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Introduction to Regularized DFA 
Ginters Buss, Riga Technical University

Abstract – The paper studies regularization propeties of the 
regularized direct filter approach to high-dimensional filtering 
and real-time signal extraction. The regularized filter is endowed 
with three regularization terms for (i) coefficient smoothness, (ii) 
cross-sectional shrinkage and (iii) longitudinal shrinkage. 
Relative merits of the regularization terms are discussed. It is 
shown that the regularized filter is able to process high-
dimensional data sets by controlling effective degrees of freedom 
using the three regularization terms, and that it is 
computationally fast.  

 
Keywords – high-dimensional filtering, real-time estimation, 

parameter shrinkage 

I. INTRODUCTION 

Nowadays, the gathering of rich datasets is relatively easy. 
A more difficult exercise is to effectively use them for a 
particular problem at hand. This paper adds to the forecasting/ 
regularization/ shrinkage/ high-dimensional estimation 
literature (see e.g. ridge regression (e.g. Tikhonov and 
Arsenin, 1977; Hoerl and Kennard, 1970), lasso (Tibshirani, 
1996), least angle regression (Efron et al, 2004), Bayesian 
shrinkage (e.g. Doan, Litterman and Sims, 1984), principal 
components (Stock and Watson, 2002)) by exploring the 
properties and abilities of a regularized direct filter approach 
(Wildi, 2012) in signal extraction and forecasting using many 
variables. 

This paper is the first paper that studies and implements a 
regularized multivariate direct filter approach (Wildi, 2012). 
Filter regularization has found to help in real-time filter 
extraction since it controls for effective degrees of freedom; 
thus, it allows controling for overfitting that can have 
degrading effects in out-of-sample performance. Another 
advantage of a regularized filter is that it allows high-
dimensional data to enter the filter and therefore further 
robustify the outcome. As it is shown in this paper, a particular 
regularization feature used in the paper may remind about the 
‘lag decay’ term in Minnesota prior (see, e.g. Doan, Litterman 
and Sims, 1984) in Bayesian econometrics. Forcing more 
distant filter coefficients to zero both saves degrees of freedom 
and effectively shortens the filter, thus making it more 
responsive to changing environment. Another regularization 
feature studied in the paper is cross-sectional shrinkage that 
makes filter coefficients behave similarly for similar series. 
The cross-sectional shrinkage has been found to be useful 
particularly if the dataset is rather homogeneous. 

II.   REGULARIZED DIRECT FILTER APPROACH: AN OVERVIEW 

 Denote  as the output of a symmetric, possibly bi-infinite 
filter, , applied to input series :  

      
                                    (1) 

 where  is the lag or backshift operator. A real-time estimate 
of  is  

                     (2) 
Denote the generally complex transfer functions of filters 

in (1) and (2) by  and 
, respectively. For a stationary 

process , the mean squared filter error (MSFE) can be 
expressed as the mean squared difference between the ideal 
output and the real-time estimate:  

 (3) 

 where  is the unknown spectral distribution of . A 
finite sample approximation of the MSFE, (3), is  

 (4) 

 where ,  is the greatest integer smaller or 
equal to , and the weight  is defined as follows: 

                 (5) 

 see Brockwell and Davis, 1987, Ch. 10 for the reason for ; 
although it is practically negligible, without it the inverse 
discrete Fourier transform does not replicate the data perfectly. 
This paper uses a ‘sufficient statistic’ – periodogram,  
– as  in (4):  
            (6) 

Minimizing expression (4)-(6) yields the real-time filter 
output optimally approximated to the ideal output in mean 
squared error sense. 

A. Univariate Direct Filter Approach 

Rewrite discrete version MSFE, (4), as follows: 
          (7) 

 which is identical to (4) for . However, a more 
general version of  can be 
written as follows: 

 

                            (8) 

which collapses to unity for , in which case the 
classical mean squared optimization, (4), is obtained. 
Parameter  (for a ‘cut-off frequency’) marks the transition 
between the passband and rightmost stopband, and positive 
values of  (for ‘exponent weight’) emphasize high-
frequency components in the rightmost stopband, thus making 
the filter output smoother than the one obtained by minimizing 
(4) for positive . 

