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Introduction to Regularized DFA
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Abstract —The paper studies regularization propeties of the wherel is the lag or backshift operator. A real-time mstie
regularized direct filter approach to high-dimensimal filtering of yr is

and real-time signal extraction. The regularized fiter is endowed o =VT=lpo )
with three regularization terms for (i) coefficient smoothness, (i) T =0 BT o
cross-sectional shrinkage and (i) longitudinal stinkage. Denote the generally complex transfer functionsilagrs

Relative merits of the regularization terms are disussed. It is N (1) and (2) by Iw)= Ej';_x yjexp (—ijw) and
shown that the regularized filter is able to proces high-  [iw) = ¥T2} b.exp{—ijw), respectively. For a stationary
dimensional data sets by controlling effective deges of freedom processrl thé mean squared filter error (MSFE) can be
using the three regularization terms, and that it $ T . .
; expressed as the mean squared difference betweeidghl
computationally fast. . b
output and the real-time estimate:

Keywords — high-dimensional filtering, real-time estimation f_.. IT{w) — Flw)|*dH{w) = E[(vy — )% (3)
parameter shrinkage whereH(w) is the unknown spectral distribution »f. A
L finite sample approximation of the MSFE, (3), is
+ INTRODUCTION B Wl T(wi) — Fwp) P S(wg), 4)

Nowadays, the gathering of rich datasets is redhtieasy. wherew;, = k2n/T, [T/2] is the greatest integer smaller or

A more difficult exercise is to effectively use thefor a equal toT/2, and the weightv, is defined as follows:
particular problem at hand. This paper adds tddhecasting/ ’ Il " for|k] = T/2
Wy =

regularization/  shrinkage/  high-dimensional  estiorat 1/2 otherwise, ()

literature (see e.g. ridge regression (e.g. Tikorand  see Brockwell and Davis, 1987, Ch. 10 for the oadsrus;
Arsenin, 1977; Hoerl and Kennard, 1970), lasso €fiiani, although it is practically negligible, without ihe inverse
1996), least angle regression (Efron et al, 20@4yesian discrete Fourier transform does not replicate tita gerfectly.
shrinkage (e.g. Doan, Litterman and Sims, 1984cppal This paper uses a ‘sufficient statistic’ — periogng, Ir.. (e )
components (Stock and Watson, 2002)) by exploring t— ass(ew;) in (4):
properties and abilities of a regularized direttefiapproach SCeop)e= Irp(eoy) =L|Z‘Er_l ¥ exp(—ita, )% (6)
(Wildi, 2012) in signal extraction and forecastinging many . BT Ay
variables.

This paper is the first paper that studies and emgints a
regularized multivariate direct filter approach (@i 2012).
Filter regularization has found to help in realginfilter A UnivariateDirect Filter Approach

Minimizing expression ‘(‘4)—(6) yields the real-tinfiter
output optimally approximated to the ideal outpotrmean
squared error sense.

extraction since it controls for effective degredsfreedom; Rewrite discrete version MSFE, (4), as follows:
thus, it allows controling for overfitting that cahave EE[_’-F_-":F,__ wi [T (aog ) — Tieog )| 2y (o )W (i), (7)

degrading effects in out-of-sample performance. thao
advantage of a regularized filter is that it allovagyh-
dlmen_5|0nal data to ent_er_ the fllte_r ar!d therefmqher written as follows:
robustify the outcome. As it is shown in this paeparticular W Ceay,, @xpw, cut) =
regularization feature used in the paper may rerabwut the " 1 if|eoy, | < cut
‘lag decay’ term in Minnesota prior (see, e.g. Ddatterman ({1 + oy | — cut )Y atherwise (8)

. . . . ) " !
and Sims, 1984) in Bayesian econometrics. Forcirgem \ynich collapses to unity fosxpw = 0, in which case the
distant filter coefficients to zero both saves @egrof freedom cjassical mean squared optimization, (4), is olethin
and effectively shortens the filter, thus making nfore  parameterut (for a ‘cut-off frequency’) marks the transition
responsive to changing environment. Another re@dfion petween the passband and rightmost stopband, asitivpo
feature studied in the paper is cross-sectionahlsige that yajues ofexpw (for ‘exponent weight) emphasize high-
makes filter coefficients behave Similarly for diani series. frequency Components in the rightmost Stopbandi thﬂk”']g
The cross-sectional shrinkage has been found taisedul the filter output smoother than the one obtainedninimizing
particularly if the dataset is rather homogeneous. (4) for positiveexpw.

