For the development of full GONDM system more serious research and financial
resources are needed. Here we only touch a part of potentially needed researches.
Actualities for the nearest future (the work has already started):

– Synchronization design for data transmission system,

– Frequency selective fading channel (FSFC) simulation,

– Channel equalization algorithms,

– Parameter adjusting algorithms.

89

Conclusion

The subject of phi-transforms is so broad that large human and financial resources are
required to fully cover it. The current development in this field has the following specific
features:

• Both the phi-transform theory and the possibility of practical implementation are
being researched simultaneously.

• Several development directions can be distinguished: signal analysis/synthesis, signal
compression, generalized frequency division multiplexing, image processing, automa-
tion of development of practical devices, etc.

The current phase of phi-transform development concerns preparing the ground for
further research. This doctoral study should be regarded as accomplished and seen as a
start platform for more extensive work.

The main emphasis of the doctoral study is laid upon the assessment of the possibility
of practical implementation of transforms. The doctoral thesis discusses the implementa-
tion in FPGA of several different‑purpose phi-transform-based devices and provides the
comparison of various parameters for them. The described experimental devices are first
phi-transform-based devices that have been developed, and they can be regarded as a pre-
liminary platform for developing commercial products. The current experience allows to
assess the complexity of phi-transform implementation and improve synthesis algorithms,
and to assess and improve device parameters – reducing the number of used FPGA logic
elements and increasing performance.

An essential preliminary work is done in the field of orthogonal filters, allowing to
create parametrical filters with unique properties, and it can be the ground for studies
(including doctoral theses) in various fields, for example, in radar and sonar signal pro-
cessing. For potential commercial purposes, as it mainly concerns creating an alternative
to OFDM data transmission, the developed experimental prototype-simulator of general-
ized frequency division multiplexing system is very important. It can serve as a preliminary
platform for the development of innovative frequency division multiplexing systems and,
at the same time, as an alternative simulation environment to virtual simulators. A pre-
liminary work done in generalized frequency division multiplexing is potentially useful not
only for data transmission and digital broadcasting, but also for already mentioned radars
and sonars. Research on the issues of this modulation has induced intensive research on
the basic element of the generalized transform (EGURM).

The notation of EGURM allows to describe in a rather simply way all possible struc-
tures of Jacobi matrix. As a result, an automated system for RE synthesis has been
created. By combining the theoretical side (the choice of EGURM structures, transforma-
tion of mathematical relations, etc.) and the practical side (VHDL simulation, estimation

90

of necessary FPGA resources), the way of synthesis of phi-transforms has been funda-
mentally changed – using the mentioned system, synthesis of basic elements (REs) of
phi-transforms is done automatically. For the system to be fully automatic, the algorithm
for calculation of signal sample wordlengths must be improved and incorporated into the
tool for fixed-point arithmetic (FPA) error estimation. Currently, the tool allows to cal-
culate the error for different wordlengths of RE signal samples, but these values must be
entered manually. The improvements are needed to allow to obtain wordlength values for
a given error value.

As future work, it is important to develop the automated phi-transform synthesis
system UNITIT. This system would combine tree-like decomposition-reconstruction algo-
rithms and EGURIT. Besides, in the near future, EGURIT must be supplemented with
the complex CORDIC and a resource estimation algorithm. It would allow to use both the
built-in traditional rotation algorithm and CORDIC, and therefore optimize consumption
of logic elements and performance. No less important task is to adjust EGURIT and
UNITIT systems for other development platforms (Xilinx, Synopsis, etc.), and design
corresponding experimental ASIC chips. The work on that has already started.

The subject of phi-transforms is open to intensive further research. The development
of FPGA implementation of phi-transforms for 2-D signals has been started. The first
paper on this subject ([11] from the all published papers list) deals with the issues of
memory management and implementation architectures for 2-D transforms based on RE.

91

References

[1] “http://digi.lib.ttu.ee”

[2] RTU, ”RTU Doktorantura 2008./2009.” RTU izdevnieciba, Riga-2009.

[3] M. Tērauds, ”Jauna veida diskrētie ortogonālie pārveidojumi un ar signālu apstrādes
pielietojumiem saistītās kļūdas”, disertācija, RTU, ETF, 234 lpp, 2009.