Univariate analysis is of limited usefulness; thus, we turn 
now to the multiple-series analysis.  

B. Multivariate Direct Filter Approach 

The above-mentioned univariate customized filter has been 
generalized to a multivariate filter in Wildi (2011). Rewrite 
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univariate minimization problem, (7), with the discrete Fourier 
transform (DFT), :  

 
 

(9) 
 where  

     (10) 

In addition to the filter output, , and the corresponding 
input, , assume there are  additional explanatory variables 

,  that may help improve the real-time estimate 
of  obtained with a univariate filter. Then, the second 
expression in the modulus on the second line of (9), 

, becomes  
   (11) 

 where  
    (12) 

 (13) 
 are the one-sided transfer functions applied to the explanatory 
variables, and ,  are the corresponding 
DFTs. Then, the multivariate version of (9) can be written as 
follows: 
        

 (14) 

C. Regularization 

In order to conveniently define the regularized filter 
problem, the above-mentioned multivariate filtration problem 
is rewritten in a least squares form, see Wildi (2012) for 
details; this subsection explains how it is done, while the next 
subsection introduces the regularization problem. 

Define  such that its -th row, , is: 
  

 
 (15) 
where  is the filter length, and  for  and 

 for . Define vectors  and  as 
follows: 

                     

                             (16) 

Neglecting a constant  and the practically negligible 
, (14) with  can be rewritten as follows: 

           (17) 

 Since  and  are complex-valued, the solution to (17) will 
also be complex-valued. A real-valued  can be obtained by 
rotating  and  s.t. the value of the metric in (17) is 
unaffected:  

 
              (18) 
 where  is the -th row of , and  is the lag at which 
filter is estimated, i.e.,  for a concurrent filter that targets 

,  for a smoother, and  for forecasting 
the signal. A real-valued , thus, can be obtained from solving  

 (19) 

For the customized multivariate filter ( ), define  
         (20) 

(21) 
 where  is the -th row of . Then, the least-squares 
form for the customized filter problem can be written as 
follows: 

 (22) 

 which collapses to (19) for . 
Recalling that Tikhonov regularization problem (e.g. 

Tikhonov and Arsenin, 1977) can be cast in the form 
, the regularized direct 

filter approach problem introduced in Wildi (2012) is of the 
familiar form:  

 (23) 
 where the three additional expressions of bilinear form 
represent three different regularization directions – coefficient 
smoothness (subscript ‘s’), cross-sectional shrinkage (subsript 
‘c’), and shrinkage along time dimension (subscript ‘d’). Let 
us discuss each in turn. 

The idea behind the smoothness restriction is that filter 
coefficients should not change too erratically as functions of a 
lag. The  matrix of size  is such that  

          (24) 
 where  is the second order 
difference of , , and . Therefore, the 
term in (24) is a measure for the quadratic curvature of filter 
coefficients – if coefficients decay linearly as functions of a 
lag then this term vanishes. Thus, in the limiting case when 
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, the filter coefficients are restricted to be linear 
functions of a lag. 

The idea behind the cross-sectional shrinkage is that one 
will expect the filter coefficients to be similar for similar 
series. This shrinkage is implemented by imposing constraints 
on  according to 

 (25) 
which yields a symmetric bilinear form with 

             (26) 

where  

 

 

 

 
 

 
               (27) 

 such that each block separated by  is of length . Thus 
there are 1's on the diagonal of  and periodically arranged 

's which account for the central means in (25). 

A higher  gives preference for more similar filters across 
series and the limiting case,  ensures the filter 
coefficients are identical across series. 

