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Ginzburg-Landau Model for Stability Analysis of
Fluid Flows
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Abstract - A general scheme for the solution of stability
problems for two-dimensional flows (the Navier-Stokes equations
and shallow water equations) by means of a weakly nonlinear
theory is analyzed in the paper. Equations of the first, second and
the third order are presented using a perturbation expansion of
the stream function of the flow and the method of multiple scales.
It is shown that the amplitude evolution equation for the
amplitude of the most unstable mode is the complex Ginzburg-
Landau equation. The equation is derived using solvability
condition at the third order. Possible applications of the
Ginzburg-Landau model are discussed in the paper.
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|. INTRODUCTION

The first step in the stability analysis of a base flow in fluid
mechanics is usually the linear stability analysis. The general
scheme of the method is well-known and presented in many
excellent textbooks (see, for example, [1]-[4]). Here we briefly
describe the main steps in the procedure. First, a steady base
flow U (X) is selected. Usually U (X) represents a relatively
simple velocity profile like plane Poiseuille flow in a channel
or Taylor-Couette flow between two rotating cylinders [2]-[3].
Second, small unsteady perturbations U'(X,t) are imposed
on the base flow so that the total velocity vector has the form
a(x,t) =U(X) +0"(X,t). Third, the vector U(X,t) is
substituted into equations of motion (for example, the Navier-
Stokes equations of viscous fluid flow). Next, the equations of
motion are linearized in the neighbourhood of the base flow,
that is, all nonlinear terms with respect to U'(X,t) are
neglected. Finally, solution of the linearized equations is
sought by the method of normal modes in the form

(X, 1) = V(X) exp(-4t), )

where A=A, +i4, is a complex constant. Further
simplifying assumptions are usually made at this stage. For
example, perturbations are assumed to be periodic with respect
to one or two spatial variables. The resulting ordinary
differential equation for a system of ordinary differential
equations together with zero boundary conditions forms an
eigenvalue problem. A nontrivial solution of the eigenvalue
problem exists only for some values of A . The base flow
U (X) is said to be linearly stable if all 4, >0, and linearly
unstable if at least one A, <0 . A classical example of a
linear stability problem is the Orr-Sommerfeld equation for
the analysis of stability of a plane Poiseuille flow [2], [3]. In
many cases a linearized problem contains a parameter y
(such as the Reynolds number R for two-dimensional viscous

flows or the bed friction number S for shallow water flows).
One of the objectives of linear stability analysis is to find the
values of the parameter » for which the base flow U (X) is
linearly stable.

Linear stability analysis can be used in order to investigate
when a particular base flow becomes unstable. Linear stability
calculations provide the critical value of the parameter y and
the form of the most unstable mode. However, linear stability
theory cannot predict the behaviour of the most unstable mode
when the parameter y is above the threshold.

Il. WEAKLY NONLINEAR ANALYSIS

Weakly nonlinear theories can be used in order to analyze
the development of the most unstable mode in the region
where the growth rate of the most unstable perturbation is
positive. However, the growth rate cannot be too large since in
this case the perturbation will grow quickly, and nonlinear
terms become important after a short time. Thus, weakly
nonlinear theories are usually constructed in the
neighbourhood of a critical point (see Fig. 1 and Fig. 2).
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Fig. 1. A typical marginal stability curve for two-dimensional viscous flow.
Here R is the Reynolds number and k is the wave number of the perturbation
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Fig. 2. A typical marginal stability curve for shallow water flow. Here S is
the bed friction number and k is the wave number of the perturbation
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Solid curves in Fig. 1 and Fig. 2 represent marginal stability
curves (where A, =0). The regions of linear stability and

instability are indicated on the graphs.
We consider a small neighbourhood of the critical point

(K., 7.) . where the growth rate A, > 0 is quite small (here
7. =R, inFig. 1and y, =S, in Fig. 2). It is shown in [5]-

[8] that an amplitude evolution equation in this case is the
complex Ginzburg-Landau (GL) equation of the form

2
%=GA+58 'g‘
or o0&

—,LlelAl, (2)

where o=o0, +io;, 0 =0, +i0, and p =y, +iy,
are complex coefficients which can be computed using
linearized characteristics of the flow.

