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Introduction

Composite laminates are being extensively used in aerospace industry, especially for the
fabrication of high-performance structures. Determination of stiffness parameters for complex
materials, such as fibre-reinforced composites, is much more complicated than for isotropic
materials. A conventional way is testing the coupon specimens, which are manufactured by
the technology similar to that used for the real large structures. In employing such a method, a
question arises of whether the material properties obtained from the coupon tests are the same
as those in the large structure. Therefore, the determination of realized material properties for
composite laminates using non-destructive evaluation techniques has been widely
investigated.

A number of various non-destructive evaluation techniques have been proposed for
determining the material properties of composite laminates [1-3]. In the present study,
attention is focused on the identification of elastic properties of laminated stiffened panels
using the vibration test data. The modal vibration testing is a rapid and inexpensive method
for obtaining data for the identification of elastic properties [4]. There is a great deal of
information in the literature on the identification of elastic constants of laminated plates
employing the vibration test data [5-13]. The problem associated with the vibration testing is
converting the measured modal frequencies to elastic constants. A standard method for
solving this problem is the use of a numerical-experimental model and optimization
techniques [5-6, 9-12]. The identification functional represents the gap between the numerical
model response and the experimental one. This gap should be minimized taking into account
the side constraints on the design variables (elastic constants). The minimization problem is
solved by using the non-linear mathematical programming techniques and sensitivity analysis
[6, 9-12]. Similar identification functional has been employed in [14, 15], but the
minimization method was different. Instead of the direct minimization of the functional, the
experiment design and response surface approach are employed for approximation of the
numerical (finite element) model. Such an approach can reduce the computational efforts
significantly.

In order to reduce the computational efforts, methods based on the approximation
concepts were used in the structural optimization for the first time [16]. The development of
approximation functions has become a separate problem in the optimum structural design
[17]. Approximating models can be built in different ways. The empirical model building
theory is discussed in [18]. To construct a more general model of the original function, the
methods of experiment design [19, 20] and approximate model building [21-23] can be
employed. A simplified model, called meta-model [24], is elaborated using results of the
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numerical experiment at a sample point of the experiment design. The response analysis using
the simplified model is computationally much cheaper than the solution employing the
original model. Despite the great variety of literature available on the identification of elastic
constants of laminated plates, the studies dedicated to the problems on estimation of elastic
parameters of stiffened plates are very few. In [25], the determination of in-plane elastic
constants of stiffened plates was performed. In that study, instead of a physical experiment,
the numerical vibration data were used for determining the elastic constants.

In the present study, the identification of elastic properties of a curved stiffened panel
from the measured eigenfrequencies is carried out. Six small panels with one stringer were cut
out from a large stiffened panel. These small panels were tested for vibration in order to
measure the eigenfrequencies and the corresponding eigenmodes. Using the vibration data
measured, the identification of material properties was performed.

Curved Panel for Vibration Test

A curved stiffened panel with one stringer was cut out from an original 3-stringer panel (see
Figure 1). The original panel was one-sixth (60°) of a cylinder 580 mm high and 415 mm
wide, with a 1000-mm internal panel radius. The original panel was cut into six smaller
panels with the following dimensions: four panels with length 290 mm, width 139 mm, and
rib height 14.8 mm and two panels with length 290 mm, width 137 mm, and rib height 14.8
mm. The first four panels were used for the identification of material properties.
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Fig. 1. One-stringer curved panel
Vibration Experiment

Panels were tested for vibration in order to measure the eigenfrequencies and the
corresponding modes. The natural frequencies of the test panels were measured by a
vibrograph [charge-coupled device (CCD) camera] using shearography technique. The
shearography employs a single expanded beam of laser light which is reflected back from the
specimen to the CCD camera. The camera includes an image shearing device, which brings
two separate points of the object surface to meet in the image plane. The two overlapped
portions of the sheared images interfere and produce a speckle pattern. When the object is
deformed, the speckle pattern is slightly modified. A comparison of the two (stressed and
unstressed) speckle patterns produces a fringe pattern which depicts the relative displacement