Finally, the idea behind the shrinkage across time 
dimension is that a practitioner may give a preference for the 
filter coefficients that decay to zero progressively as functions 
of a lag. For a Bayesian econometrician this will remind of the 
lag decay in the Minnesota prior (e.g. Doan, Litterman and 
Sims, 1984). This shrinkage is implemented by setting  
such that  

          (28) 
 where  is the -th element of  

 (29) 
 where  is set to ,  denotes a  function, 
and  signifies the lag at which filter is estimated, i.e.,  
means a concurrent filter that targets ,  means 
the filter is the smoother, and  means the filter is 
targeted to forecast the signal  periods ahead. When 
estimating  for  a practitioner will need to assign 
the largest filter weight to observations coinciding with . 
Thus, (29) ensures that minimum regularization is imposed on 
lag  (since ), and a decay is emphasized 
symmetrically on both sides away from the target lag . A 
higher  ensures a faster coefficient decay to zero as a 
function of a lag. 

Since the regularization is cast in bilinear forms, the 
problem in (23) has an analytic solution. Setting 

 gives the unregularized filter problem in 
(22). Or, setting  but letting some of the 
regularization lambdas be positive gives the regularized 
classical multivariate filter problem. This paper has found out 
that the lag decay shrinkage is the most useful of the three 
regularization types for the application at hand, followed by 
the cross-sectional shrinkage. 

D. Filter Constraints 

The first-order constraint imposes specific values for the 
amplitude functions at zero frequency. For a bandpass filter, 
one would typically set amplitudes at zero frequency to be 
zero ensuring that a bandpass filter attributes zero weight to 
the trend frequency, while for a univariate lowpass filter one 
would typically set the amplitude at zero frequency to unity to 
ensure that a lowpass filter tracks the level/scale of the target; 
such restriction is related to assuming the target has a unit root 
at zero frequency, i.e., it is the first-order integrated process. 

For a multivariate filter, the optimal constrained level of 
the amplitude at zero frequency is less clear-cut. This level can 
be set to an inverse of the number of explanatory variables for 
all the variables, if all explanatory variables follow the same 
trend. However, the latter may not always be the case and thus 
a better outcome could be obtained by differentiating the 
amplitude constraint at zero frequency for various explanatory 
variables. An example of such differentiation of the constraint 
is provided in the empirical section. 

In practice, one can choose to use or not to use the level 
constraint at one’s own discretion. This constraint is 
implemented by restricting: 

       (30) 

 where  is the value at which the transfer function for a 
variable  is set at zero frequency, and  is the targeted lag 
(  for a concurrent filter,  for a smoother, and  
for forecasting the signal). 

The second-order constraint restricts the time shift of the 
filter at zero frequency to vanish, and is related to assuming 
the target variable has two unit roots at zero frequency, in 
which case both the first- and second-order constraints will be 
implemented. In practice, however, the usage of the 
constraints are up to the practitioner's agenda, and one could 
use the time shift constraint without imposing the level 
constraint, the combination of the constraints that can not be 
straightforwardly imposed in the time domain. The second-
order constraint is imposed by forcing the derivative of the 
transfer function at zero frequency to vanish, which results in 
the following coefficient constraint:  
       

 (31) 
 where  is the targeted lag (  for a concurrent filter, 

 for a smoother, and  for forecasting the signal). 
Both constraints can be implemented by selecting any two 

of the coefficients but is implemented by constraining  and 
, so as to avoid a conflicting situation between these 
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constraints and the regularization, e.g., a lag decay agenda for 
  is large enough. 

The constrained regularized filter problem is solved by 
rewriting filter coefficient vector  as follows: 

                          (32) 
where  is the vector of freely determined filter 

coefficients, plugging (32) in (23), solving for , and then 
plugging the estimate of  into (32) to get the estimate of ; 
see Wildi (2012) for details.  

E. Effective Degrees of Freedom 

In the unconstrained ordinary least squares framework, the 
(regression) degrees of freedom is the number of estimated 
parameters. Given a well-posed ordinary least squares 
problem, 

 
the fitted values of  can be written in terms of a hat or 
smoother matrix, S, which is just a projection matrix, P: 

           (33) 
The degrees of freedom is trace of the projection matrix:  

                        (34) 
 which equals to . 