Univariate analysis is of limited usefulness; thu& turn
Il.  REGULARIZED DIRECTFILTER APPROACH AN OVERVIEW  now to the multiple-series analysis.

Denotey; as the output of a symmetric, possibly bi-infinite B Multivariate Direct Filter Approach
filter, E};_x ¥ Li, applied to input series;:

which is identical to (4) fol (e ):= 1. However, a more
general version OfW (e ): = Wiwy, expw, cut) can be

_ ) The above-mentioned univariate customized filtey heen
¥r :Ej=—=-= ¥l xs generalized to a multivariate filter in Wildi (20L1Rewrite
=L o vxr ) (1)
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univariate minimization problem, (7), with the diste Fourier /T{(erg)Ery (g )
transform (DFT)Mr(m T 200y ) Exy (004 )
¥V = | 2T(01)Ery (c0z) (16)

2
= Z Wil (@) — P Pl W (1)
n——['T"

E‘." S Wil T(@R)Erx (@3) -
[ Cor) Ere Coog DI W (0 ).
©)

where

. _
_\ngiﬂ. % peEp(—itoay ). (10)

B (5) =

In addition to the filter outpuy;, and the corresponding

wzr{ﬂrr.-':::]Erx':ﬁ-"['r.-':::]e'
Neglecting a constarfiz /T and the practically negligible
Wy, (14) withW () = 1 can be rewritten as follows:
(¥ = XbY'(¥ — Xb) = min (17)

SinceX and¥ are complex-valued, the solution to (17) will
also be complex-valued. A real-valubd¢an be obtained by
rotating ¥ and ¥ s.t. the value of the metric in (17) is
unaffected:

X ror = Xy exp(—iarg (T (o3 )Ery (03)) + theo)

Vige = I¥l, (18)

input, xy, assume there ane additional explanatory variables whereX; ;. is thek-th row ofX, ., andh is the lag at which

=1,.
ny.lr
of ¥ obtained with a univariate filter.

... mthat may help improve the real-time estimatdilter is estimated, i.e» = 0 for a concurrent filter that targets
Then, the satony;_; =v;, h =0 for a smoother, ank = 0 for forecasting

expression in the modulus on the second line of (%he signal. A real-valued, thus, can be obtained from solving

Ty (@)= Ery (0)s becomes

r}'{mn:]‘-""x{mn:] +E (11)

x,. {mn:] E‘!’x,. ey
where .
Grwn) = (S blj-exp{—fmj}anmaj (12)
[y, (o) = (Zhog bs, jesp(—ijeo))Ers, ()  (13)

are the one-sided transfer functions applied ¢oetkplanatory
variables, andZry(wg), Zr; (wy) are the corresponding

DFTs. Then, the multivariate version of (9) canviréiten as
follows:

M T
T Eu---rr-

wi | (P Ceog) — B ey Y) (o) —

., W ().

I, (oo )5 g, (g )
(14)
C. Regularization

In order to conveniently define the regularizedtefil
problem, the above-mentioned multivariate filtratiproblem
is rewritten in a least squares form, see Wildi1@20for
details; this subsection explains how it is donbilevthe next
subsection introduces the regularization problem.

Define ¥ such that ité-th row, X, is:

X;l-" =
exp (—iloy )Ery ()
exp (—iloy )Er g, (oo )
(1 + i p)Vee | Erz, o) ep (—ileoy )Er g, (k) |
exp (—iL i )Er s, (i)

(15)

where L is the filter length, and.;, =0 for £ =10 and

Iimp =1 for k=12,...[T/2]. Define vectorsh and¥ as
follows:
'rhxn Bxin bx:n Bx.mD\
h = Vec EJI]. E’xil bx:l - E’x.ml
\EJIL EJK:[L bsz EJK-H-[L"

':Fr'nr - Xrnt hj r{}rmr - (19)
For the customized multivariate filtel{{ w; )} = 1), define

X5 = X ror Wi opw, ) (20)

Xooeb) = main.

i’l.'.‘r -
IT(e90) Era (c) 1/ W (aog, expw, cut)
21T (w3 YEr (0s) |y W (o, expw, cut)

xz|r':ﬁ-"['r.-':::]E:rx':ﬁ-"['r.-':::]|«,..".1'V':C<-"['r.-'::s expw, cut
(21)
wherexf®t is thek-th row of X757%. Then, the least-squares

form for the customized filter problem can be wenittas
fuLSf

follows:
r
Veor — ot 8)'(

which collapses to (19) fexepw = 0.