[4] Gene H. Golub, Charles F. Van Loan, ”Matrix computation”, The Johns Hopkins
University Press, 3rd edition, 1996. - 728 p.

[5] F. Lorenzelli and K. Yao, ”SVD updating for nonstationary data,” IEEE Catalog
Number 0-7803-2123494, 1994, pp.450-459.

[6] J. Gotze, S. Paul, M. Sauer, ”An Efficient Jacobi-like Algorithm for Parallel Eigen-
value Computation”, IEEE Transactions on Computers, Sept. Vol. 42, Issue 9, pp.
1058-1065, 1993.

[7] H. Toda, Zhong Zhang, “Perfectly Translation-Invariant Complex Wavelet Packet
Transforms“, International Conference on Wavelet Analysis and Pattern Recognition,
2009. ICWAPR 2009. pp. 374-389, 2009.

[8] Xiao-Ping Zhang, Mita D. Desai and Ying-Ning Peng, ”Orthogonal Complex Filter
Banks and Wavelets: Some Properties and Design”, IEEE transactions on signal
processing, VOL. 47, NO. 4, april 1999, pp.1039-1048.

[9] A. M. Trahtman, ”Osnovi teorii diskretnih signalov na konecnih intervalah”,
Moskva:Sovetskoe radio, 1975.

[10] B. J. Fino, R. V. Algazi, ”A unified treatment of discrete fast unitary transforms,”
SIAM J. Comput., 1977, 6, No. 4, pp. 700-717.

[11] P. P. Vaidyanathan, ”A unified approach to orthogonal digital filters and wave digi-
tal filters, based on LBR two-pair extraction,” IEEE Transactions On Circuits And
Systems, Vol. CAS-32, No. 7, pp. 673 686, July 1985.

[12] P. Rieder, J. Goetze, J. A. Nossek, and C. S. Burrus, ”Parameterization of orthogonal
Wavelet transforms and their implementation,” IEEE Transactions On Circuits And
Systems—II: Analog And Digital Signal Processing, Vol. 45, no. 2, February 1998,
pp. 217-226.

[13] H.C. Andrews, J. Kane, ”Kronecker Matrices, Computer Implementation, and Gen-
eralized Spectra”, Journal of the ACM-1970-April-Vol 17, pp. 260-268, 1970.

[14] G. Valters, ”CRAIMOT funkciju izmantošana latviešu valodas runas analīzē un sin-
tēzē”, maģistra darbs, RTU, ETF, 82 lpp, 2007.

92

[15] P. Misans, ”Introduction Into The Haar Like Transforms Based On Rotation Angles.”
Scientific Proc. of Riga Technical University, Telecommunications and Electronics,
Riga, RTU, vol. 7, Dec., 2007, pp. 6-13.

[16] B.J. Fino, V.R. Algazi, ”Unified Matrix Treatment of the Fast Walsh-Hadamard
Transform”, IEEE Transactions on Computers, pp. 1142-1146, 1976.

[17] J. W. Cooley, J. W. Tukey, ”An algorithm for the machine calculation of complex
Fourier series”, Math. Comput. Vol. 19, No. 90. Apr. 1965, pp. 297–301.

[18] W.H. Chen, C.H.SMith, and S.C.Fralick, ”A fast computational algorithm for discrete
cosine transform”, IEEE Transactions on Communications, Vol.25, pp. 1004-1009,
1977.

[19] C. V. Rammamoorthy, H. F. Li, ”Pipeline Architecture”, Computing Surveys, Vol.
9, No. 1, March, pp.42, 1977.

[20] R. van Spaendock, T. Blu, R. Baraniuk, M. Vetterli, ”Orthogonal Hilbert Transform
Filter Banks and Wavelets”, Conference on Acoustics, Speech and Signal Processing,
Proceedings ICASSP’03, Vol.6, pp. VI-505-8, 2003.

[21] Cishen Zhang, Song Wang and Lihua Xie. ”Sequentially Operated FIR Multirate
Filter Banks”, 5th International Conference on Signal Processing, Proceedings of
ISCP200, Vol.1, pp.133-138, 2000.