For a regularized problem as in expression (23),  

 
 the smoother matrix is no longer an orthogonal projection but 
the same notion applies. Denoting the fitted value of  by 

 and the corresponding smoother matrix by :  

 (35) 
such that , the effective degrees of freedom (or, 
effective number of parameters) is the trace of : 

                       (36) 
 see, e.g. Moody (1992), Hodges and Sargent (2001). 

Effective degrees of freedom are useful for controlling the 
overfitting and, thus, for controlling out-of-sample 
performance. 

III.  REGULARIZATION FEATURES 

We now study the regularization features of the filter. For 
visual tractability and due to numerical issues (an 
unregularized filter crashes the high-dimensional input data 
when the number of estimated filter parameters reaches the 
number of sample observations) only nine variables are used 
to analyse the filter effect. The nine variables are business and 
consumers confidence data: production trend observed in 
recent months (industry), assessment of order-book levels 
(industry), assessment of stocks of finished products 
(industry), production expectations for the months ahead 
(industry), employment expectations for the months ahead 
(industry), confidence indicator in construction, confidence 
indicator in retail, consumer confidence indicator, and 
confidence indicator in services. These variables are used to 
track a lowpass in the euro-area gross domestic product 
(GDP). 

In order to motivate the chosen transformation of data, it is 
illustrative to plot the transformed target variable and 
explanatory variables. Fig. 1a shows standardized annual 
growth of EA GDP versus standardized business and 
consumer data. Explanatory data are well aligned with the 
annual growth of GDP. Extracting the cross-sectional mean 
and the first principal component of the standardized 
explanatory data and plotting against standardized annual 
growth of GDP shows that both the mean and the first 
principal component explain annual changes in GDP well, and 
there is not much difference in the performance of the mean 
versus the principal component, see Fig. 1b. 
Clearly, there is not much to improve upon the simple cross-
sectional mean or the first principal component of the 
explanatory variables as it comes to tracking cyclical 
developments in the normalized annual growth of euro-area 
GDP; it is slightly more difficult to track non-normalized 
target, see the results below. The cross-sectional mean or 
principal components can be used as filter inputs, but this 
paper  shows that it is not necessary to do so and that one can 
use the original, possibly high-dimensional data as the input 
and potentially benefit from the richness of data. 

 
                               (a)                                                       (b)                                                                     
Fig. 1: (a) Annual growth of GDP versus business and consumer data, all 
normalized to zero mean and unit variance. (b) Annual growth of GDP versus 
the cross-sectional mean and the first principal component of business and 
consumer data, all normalized to zero mean and unit variance. 

In order to understand the extent of overparameterization 
in an unregularized multivariate filter, consider an 
unconstrained filter applied to the above-mentioned nine 
variables targeting an ideal lowpass of annual growth of EA 
GDP with the cut-off wave length of 12 months. The filter 
length is set to be fixed 12 observations, for simplicity. While 
the estimation routine can estimate a 9-variable filter on the 
full sample (178-observation long), it crashes smaller 
subsamples because of the degrees of freedom having been 
shrunk to zero for all subsamples shorter than 9*12=108 
observations. A further reduction of filter length may be a 
temporary solution but not for long and not without 
consequences on the output quality. Therefore, an 
unconstrained 9-variable filter output is infeasible for the 
considered data samples. Thus, some sort of parameter 
shrinkage is necessary. In order to illustrate the effect of the 
parameter shrinkage induced by the regularized filter, consider 
the estimated filter coefficients for an unconstrained and 
unregularized 9-variable filter on the full sample. The number 
of estimated parameters is 9 variables and 12 observations, 
which gives 108 parameters to estimate on a 178-observation 
long sample, which gives only 70 residual degrees of freedom. 
Fig. 2a shows that the estimated filter coefficients look erratic, 
unsmooth and do not show either a similar behaviour between 
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the variables or an evident decay towards zero with an 
increasing lag. Fig. 2b shows the (rather chaotic) filter 
amplitudes corresponding to the coefficients in Fig. 2a; it will 
be useful to analyse how the amplitudes change with various 
constraints and regularization restrictions. 