Recalling that Tikhonov regularization problem (e.g
Tikhonov and Arsenin, 1977) can be cast in the form
(¥ —XbY(¥ —Xb) + Ab'b — miny , the regularized direct
filter approach problem introduced in Wildi (2018) of the
familiar form:

(Vo — X b Y (VAF — Xﬁs‘?”hj +A:0'Q:b +2.0'Q. b+
+A8' Qb — mbftl.

r..e.sr
i"l:lf

m.sr
ot

B) - min.  (22)

(23)
where the three additional expressions of bilinéam
represent three different regularization directiensoefficient
smoothness (subscript ‘s’), cross-sectional shgekgubsript
‘c’), and shrinkage along time dimension (subschip). Let
us discuss each in turn.

The idea behind the smoothness restriction is fittat
coefficients should not change too erratically @scfions of a
lag. Thed, matrix of size{L + 17} = (L + 1] is such that

Qb =" B (1 - L)%pl), (24)
where{1 — L)%k} = b} — 75:'* . +5f . is the second order
difference oft¥, I = 0....L, andu =0,...m. Therefore, the
term in (24) is a measure for the quadratic cumeatf filter
coefficients — if coefficients decay linearly amftions of a
lag then this term vanishes. Thus, in the limitocase when
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Ay — oz, the filter coefficients are restricted to be &ne
functions of a lag.

The idea behind the cross-sectional shrinkageas dhe
will expect the filter coefficients to be similaorf similar
series. This shrinkage is implemented by imposimgstraints
on b according to

Since the regularization is cast in bilinear forntke
problem in (23) has an analytic solution. Setting
Ay =4d.=414=10 gives the unregularized filter problem in
(22). Or, settingexpw =0 but letting some of the
regularization lambdas be positive gives the retiadd
classical multivariate filter problem. This papeashfound out

m ((b‘* _toym E:“’)E . (E:‘* _tym E:‘*’)E . that the lag decay shrinkage is the most usefuhefthree
u=0 L5 T g Sur=0 50 tomer TSR regularization types for the application at harwllofved by
¥ {59 Lt ym bgr)‘) the cross-sectional shrinkage.
L mal ar=0 =L . )
(25) D. Filter Condraints
which yields a symmetric bilinear form with The first-order constraint imposes specific valtsthe
L3 amplitude functions at zero frequency. For a bassditer,
Q.= o LE (26) One would typically set amplitudes at zero frequyete be
g : zero ensuring that a bandpass filter attributes mezight to
o pm+ 1e(L +1 the trend frequency, while for a univariate lowpéKer one
where would typically set the amplitude at zero frequetmynity to
Gy = (1— 1 0,...0] 1 0] — 1 ensyre ﬁat a lowpass filter tracks the level/sohlthe target;
et m+ 1T m+1 m + 1. such réstriction is related to assuming the tangsta unit root
fes = (01— 1 00 |EI, B 0ol - 1 at éelrlcl)jrﬁgtjency,- ie., ?t is the first-(?rder grted process.
' -{—1 m+11 m + 1" For a multivariate filter, the optimal constrainkavel of
4.3 = (0,0,————,0,...,00,0, - ———,0,...,0 the amplitude at zero frequency is less clearhis level can
. +1 be set to an inverse of the number of explanatariables for
0.0, - .0, ...,0] ...) all the variables, if all explanatory variablesldel the same
m+ 1 trend. However, the latter may not always be thee @nd thus
1 a better outcome could be obtained by differemgatthe
Gemst)olres) = (0.0, = I 0.0, .... -— 10,0, Iqrnpl|tude constraint at zero freq_uency for_ varlemplanato_ry
. m+2 m variables. An example of such differentiation of tonstraint
—m e |EI,[], ol — E) (27)  is provided in the empirical section.

such that each block separated| iy of lengthl + 1. Thus
there are 1's on the diagonal@fand periodically arranged

——1's which account for the central means in (25).

m+1

A higher i, gives preference for more similar filters across,

series and the limiting casel;— ¢ ensures the filter
coefficients are identical across series.