[22] C. Herley and M. Vetterli, ”Orthogonal Time-Varying Filter Banks and Wavelet Pack-
ets”, IEEE Transactions on signal processing, VOL. 42, NO. 10, October 1994

[23] Guangyu Wang, ”The Most General Time-Varying Filter Bank and Time-Varying
Lapped Transforms”, IEEE Transaction on Signal Processing, Vol.54, No.10, pp.3775-
3789, October 2006,.

[24] S. White, ”Digital Signal Processing: A Filtering Approach”, Delmar Cengage Learn-
ing, ISBN-13: 978-0766815315, pp. 256, 2000.

[25] Soo-Chang Pei, Jong-Jy Shyu, ”Complex Eigenfilter Design of Arbitrary Complex
Coefficient FIR Digital Filters”, IEEE transactions on Circuits and Systems, Analog
and Digital Signal Processing, Vol. 40, No. 1, pp. 32 - 40, 1993.

[26] U. Meyer-Baese, ”Digital Signal Processing with Field Programmable Gate Arrays”,
Springer, ISBN 3-540-21119-5, pp.527, 2003.

[27] R. C. Ismail, R. Hussin, ”High Performance Complex Number Multiplier Using
Booth-Wallace Algorithm”, IEEE International Conference on Semiconductor Elec-
tronics,ICSE ’06, Pp. 786 - 790, 2006.

93

[28] U. Hatnik, S Altmann, ”Using ModelSim, Matlab/Simulink and NS for Simulation of
Distributed Systems”, Proceedings of the International Conference on Parallel Com-
puting in Electrical Engineering (PARELEC’04), pp. 114-119, 2004.

[29] K. Arshak, E Jafer, C Ibala, ”Power Testing of an FPGA based System Using Model-
sim Code Coverage capability”, IEEE Design and Diagnostics of Electronic Circuits
and Systems, DDECS ’07, pp. 1-4, 2007.

[30] B. Gsetner, David V. Anderson, ”Automatic Generation of ModelSim-
MatlabInterface for RTL Debugging and Verification”, 50th Midwest Symposium on
Circuits and Systems, MWSCAS 2007, pp. 1497-1500, 2007.

[31] Sunil R. Das . Jun-Feng Li, Altaf Hossain, Amiya R. Nayak, Emil M. Petriu, Satyen-
dra Biswas, and Wen-Ben Jone, ”Improved Test Efficiency in Cores-Based System-on-
Chips Using ModelSim Verification Tool”, IEEE Instrumentation and Measurement
Technology Conference Proceedings, IMTC 2008, pp. 1487-1492, 2008.

[32] Sunil R. Das, Altaf Hossain, Jun -F. Li, Emil M. Petriu, Satyendra N. Biswas, Wen -B.
Jone, and Mansour H. Assaf, ”Further Studies on Improved Test Efficiency in Cores-
Based System-on-Chips Using ModelSim Verification Tool”, IEEE Instrumentation
and Measurement Technology Conference, I2MTC ’09, pp. 1132-1137, 2009.

[33] Yan Li , ling Huo, Xin Li, lin Wen, Yaohui Wang, Bin Shan, ”An Open-loop Sin
Microstepping Driver Based on FPGA And the Co-simulation of Modelsim and
Simulink”, 2010 International Conference on Computer, Mechatronics, Control and
Electronic Engineering(CMCE), pp. 223-227, 2010.

[34] Marcelo F. Castoldi, Manoel L. Aguiar, ”Simulation Strategy in VHDL Induction
Motor Control of DTC Code for”, 2006 IEEE International Symposium on Industrial
Electronics, Vol. 3, pp. 2248-2253, 2006.

[35] Jian Liang; R. Tessier, O. Mencer, ”Floating point unit generation and evaluation for
FPGAs”, 11th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, FCCM 2003, pp. 185-194, 2003.

[36] S. Paschalakis, P. Lee, ”Double precision floating-point arithmetic on FPGAs”,
Proceedings of IEEE International Conference on Field-Programmable Technology
(FPT), pp.352-358, 2003.