We will now witness the effect of filter constraints and the 
regularization features first applied to each of them at a time 
and then in a potentially useful combination. 

The first-order restriction imposes the filter amplitude to 
be a specific value at zero frequency. For a univariate lowpass 
filter, a natural value of the amplitude at zero frequency is 
unity in order to ensure that the scale of the output is 
comparable to the scale of the target signal. For a multivariate 
filter, the situation is 

 
                            (a)                                                       (b)                                             
Fig. 2: (a) 9-variable filter coefficients without regularization and filter 
constraints. The estimated filter coefficients look erratic, unsmooth and do not 
show a similar behaviour between the variables nor an evident decay towards 
zero with an increasing lag coefficients. (b) Filter amplitudes corresponding to 
the coefficients in Fig. 2a. 

not so straightforward since all the input series generally do 
not possess the same trend, therefore restricting all amplitudes 
to be of the same value at zero frequency may be suboptimal. 
If all the input series followed a common trend, then it would 
be natural for a multivariate lowpass to set amplitudes at zero 
frequency to be inverse of the number of input series, so that 
summing over the amplitudes would result in unity at zero 
frequency. Since the input series used in this research have a 
somewhat similar behaviour between each other, the latter 
approach is used in this case; however, there may be potential 
gains by using a more sophisticated amplitude constraint that 
will differentiate amplitude values at zero frequency for 
different input series; such an approach is discussed later in 
the section when applying the filter to a higher dimensional set 
of explanatory variables. 

The first-order constraint saves one d.f. per input series; 
thus, nine d.f. are saved for an unregularized nine-variable 
filter. 

Fig. 3a and 3b show that the effect of amplitude constraint 
results in slightly more dispersed coefficients (the scale of the 
graph has changed), as well as slightly more exploded 
amplitudes. Thus, the first-order constraint per se does not 
seem to be of much help for an ill-posed high-dimensional 
filter. Note that the amplitude constraint is binding for almost 
all series since the unconstrained amplitudes at zero frequency 
are dispersed far away from the constrained value (1/9). 

 
           (a)                                                        (b)                                            

Fig. 3: (a) Coefficients for a first-order constrained lowpass filter. (b) Filter 
amplitudes corresponding to the coefficients in Fig. 3a. 

The second-order restriction imposes a vanishing phase 
shift at zero frequency for a targeted lead or lag, and also 
saves a d.f. per input variable in an unregularized problem. 
This constraint is related to assuming the target variable 
follows the second-order integrated process, in which case 
there are two unit roots at zero frequency and, therefore, both 
first- and second-order constraints will be implemented. 
However, the time-shift constraint can be used without the 
first-order constraint in order to ensure the output is coincident 
with the target signal but not necessarily assuming that the 
target signal follows a second-order integrated process. 
Therefore, such a combination of constraints goes beyond the 
one typically seen in the time-domain applications. 

The corresponding filter coefficient and amplitude (see 
Fig. 4a and 4b) show that the coefficients are back to their 
original scale and also amplitudes look less exploded 
compared to the ones of the first-order constrained filter. 
(Evidently, higher amplitudes at the high-frequency content 
indicate that zero time shift at zero frequency is obtained by 
attributing higher weight to the high-frequency content, which 
is typically the case, when the explanatory variables are 
lagging with respect to the target variable, which is in line 
with the observation from Fig. 1a and 1b.) Still, the second-
order constraint is not a panacea since the amplitudes are still 
erratic and since the number of degrees of freedom vanishes 
for samples smaller than 9*(12-1)=99 months, which is 8 
years of data. 

Turning to the new regularization features, Fig. 5 to 7 
show the effect of coefficient smoothness restriction of 
various extent corresponding to  being 0.01, 0.1 and 1, 
which correspond to the effective degrees of freedom 66, 43 
and 30, respectively. 

 

 
                             (a)                                                   (b)                                 
Fig. 4: (a) Coefficients for a second-order constrained concurrent filter. (b) 
Filter amplitudes corresponding to the coefficients in Fig. 4a. 
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                        (a)                                                         
(b) 
Fig. 5: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 5a. 