The constant £, is known as the Landau constant in the

literature. If £z, > O then finite saturation of the amplitude is
possible and (2) can be useful in analyzing the development of
instability. However, for plane Poiseuille flow £, < O (see
[5]) so that (2) is not useful at all since higher-order terms
become important as well.

There are many examples in fluid mechanics where the
constant 4, has the “right sign”, that is, where £z, > 0.
Examples include rotating convective flows [9], [10] and
shallow water flows [6]-[8].

I11. DERIVATION OF THE GINZBURG-LANDAU EQUATION

In this section we illustrate the basic steps of the derivation
of (2) under the assumption that equations of motion can be
reduced to one scalar equation with respect to the stream
function of the flow (examples include two-dimensional
Navier-Stokes equations and shallow water equations under
the rigid-lid assumption).

Suppose that equation of motion is reduced to the form

Ny =0, ®3)

where N is a nonlinear operator.
Consider a perturbation expansion of the form
v (X Y1) =y () + ey, (% Y. ) + &y, (X 1) @
+&%, (X, Y, 1) +...

where /() is the stream function of the base flow and the

role of the parameter & will be clarified later.

Consider a base flow U (y). Imposing small perturbations
on the flow and linearizing equations of motion in the
neighbourhood of the base flow, we obtain the linearized
equation for the function y/, :

Ly, =0. ®)
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Following the method of normal modes we seek the
solution to (5) in the form

wi (X Y,t) = (Y)exp[ik(x—ct)] +cc.,  (6)

where ¢, () is the amplitude of the normal perturbation, C
is the phase speed of the perturbation, and complex conjugate
terms are denoted by C.C.

Substituting (6) into (5) and using zero boundary conditions
for the function ¢, (y) we obtain the eigenvalue problem of
the form

Lo, = 0. (7

Numerical solution of (7) gives the critical values of the
parameters K=K ,» =y, and C=C, . The marginally
stable mode (in accordance with the linear theory) is given by
(6) where k=K., =y.and c=c, and ¢,(y) is the
eigenfunction of (7). Since eigenfunctions cannot be uniquely
determined, any function of the form Cg,(y), where C is

an arbitrary constant, also is an eigenfunction of (7). Hence,
any function of the form

wi (X, y,1) =Co,(y)eplik(x—ct)]+cc. (8)

represents a marginally stable mode. Note that constant
C cannot be determined by means of the linear stability
theory.

Assume that the parameter y is slightly different from the

critical value so that the base flow is linearly unstable but the
growth rate is quite small (for example, R = R_(L+&7) in

Fig. 1 or S=S_(1—&?) in Fig. 2). In other words, we
select the value of » in a small neighbourhood of the critical

point in the unstable region shown in Fig. 1 and Fig. 2. Note
that the dependence of y on ¢ is determined by the form of

the equation of motion. Our goal is to introduce a slowly
varying amplitude function A, which replaces C in (8), and
derive an amplitude evolution equation for A.

Introducing “slow” time T =&’ and spatial coordinate
E=¢e(Xx —Cgt) , Where Cq is the group velocity, substituting
(4) into (3) and collecting coefficients containing the same
powers of & we obtain the sequence of linear problems

Ly, =0, 9)

Ly,="1, (10)

Ly,="f,, (11)
and so on.

Note that the derivatives with respect to X and t in this
case are replaced by
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Replacing constant C in (8) by a new amplitude function
A(&,7) we obtain

y1(Xy,1) = AS, 7)en (y)explik(x —ct)] +c.c.. (13)

The form of the solution for y, is determined by the
function f; in (10). Similarly, the function f, in (11)
determines the form of w5 and so on. Note that the operator

L on the left-hand side of each equation in (9)-(11) is the
same. If k =k, and y =y, then homogeneous equations

Ly, =0, Ly =0 have non-trivial solutions. It follows

from the Fredholm’s alternative [11] that equations
Ly, =f,, Lyy =f, have solutions if and only if the

functions f; and f, are orthogonal to all eigenfunctions of the

corresponding adjoint problem.
The adjoint equation to (7) is

Lo =0, (14)

where L§ is the adjoint operator and ¢; is the corresponding
adjoint eigenfunction (computational details can be found, for
example, in [6]).