Finally, the idea behind the shrinkage across tim,

dimension is that a practitioner may give a prefeeefor the
filter coefficients that decay to zero progressiva$ functions
of a lag. For a Bayesian econometrician this weithind of the
lag decay in the Minnesota prior (e.g. Doan, Litten and
Sims, 1984). This shrinkage is implemented by st ;
such that

b"Qab = Xl Tiop (2% (28)
whered; is thel-th element of
§= {q D‘-.-'|":J q|’-"-‘"-""'*|,q|:"-‘"-""‘|, ,q'i"-‘"""-'”}, (29)

whereg is set tog:=1 + 1,4, v denotes amax(-} function,
andh signifies the lag at which filter is estimateds.jh = 0
means a concurrent filter that targets ;, = ¥y, o = 0 means
the filter is the smoother, ankl = 0 means the filter is
targeted to forecast the signhl periods ahead. When
estimatingyy_; for & = 0 a practitioner will need to assign
the largest filter weight to observations coincglinith vz _.
Thus, (29) ensures that minimum regularizatiomipdsed on

In practice, one can choose to use or not to usdetrel
constraint at one’'s own discretion. This constraist
implemented by restricting:

by +BY g+ By = wl (30)
wherew! is the value at which the transfer function for a
variableu is set at zero frequency, ahds the targeted lag
h = 10 for a concurrent filterk = 0 for a smoother, an# < 10
or forecasting the signal).

The second-order constraint restricts the timet githe
filter at zero frequency to vanish, and is relatedassuming
the target variable has two unit roots at zero desmy, in
which case both the first- and second-order coimsgravill be
implemented. In practice, however, the usage of the
constraints are up to the practitioner's agendd, e could
use the time shift constraint without imposing thevel
constraint, the combination of the constraints twat not be
straightforwardly imposed in the time domain. Theemd-
order constraint is imposed by forcing the deriatof the
transfer function at zero frequency to vanish, \uhiesults in
the following coefficient constraint:

—hb%, + (1 —RIBY , + (2 — R)BE , + - + B +
2b% 4 -+ (L —K)BE_; =0,
(31)
whereh is the targeted lagh(= 0 for a concurrent filter,

lag h (since g"~"" =4 ), and a decay is emphasizedh = 0 for a smoother, ani < 0 for forecasting the signal).

symmetrically on both sides away from the targetHa A
higher 1; ensures a faster coefficient decay to zero as
function of a lag.

50

Both constraints can be implemented by selectingtan
ad the coefficients but is implemented by constrairk; and
b¥, so as to avoid a conflicting situation betweeesth
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constraints and the regularization, e.g., a laggegenda for
h is large enough.

The constrained regularized filter problem is sdivey
rewriting filter coefficient vecto® as follows:

bh=Rbs + ¢ (32)

where b; is the vector of freely determined filter
coefficients, plugging (32) in (23), solving fi, and then
plugging the estimate @& into (32) to get the estimate bf
see Wildi (2012) for details.

E. Effective Degreesof Freedom

In the unconstrained ordinary least squares framewbe
(regression) degrees of freedom is the number tihated
parameters. Given a well-posed ordinary least sgual
problem,

(¥ —XB)Y(¥ —Xb)— mbim

In order to motivate the chosen transformationathdit is
illustrative to plot the transformed target var@ablnd
explanatory variables. Fig. la shows standardizedua

growth of EA GDP versus standardized business and

consumer data. Explanatory data are well aligneth whe
annual growth of GDP. Extracting the cross-sectianaan
and the first principal component of the standardiz
explanatory data and plotting against standardiaadual

growth of GDP shows that both the mean and the firs

principal component explain annual changes in G2R, and
there is not much difference in the performancehef mean
versus the principal component, see Fig. 1b.