  

 
                              (a)                                                        (b)                                     
Fig. 6: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 6a. 

 
                            (a)                                                     (b) 
Fig. 7: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 7a.  

Fig. 5 to 7 show that the filter coefficients are no longer 
erratic; they are nice and smooth and they are getting more 
linear as the smoothness parameter  increases. If the 
smoothness parameter is increased still further, the filter 
coefficients converge to horizontal straight lines. However, 
such an over-regularization is not necessary or desirable since 
the considered small values of the smoothness tuning 
coefficient already reduce a lot of degrees of freedom and the 
corresponding amplitudes look much closer to those that are 
expected, i.e., most of their weights concentrate on the 
passband  and converge to zero in the stopband. 
Nonetheless, the filter coefficients show neither convergence 
to zero with higher lags, nor similarity across series. 

Fig. 8 to 10 show the (partial) effect of cross-sectional 
restriction of various extent corresponding to  being 0.01, 
0.1 and 1 (the rest of shrinkage parameters being zero), which 
correspond to the effective degrees of freedom 85, 48 and 24, 
respectively, which is close to that observed with parameter 
smoothness restriction. 

 
                                 (a)                                                    (b)                                            
Fig. 8: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 8a.  

                            
                              (a)                                                     (b) 
Fig. 9: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 9a.  

The effects of cross-sectional restriction differ from those of 
parameter smoothness restriction – mild cross-sectional 
restriction seemingly improves the behaviour of filter 
coefficients and amplitudes (see Fig. 8a and 8b), but further 
cross-sectional restriction can be harmful if applied alone (see 
amplitude behaviour in Fig. 10b). Such a cross-sectional 
restriction analysis may help understand which series or 
clasters of series are different from the others. In our research, 
no series clearly stands out from the rest. 

 
                               (a)                                                      (b) 
Fig. 10: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 10a. 

As for the third regularization feature, Fig. 11 to 13 show 
the longitudinal effect, i.e. a lag decay restriction of various 
extent corresponding to  being 0.01, 0.1 and 1, which 
correspond to the effective degrees of freedom 82, 30 and 5, 
respectively, which is a stronger shrinkage than that observed 
with parameter smoothness or cross-sectional restriction. 
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                             (a)                                                       (b) 
Fig. 11: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 11a.  

 
                             (a)                                                           (b) 
Fig. 12: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 12a. 

  
                            (a)                                                            (b)       
Fig. 13: (a) Coefficients for an unconstrained filter if . (b) Filter 
amplitudes corresponding to the coefficients in Fig. 13a. 

Fig. 11 to 13 show that a lag decay restriction forces filter 
coefficients to shrink towards zero as functions of lag and that 
a sufficiently high shrinkage parameter yields filter 
coefficients to be non-zero for a small number of lags. Fig. 13 
shows that a sufficiently high longitudinal shrinkage forces 
filter amplitudes to shrink towards zero (see the scale of Fig. 
13b) and flatten, resembling those of an allpass filter, which is 
an expected behaviour since a short filter cannot discriminate 
between frequencies effectively. 

Coefficients in Fig. 11a and 12a are rather smooth, which 
resembles the effect of parameter smoothness restriction. Also, 
Fig. 11a and 12a show that longitudinal restriction forces filter 
coefficients to behave somewhat similarly across series, which 
reminds of the cross-sectional shrinkage. These effects might 
suggest that the lag decay shrinkage is the most useful of all 
three shrinkages. Still, the longitudinal shrinkage may conflict 
with e.g. parameter smoothness restriction for a sufficiently 
high lag decay restriction, see Fig. 13a. However, instead of 
using both longitudinal and parameter smoothness 
regularization features, one may just loosen the lag decay 
restriction. 

The findings of this paper, indeed, suggest that the 
longitudinal shrinkage may be the most useful of the three 
regularization features. Moreover, this paper will use only the 

longitudinal and the cross-sectional shrinkages from the 
considered regularization ‘troika’ since the parameter 
smoothness restriction can be obtained implicitly by the 
former two. 