Analysis of the function f; in (10) shows that it has the
form

fi(x,y,t,5,7) = AA*fl(o)(y)eikX + Agfl(l)(y)e”‘(x““)

_ (15)
+A| A2 (y)e? D fcc,

where fl(o)(y), fl(l)(y) and fl(z)(y) are known functions of

y . Using (10) and (15) we conclude that v, should be sought
in the form

va(X.y.t.E,7) = AN 92 (y)e'™ + Aol (y)e!e) (16)
+ A A (y)e N 4 cc,

where (ogo)(y), gogl)(y)and gpéz)(y)are unknown functions

of y . Substituting (16) into (10) and using (15) we obtain the

following three boundary value problems

Mops®) =£(), (17)
MypsH =10, (18)
Myl =13, (19)

where My, M; and M, are linear operators. Furthermore,
£(%), £®) and £?) are known functions of y .

Problems (17)-(19) are solved numerically. Note that
equation (18) is resonantly forced since the corresponding

homogeneous equation at k =k., c=c, and y =y, has a
nontrivial solution. Thus, a singular value decomposition
method [12] should be used in order to solve (18).

Solvability condition at the second order in & can be
written in the form

<f1(1)1§01a> =0,

where <0,0> is a suitably defined dot product. Using (20), we
obtain the group velocity C . .

Solvability condition at the third order in & gives equation
(2) (at least this statement is true and has been verified by
direct calculations for two-dimensional Navier-Stokes
equation and shallow water equations under the rigid-lid
assumption). The coefficients of (2) are explicitly computed as
integrals containing characteristics of the linearized problem
(the details can be found in [5]-[8]).

(20)

V. USE OF THE GINZBURG-LANDAU EQUATION

Ginzburg-Landau equation is often used to model spatio-
temporal dynamics of complex flows. The reason is that (2)
exhibits a rich variety of solutions depending on the values of
the coefficients 0,0 and g . In addition, it contains the
terms representing linear growth, diffusion and nonlinearity.
In many cases the Ginzburg-Landau equation is used as a
phenomenological model, that is, it is assumed but not derived
from the equations of motion. Experimental data are often
used in such cases in order to estimate the coefficients of the
equation.

In other cases the Ginzburg-Landau equation can be derived
from the equations of motion (examples are given in [5]-[8]).
The coefficients of the equation are calculated in a closed
form as integrals containing characteristics of the linearized
problems.

Ginzburg-Landau equation and its properties are
extensively studied in the literature (see, for example, [13] and
[14]). Numerical analysis of the Ginzburg-Landau equation is
simpler than numerical solution of the equations of motion. In
addition, stability of some simple (for example, periodic)
solutions of the Ginzburg-Landau equation allow researchers
to simplify the analysis of spatio-temporal dynamics of
complex flows in fluid mechanics.
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Irina Eglite, Andrejs Koli§kins. Ginzburga-Landau modela izmanto$ana §kidruma plasmu stabilitates analizei

Raksta analizeta vispargja shéma divdimensiju plasmu stabilitates uzdevumu risinasanai, izmantojot vaji nelinearu stabilitates teoriju. Raksta ka piemérs
izmantoti Navje-Stoksa vienadojumi un sekla tdens vienadojumi. Ginzburga-Landau vienadojuma iegusanai izmantota vairaku mérogu metode. Plasmas
funkcija tiek izvirzita rinda pec maza parametra. Uzdevuma kritiskie parametri t.i., vilpa skaitlis, fazu atrums vai parametrs, kas raksturo plusmu (Reinoldsa
skaitlis Navje-Stoksa vienadojumiem vai parametrs, kas raksturo berzi sekla tdens vienadojumiem) tiek iegdti no linearas stabilitates uzdevuma atrisinajuma.
Vienadojumu risinasanai otraja un tresaja tuvinajuma tiek izmantota Fredholma alternativa. Atrisinajuma nosacijums otraja tuvinajuma Jauj noteikt perturbacijas
grupas atrumu. Ir paradits, ka visvairak nestabilu rezimu amplitidai (saskana ar linearitates teoriju) amplitadas evolucijas vienadojums ir kompleksais
Ginzburga-Landau vienadojums. Vienadojumu iegast, izmantojot tresa tuvinajuma atrisinasanas nosacijumu. Vienadojuma koeficienti tiek iegati tiesa veida
(precizak, ka integrali, kas satur lineara uzdevuma ipasfunkcijas, saistita uzdevuma ipasfunkcijas un atrisinajumus triju parastu diferencialvienadojumu
robezuzdevumiem, kurus iegiist atrisinot uzdevumu otraja tuvinajuma. Ginzburga-Landau vienadojumus biezi izmanto, lai modelétu sarezgitu plasmu dinamiku
telpa un laika. Raksta ir apskatitas iespejamie Ginzburgam-Landau modela pielietosanas iespgjas.