178



of two neighbouring points. Since the magnitude of shearing is small, the fringe pattern
approximately represents the first derivative of displacement with respect to the shearing
direction, which may be either in-plane or out-of-plane. The experiments are performed under
free boundary conditions on all edges of the panel so that to exclude the influence of
boundary conditions on the results of identification. The specimens are hung by two corners
using a band simulating free boundary conditions along the edges of the panel (see Figure 2).
The panel is excited by a piezo-ceramic disc bonded to it. The excitation with small piezo-
ceramic discs works via the radial expansion of the disc causing a bending moment to the
panel surface. The piezo-ceramic disc is connected to an amplifier and the frequency is varied
by a frequency generator. To enable a better scanning, the specimens are painted in white. A
typical test procedure is as follows: the panel is excited continuously, and the laser measures
its response. Then the experimental results are compared with the predicted frequencies,
which are calculated by the finite element code employing the initial guess values of elastic
constants. Such preliminary finite element calculations are necessary to be sure that all
experimental frequencies are recorded in the range. Since not all the frequencies are observed
experimentally, they are ranged according to the finite element solution. In total, four panels
were measured.

Laser Vibrograph

Amplifier
Function Generator Panel Piezo

Fig. 2. Vibration experiment of a one-stringer curved panel

Finite Element Modelling

The geometry and the finite element (FE) model of a one-stringer curved panel are presented
in Figure 3. For the skin, [+45/-45/0] laminate is considered. The ply thickness # = 0.125 mm
is fixed due to the manufacturing technology. Therefore, the thickness of skin is 2 = 0.75mm.
The laminate lay-up for the blade-type stringer is [(+45/-45)3/0¢]2, i.€., the stringer consists of
24 single layers, and the thickness of the stringer is b, = 3 mm. The stringer flange is stepwise
flattened for a better matching with the contour of the skin. The stringer flange consists of
three steps: the inner flange step — laminate stacking sequence [+45/-45]s, i.e., six layers with
the thickness /#; = 0.75 mm, the middle flange step — laminate stacking sequence [+45/-45],,
i.e., four layers with +{the thickness} /,= 0.5 mm, and the outer flange step — laminate
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stacking sequence [+45/-45], i.e., two layers with +{the thickness} /,= 0.25 mm. The density
of the panels, measured by hydraulic weighting, is p= 1560.9 [kg/m"].

Fig. 3. a - geometry and FE model of the pane; b - FE model with zoom for stringer

The finite element solution is performed employing the ANSYS 9.1 software code. The finite
element model of a one-stringer curved panel is modelled by using 1700 layered eight-node
shear-deformable shell elements. Each node (5370) has six degrees of freedom, namely three
displacements and three rotations.

Experiment Design and Identification Functional

The parameters to be identified are five elastic constants of a transversely isotropic laminate.
Since, for a stiffened panel, some elastic constants are less sensitive to frequencies, two of the
five independent elastic constants are fixed (G,3 and vy,) [26]:

G23 =6.0 GPa, Vi2= 0.34

Thus, the identification of only three elastic constants x = (E;, E,, Gi2) of the single layer is
carried out.
The identification process is carried out through minimization of an error function that

exp
expresses the relative difference between the measured J; and numerically calculated

FEM
eigenfrequencies Ji ()

](;exp _f;»FEM (x) 2
j;exp

()= (1)

Here w; are the weighting coefficients, w; is equal to 1 for frequencies used in identification
and equal to zero for unused frequencies.

It is suggested to minimize functional (1) according to the meta-model technology
[24]. This technology employs the so-called numerical experiments creating the
approximating relevance
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/= ﬁ(x),i =1,...m (2)
Here m — the number of parameters to be identified, m=3 in our case.
The numerical frequencies fiFEM (x) are functions of elastic constants. These

functions are obtained as approximation of the finite element solution, which is performed at
the sample points of experiment design.

The previous investigations [26, 27] show that the second-order approximations
should be used for building approximations of the identification functional®(x). To
determine points for the finite element computations, the experiment design is planned using
the criteria of D-optimality [28]. Unlike the classical D-optimal design, in the present method,
plans of a Latin hypercube (LH) type [28] are employed. The number of sampling points is
calculated by the following equation:

N =&

i=1 1

3)

where N is the number of sampling points, K is the number of variables, and # is the order of
approximation function. The D-optimal plans for second-order approximations using three
factors must consist of 4*5/2 = 10 sampling points. For a cubic approximation, 4*5*6/6 = 20
sampling points are needed. Since, in this case, the FEM calculations are not time consuming,
the D-optimal Latin Hypercube sampling design [28] with N = 75 sample points and K = 3
variables is selected. The sampling points are distributed in the domain of interest, which is
formed by the lower and upper limits of variables. The upper and lower limits for the
variables are chosen by using the initial guess values of elastic constants. These values can be
taken from the properties of a similar material or from the static test of the present material. In
the process of search, the limits can be moved, if, for example, the identified constants are
beyond the limits or if the search accuracy should be increased. The domain of interest shown
in Table I originally was selected by using the typical material properties of CFRP
composites. In the process of search, the limits were moved to achieve the best accuracy. The
numerical frequencies for this domain of 75 sample points were determined by the FEM
analysis, and then this information was employed for approximating the functional ®(x) by
the EdaOpt in-house software code [29]. The same code was used for minimization of the
identification functional. Exploiting the data obtained from FEM calculations, in the domain
of interest, the EdaOpt software code determines a suitable model describing the behaviour of
the system and builds the response surface using polynomial functions. Minimizing the
functional ®(x), the optimal response of the system and the best values of input variables

(three elastic constants x) are obtained.

Table 1. The domain of interest for identification

[GPa]
Property Min Max
E 105 125
E; 20 35
G12:G13 3 8
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Results of Identification

After the finite element calculations at the reference points of the experiment design have
been performed, it is of interest to compare the mode shapes of experimentally measured and
numerically calculated eigenfrequencies. Some typical vibration modes of both the
experimentally measured and the respective numerically calculated eigenfrequencies (using

the identified elastic properties for panel 2) of a
Figure 4.
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Fig. 4. Mode shape for the 1, 3", 5" eigenfrequency: a - experimentally measured; b - numerically calculated

By minimizing functional (1), three elastic constants x are obtained. It should be noted
that the number of frequencies, which are selected for identification, is different for each
specimen. The experimentally measured frequencies, presented in Table 2, can be used for
identification in any combination. A cross validation for all sample points was performed so
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that to achieve a better approximation of the original function and to select the most important
(most sensitive to elastic constants) and reliable frequencies. The identification results are

given in Table 2.
Table 2. Elastic constants obtained by identification

Property Panel 1 Panel 2 Panel 3 Panel 4 Average
Ey, GPa 121.50 119.40 108.30 116.80 116.50
E,, GPa 25.40 24.10 34.70 26.30 27.63
G12=G13, GPa 5.50 6.80 6.60 6.10 6.25

The results obtained were verified by comparing the experimentally measured
eigenfrequencies with the numerical ones obtained by FEM at the point of optima (using the
identified elastic properties). The residuals A, (see Table 3) are calculated by the expression

N ‘fiFEM (x*)— £

, I x100 (4)
Table 3. Flexural frequencies and residuals for panels 1 and 2
Panel 1 Panel 2
No. [f"(Hz) [ (M) An) fTMHZ)  fNH) A )

1 166.4° 165.6 0.5 169.5° 165.9 2.1
2 236.8* 237.1 0.1 243.0° 2437 03
3 261.2° 261.4 0.1 268.0° 267.5 0.2
4 289.5° 290.2 0.2 286.3° 288.6 0.8
5 301.3° 300.3 0.3 300.8* 301.8 0.3
6 411.5* 413.0 04 398.8° 410.3 2.9
7 431.3* 4335 0.5 422.1° 4335 2.7
10 570.2 584.6 2.5 577.6 591.6 2.4
12 741.0 762.3 2.9 730.5 765.2 4.8
13 759.3 784.5 33 763.3 789.0 34
14 939.0 949 4 1.1 921.9 956.8 3.8
16 - 1068.8 - 1069.0 1067.4 0.1
22 1402.0 1381.0 1.5 1401.0 1387.9 0.9
26 1614.0 1657.7 2.7 1618.0 1661.9 2.7
27 1705.0 1701.5 0.2 1702.0 1704.4 0.1
28 1745.0 1759.5 0.8 - 1783.6 -

29 - 1804.4 - 1809.0 1831.7 1.3

“the frequencies used in identification
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Conclusions