 Recall that setting the longitudinal shrinkage to  
yields only five e.d.f., which may suggest that a slight change 
in the sample size or in the number of explanatory series can 
yield close to zero e.d.f. Indeed, the estimation routine can 
break up if severe regularization is imposed. Therefore, a 
caution should be taken in empirical work so that a sufficient 
number of effective degrees of freedom are given to the 
estimation routine. Otherwise, the estimation routine will not 
work not because of overparameterization but because of 
‘underparameterization’. 

Filter constraints have been found to be useful in real-time 
signal extraction (see e.g. Buss, 2012). Therefore, consider the 
effect of longitudinal shrinkage combined with the first-order 
constraint or second-order constraint or both first- and second-
order constraints. 

 
                            (a)                                                        (b) 
Fig. 14: (a) Coefficients if longitudinal regularization with  and the 
first order constraint are implemented. (b) Filter amplitudes corresponding to 
the coefficients in Fig. 14a. 

Implementing the first-order constraint together with the 
longitudinal shrinkage yields similarly-behaved coefficients 
and amplitudes, whose values at zero frequency are an inverse 
of the number of input variables, i.e 1/9. Amplitude values 
tend to diverge sharply and mostly increase for passband 
frequencies, after which they 
tend to converge and 
decrease. 

 
                               (a)                                                          (b) 
Fig. 15: (a) Coefficients if longitudinal regularization with  and the 
second order constraint are implemented. (b) Filter amplitudes corresponding 
to the coefficients in Fig. 15a. 
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                           (a)                                                              (b)  
Fig. 16: (a) Coefficients if longitudinal regularization with  and both 
the first- and the second-order constraints are implemented. (b) Filter 
amplitudes corresponding to the coefficients in Fig. 16a. 

The instability of the amplitudes at low frequencies may be 
explained by the restrictive nature of the first-order constraint 
– it forces all amplitudes to be of the same small value 
although the unrestricted amplitudes are somewhat dispersed 
around  zero frequency. Also, some of the coefficients are 
negative at low lags, which can be considered an undesirable 
effect for the dataset, where each series correlates positively 
with the target. 

The second-order constraint slightly increases the 
dispersion of the coefficients but otherwise does not add 
drastic changes to the regularized filter. 

Implementing both constraints simultaneously is the most 
restrictive case. Fig. 16a and 16b show that filter coefficients 
behave more similarly among series than in the case of no 
constraints or just the first-order constraint (notice the scale of 
graphs), and so the corresponding amplitudes are less 
dispersed than in the case of no constraints or just the first 
order constraint. Still, negative coefficient values implied by 
the first-order constraint may be considered somewhat 
implausible/undesirable, as well as the cause of their 
implausibility – the restrictive and somewhat arbitrary 
amplitude constraint. Therefore, if the first-order constraint is 
to be used, one should think of plausible values for amplitudes 
at zero frequency. Otherwise, the practitioner may be willing 
to use the cross-sectional shrinkage as a tool to help 
controlling the degrees of freedom (at least for rather 
homogeneous datasets), instead of using the amplitude 
constraint. 

IV.  CONCLUSIONS 

Nowadays, information is abundant. Statistical tools are 
being developed that are suitable to process a large amount of 
information for a particular problem at hand. This paper has 
considered the regularized multivariate direct filter approach 