Hpuna Jrante, Anapeii Koabimxkun. Mogeas I'nu30ypra-Jlanaay auist aHa/Iu3a yCcTOHYMBOCTH TeYEHHH KUIKOCTH

B craThe aHammsmpyercs obInas cxema peleHus 3a7ad yCTOHYMBOCTH I JBYMEPHBIX TEUEHHH KMIKOCTH C MOMOIIBI0 METOJOB c1ab0 HeNMHeHo# Teopun
ycToitunBOCTH. B KauecTBe mpuMepoB HCMONb3yloTcsl ypaBHeHHs HaBbe-CTokca M ypaBHeHHs Menkoil Boabl. Jlmst BeIBoma ypaBHeHms ['mu30Oypra-Jlanmay
HCTIONB3YeTCs METOJ, MHOTUX MaciTaboB. DyHKIMSA TOKa PacKiIaAbIBaeTICs B Psj MO MaJoMy IapaMeTpy, KOTOPBIH XapaKTepH3yeT CTeNeHb HaJKPHUTUYHOCTH.
Kpurrdeckne mapameTpsl 3aaud, T.e. BOJHOBOE 4HCIO, (a3oBas CKOPOCTh BO3MYIIECHMS M TapaMeTp, XapaKTepu3yroluii TedeHne (umcno PeliHombaca mmst
ypaBHeHuii HaBbe-CTOkca WM mapaMeTp, XapaKTepU3YIOIIUH TPEeHHE JUll YpaBHEHMH MENKOW BOABI), ONpPEAENAIOTCS M3 PEIIeHUS 3aJadyd JIMHEeHHOU
yCTOHYUBOCTH. J{JIs pelieHus: ypaBHEHUH BO BTOPOM H TpeTheM HMPHOIMKEeHHH UCIIONb3yeTcs albTepHaTuBa OpearonbMa. Y cIoBUe pa3speliiMOCTH BO BTOPOM
TPHOIMKEHNN TT03BOJISIET ONPENENNTE TPYIOBYI0 CKOPOCTh BO3MyIIeHHiH. [Toka3aHo, 4TO 3BOIIFOIMOHHOE ypaBHEHNUE JIUTsl aMITUTY 6l HANMEHEE YCTOWIHMBOI
MOJIBI (COTJIACHO JIMHEWHOW TeOopHH) SBIAETCS KOMILUIEKCHBIM ypaBHeHHMeM [mH30ypra-Jlanmay. YpaBHeHHE MOIydeHO C WCIIONIB30BAHHEM YCIIOBHUS
paspemrMocTi At Tperbero npubmmwkenus. KoahGuuuenTsl ypaBHEHHsT ONPENENSIOTCs B SBHOM Buzae (0osiee TOYHO, B BHUJIE MHTETPAioB, COAEPXKAIIUX
coOcTBeHHbIe (DYHKIMM JIMHEHHOH 3a1aud, COOCTBEHHBbIC (YHKIMM CONpPSOKEHHON 3aa4dl M pEIIeHMsl TPeX KpaeBbIX 3amad JUls OOBIKHOBEHHBIX
¢ depeHImanbHpIX ypaBHEHHH, MMOMYYEHHBIX NPH PEIISHWH 33aJadd BO BTOPOM NpHOIMmkeHnu). YpaBHenne I'mu30ypra-Jlangay gacto Mcmonb3yercs s
MOJZICIHPOBAHKS NIPOCTPAHCTBEHHO-BPEMEHHOH AMHAMUKH CIOXKHBIX TeUeHHH. B craThe paccMaTpuBaioTCs BO3MOXKHBIE OONACTH INPUMEHEHUS MOJEIH
I'nu36ypra-Jlannay.
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