[37] F. Mayer-Lindenberg, V. Beller, “An FPGA-based floating-point processor array sup-
porting a high-precision dot product”, IEEE International Conference on Field Pro-
grammable Technology, FPT, pp. 317-320, 2006.

94

[38] M. Baesler, S. Voigt, T. Teufel, ”An IEEE 754-2008 Decimal Parallel and Pipelined
FPGA Floating-Point Multiplier”, 2010 International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 489 - 495, 2010.

[39] O. Chetelat, ”Fixed-Point digital controller”, Proceedings of the 2004 American Con-
trol Conference, Boston, Massachusetts, pp.2864-2869, 2004.

[40] Bruce W. Bomar, L. Montgomery Smith, and Roy D. Joseph, ”Roundoff Noise Anal-
ysis of State-Space Digital Filters Implemented on Floating-Point Digital Signal Pro-
cessors”, IEEE Transactions on Circuits and Systems: Analog and Digital Signal
Processing, Vol. 44, No. 11, pp. 952-955, 1997.

[41] G. Amit, U. Shaked, ”Small Roundoff Noise Realization of Fixed-Point Digital Filters
and Controllers”, IEEE transactions on Acoustic, Speech and Signal Processing, Vol.
36, No. 6, pp. 880-891, 1988.

[42] “www.altera.com/products/devices”

[43] E. L. Oberstar, “Fixed-Point Representation and Fractional Math”, Oberstar Con-
sulting, 07/17/2004, 9 pages.

[44] Altera, ”Stratix II Performance and Logic Efficiency Analysis“,
“www.altera.com/literature/wp/wpstxiiple.pdf”

[45] M. Otte, M. Bucker, J. Gotze, ”Complex Cordic-Like Algorithms for Linearly Con-
strained MVDR Beamforming“, International Zurich Seminar on Broadband Com-
munications, pp. 97-104, 2000.

[46] R. Andraka, ”A survey of CORDIC algorithms for FPGA based computers”,
FPGA’98, Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays.

[47] A. R. Lindsey et al., ”Wavelet packet modulations: A generalized method for orhog-
onally multiplexed communications”, in Proc. SSST’95, 1995.

[48] W. Yang, G. Bi, T.-S. P. Yum, ”A multirate wireless transmission system using
wavelet packet modulation”, in Proc. 1997 IEEE 47th Vehicular Technology Confer-
ence, 1997, vol.1, pp. 368-372.

[49] S.L. Linfoot, M.K. Ibrahims, ”Flexible modulation for digital terrestrial broadcast-
ing”, Electronic Lett., vol 42, no. 23, Nov. 2006, pp. 1360-1362.

[50] P. Misans, M. Terauds, G. Valters, T. Sile, M. Buikis, ”Introduction Into the Fast
Orthogonal Transforms Based on Rotation Angles – Part 2: On Phi-function based
Signal Analysis,” presented at the 10th International Conference Electronics, May
23-25, 2006, Kaunas, Lithuania.

95

[51] N. Vasilevskis, P. Misans, ” Using of Novel Haar Like Transforms for the Detection
of Epileptic Spikes,” presented at the 12th International Conference Electronics, May
18-20, Kaunas, Lithuania.

[52] H. Sari, G. Karam, I. Jeanclaud, ”Frequency-domain equalization of mobile radio and
terrestrial broadcast channels”, IEEE Global Telecommunications Conference, 1994,
GLOBECOM ’94, pp. 1-5, 1994.

[53] P. Misans, M. Torkelson, ”Preliminary Simulation of Multicarrier Modulation Data
Transmission System,” Nordic MATLAB Conference ‘95, Stockholm, Oct. 31 Nov. 1,
1995, Conf. Proc, pp. 55-58.

[54] I. Oka, M. P. C. Fossorier, ”A general orthogonal modulation model for software
radios,” IEEE Transactions on Communications, vol.54, No. 1, Jan, 2006, pp. 7-12.

[55] A. Aboltins, ”Comparison of Orthogonal Transforms for OFDM Communication Sys-
tem”, Kaunas, 2011, 5, pp. 77-80.

96