(Wildi, 2012) as a tool for signal extraction and forecasting 
using high-dimensional datasets. The paper has studied the 
regularization properties of the filter: (i) coefficient 
smoothness, (ii) cross-sectional shrinkage, and (iii) 
longitudinal shrinkage. Relative merits of the three 
regularization terms have been discussed. It has been shown 
that the filter can be successfully applied to high-dimensional 
datasets.  
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Ginters Bušs. Ievads regularizētā tiešā filtra pieej ā 
Šis darbs pēta regularizēta tiešā filtra pieeju (Vildi, 2012) kā rīku lieldimensionālu datu filtrēšanai un reālā laika signālu iegūšanai. Lai gan Vildi (2012) aprēķina 
filtru, tas neanalizē filtra regularizācijas īpašības uz reāliem datiem, kā arī nepēta iespējas pielietot filtru lieldimensionālām datu kopām. Tādējādi šā pētījuma 
jauninājums ir padziļināta filtra regularizācijas īpašību izpēte, kas ļauj pielietot filtru uz reāliem, potenciāli lieldimensionāliem datu masīviem. Vildi (2012) 
regularizē filtru, kas izstrādāts Vildi (2011). Filtra regularizācija ietver Vildi (2011) neregularizētā filtra optimizācijas problēmas pārveidošanu mazāko kvadrātu 
izteiksmē un trīs regularizācijas locekļu ieviešanu, kas atbild par filtra (i) koeficientu gludumu, (ii) šķērsgriezuma sašaurināšanu un (iii) garengriezuma 
sašaurināšanu. Koeficientu gluduma regularizācija nodrošina, ka filtra koeficienti mainās gludi laika dimensijā. Pastiprināta gluduma regularizācija nodrošina, ka 
koeficienti kļūst arvien lineārāki laika griezumā. Šķērsgriezuma regularizācija nodrošina filtra koeficientu līdzīgu uzvedību starp līdzīgiem ievaddatiem. 
Robežgadījumā koeficienti ir vienādi visiem ievaddatiem. Garengriezuma sašaurināšana nodrošina filtra koeficientu dilšanu līdz nullei līdz ar augstāku lagu. 
Rezultāti rāda, ka visefektīvākais regularizācijas loceklis ir garengriezuma sašaurināšana, kam seko šķērsgriezuma sašaurināšana. Secināts, ka regularizētais filtrs 
ir spējīgs apstrādāt lieldimensionālas datu kopas, kontrolējot efektīvās brīvības pakāpes, un ka filtra skaitļošana ir ātra. Tāpat secināts, ka regularizēta tiešā filtra 
pieeja ir vērtīga gan vienlaicīgai novērtēšanai, gan prognozēšanai, izmantojot lieldimensionālus datus.  
 
 



Technologies of Computer Control 
 

2012 / 13______________________________________________________________________________________________  

56 

Гинтер Буш. Введение в подход регуляризованного прямого фильтра 
Эта работа исследует подход регуляризованного прямого фильтра (Вилди, 2012) в качестве инструмента фильтрации многомерных данных и 
получения сигналов в режиме реального времени. Хотя в Вилди (2012) рассчитан фильтр, эта работа не анализирует свойства регуляризации на 
реальных данных, а также не исследует возможности использования фильтра для многомерных данных. Таким образом, новизна данного 
исследования состоит в углубленном изучении свойств регуляризации фильтра, которые позволяют применять фильтр к реальным, потенциально 
многомерным данным. Вилди (2012) регуляризует фильтр, созданный в Вилди (2011). Регуляризация включает трансформацию задачей оптимизации 
нерегуляризованного фильтра Вилди (2011) в условия наименьших квадратов и введении трех членов регуляризации, которые отвечают за (i) 
гладкость коэффициентов, (ii) поперечную усадку и (iii) продольную усадку. Гладкость коэффициентов гарантирует, что коэффициенты фильтра 
плавно изменяются во временной дименсии. Повышенная гладкость регуляризации обеспечивает все большую линейность коэффициентов во 
временной дименсии. Поперечная усадка гарантирует схожее поведение коэффициентов фильтра при схожих входных данных. В предельном случае 
коэффициенты одинаковы для всех данных. Продольная усадка гарантирует, что коэффициенты фильтра стремятся к нулю при более далеких 
отставаниях. Результаты показывают, что наиболее эффективным методом регуляризации является продольная усадка, вторым по эффективности – 
поперечная усадка. Сделан вывод, что регуляризованный фильтр способен обрабатывать наборы многомерних данных, используя управление 
эффективными степенями свободы, и что вычисления фильтрапроводятся оперативно. Также установлено, что подход регуляризованного прямого 
фильтра является ценным как для одновременной оценки, так и для прогнозирования при использовании многомерных данных. 