The identification of the realized material properties (elastic constants) was performed on a
small stiffened panel cut out from a large three-stringer panel. The results obtained are stable
only for the in-plane shear modulus. The elastic modulus in the fibre direction and the
transverse modulus differ significantly from the nominal constants of carbon-fibre-reinforced
composites [26]. These discrepancies are explained by the fact that the parameters of the real
structure differ from the nominal values (layer thickness, layer angles, the material density is
not so homogeneous in all parts of the stiffened panel, etc.) of laminated composites. These
differences should be taken into account in designing the real structures by choosing the
safety factors and calculating the limit and collapse loads of composite stiffened structures.
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Rucevskis S. Ribotas kompozitmateriala caulas elastigo ipasibu noteik§ana izmantojot svarstibu analizi

Lai spétu nodrosinat konstrukcijas augsta standarta drostbu, materialu ipasibam ir jabit precizi noteiktam. Ir
zinams, ka nosakot materiala elastigas ipasibas, izmantojot standarta paraugus, iegiitas materiala ipasibas var
atskirties no redlas kompozitmateriala konstrukcijas ipasibam. Lai precizak spétu noteikt konstrukcijas elastigas
ipasibas, parbaudes paraugi ir izgriezti no lielas ribotas kompozitmateriala ¢aulas. Ribotas kompozitmateridla
Caulas elastigas ipasibas tiek noteiktas, izmantojot identifikdacijas metodi, kas balstita uz skaitliska eksperimenta
planosanas, atbildes virsmas un galigo elementu metodes aprékiniem. Identifikacijas rezultdta iegiitas materiala
elastigas ipasibas atskiras no tipiskam oglek|Skiedras kompozitmateriala elastigajam ipasibam, kas tiek
skaidrots ar to, ka realas konstrukcijas slana biezums, Skiedru orientacijas lenkis un materiala blivums nesakrit
ar tipiska oglekiskiedras kompozitmateriala nominalajam vértibam.

Rucevskis S. Determination of Elastic Properties of Stiffened Composite Shells by Vibration Analysis

To ensure the high reliability of a composite structure, the actual mechanical properties of a material must be
accurately predicted. It is well known that the material properties determined from standard tests of small
specimens, which are manufactured by using the same technology as for the real large structure, may differ from
the actual material properties of a laminated composite structure. To determine more accurately the material
properties of the structure, the specimens were cut out directly from a large stiffened composite panel. The
elastic properties of a curved stiffened panel are found by an identification procedure based on the method of
experiment design, the response surface approach, and the finite element method. The identification results
obtained from the vibration tests of the small panel slightly differ from the typical material properties of CFRP
composites, which can be explained by the fact that single ply thickness, material density, and layer angles of the
real structure are slightly different from the nominal values.
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Pyuesckuc C. Onpedenenue 31aCMUYHBIX CEOUCH Y PEOPUCMBIX KOMHOZUMHBLIX 0007104€K UCHOJIb3YA
SUOPAUUOHHBLIL AHAU3.

Umobwvl obecneyums 6bicoOKue mpebosanus 0e30nacmHoOCmuU, HeoOX00UMO MOYHO ONPEOeIUmd IAACTNUUHbIE
ceoticmea mamepuana. Hzeecmno, umo noayyeHHvle — XAPAKMEPUCTNUKU KOMNOSUMHBIX MAMePUuanlos ¢
mecmosvix 00pa3yoe Mo2ym OMJAUYAMCsL OM PealbHblX C8OUCmE KoHcmpykyuu. dmobvl onpedenrums moyHble
INACMUYHBLE CEOUCMEA KOHCPYKYUU, 00pasybl 6bipe3aiom u3 OOIbUUX PeOPUCTIBIX KOMROZUMHBIX 000J0UEK.
Jlna  onpedenenue 2AACMUYHBIX CEOUCH Yy PeOPUCMBIX KOMNOUMHBIX 000J0YeK UCHONb3VIOm Memood
uHOUUKAYyUY, KOMOpoU Oa3upyemcss HA NIAAHUPOBAHUE HUCIEHHO20 JKCNEPUMEHMA U pacuéma mMemooom
KOHeunvlx snemenmos. Pesynomam udenmuukayuu uOpayuoHHo20 mecma, NOKA3bl6AIOM HE3HAYUMENbHbLE
Paznutusl ¢ Xapaxmepumcmukamu MAamepuaid, KOmopvle MO2ym O0ObSCHAMCS PA3IUYHOU MOIWUHOU COS,
NJIOMHOCIbIO MAMEPUANA U YIOM OPUEHMAYUL 80TOKOH KOHCIPYKYUU ¢ HOMUHATIbHBIM 3HAYEHUEM MAMEPUAA.
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