Clearly, there is not much to improve upon the $@gross-
rsectional mean or the first principal component tbé
explanatory variables as it comes to tracking catli
developments in the normalized annual growth obauea

GDP; it is slightly more difficult to track non-nmalized

the fitted values o¥ can be written in terms of a hat ortarget, see the results below. The cross-sectior@dn or

smoother matrix, S, which is just a projection nxatp:

¥ = 5V = X(X'X)" XY = PY. (33)
The degrees of freedom is trace of the projectiatrim
d.f.=tr(P), (34)

which equals tgank (X).
For a regularized problem as in expression (23),
(V3 — XEHET B (R — Xis
the smoother matrix is no longer an orthogonajguton but
the same notion applies. Denoting the fitted valfiEZ%* by
725t and the corresponding smoother matrixiby
3 =
Re(XFEE ) (AR +2:Q. +24.Q. +
+14Q2)  Re(X557)",

(35)
such thaisust =
effective number of parameters) is the tracg:of

g.d. f.= tr(5). (36)
see, e.g. Moody (1992), Hodges and Sargent (2001).
Effective degrees of freedom are useful for cofitrglthe
overfitting and, thus, for controlling out-of-sarapl

performance.

I1l.  REGULARIZATION FEATURES

We now study the regularization features of theffil For
visual tractability and due to numerical
unregularized filter crashes the high-dimensiomgut data
when the number of estimated filter parameters hesdhe
number of sample observations) only nine variabiesused
to analyse the filter effect. The nine variables lansiness and
consumers confidence data: production trend obdefne
recent months (industry), assessment of order-bleokls
(industry), assessment
(industry), production expectations for the monthisead
(industry), employment expectations for the mon#ead
(industry), confidence indicator in constructiomnéidence
indicator in retail, consumer confidence indicatcand
confidence indicator in services. These variables used to
track a lowpass in the euro-area gross domestidugto
(GDP).

bY + A:5'Qsb + A.5'Q.E L)

of stocks of finished prisduc

principal components can be used as filter inphbtg, this
paper shows that it is not necessary to do salatdone can
use the original, possibly high-dimensional datatees input
and potentially benefit from the richness of data.

(b)

Fig. 1: (&) Annual growth of GDP versus businesd aansumer data, all
) normalized to zero mean and unit variance. (b) Ahguowth of GDP versus
Syfu=t the effective degrees of freedom (or the cross-sectional mean and the first principahmanent of business and
consumer data, all normalized to zero mean andvanince.

In order to understand the extent of overparaneston
in an unregularized multivariate filter, considern a
unconstrained filter applied to the above-mentionade
variables targeting an ideal lowpass of annual ¢iioef EA
GDP with the cut-off wave length of 12 months. Thiter
length is set to be fixed 12 observations, for dicity. While
the estimation routine can estimate a 9-variabterfon the
full sample (178-observation long), it crashes d&anal

issues (a8 psamples because of the degrees of freedom haeiex

shrunk to zero for all subsamples shorter than 9103
observations. A further reduction of filter lengthay be a
temporary solution but not for long and not without
consequences on the output quality. Therefore,
unconstrained 9-variable filter output is infeasilfior the

considered data samples. Thus, some sort of pasamet

shrinkage is necessary. In order to illustrate gffect of the
parameter shrinkage induced by the regularizegk fittonsider
the estimated filter coefficients for an unconsteai and
unregularized 9-variable filter on the full samplde number
of estimated parameters is 9 variables and 12 wéisens,
which gives 108 parameters to estimate on a 178rgaton
long sample, which gives only 70 residual degrddse@edom.
Fig. 2a shows that the estimated filter coefficselpbk erratic,
unsmooth and do not show either a similar behavhetween
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the variables or an evident decay towards zero with
increasing lag. Fig. 2b shows the (rather chaofitter

amplitudes corresponding to the coefficients in. Rigj; it will

be useful to analyse how the amplitudes change wétfous
constraints and regularization restrictions.

We will now witness the effect of filter constrasrand the
regularization features first applied to each anthat a time
and then in a potentially useful combination.

The first-order restriction imposes the filter ample to
be a specific value at zero frequency. For a uidt@towpass
filter, a natural value of the amplitude at zereqgency is
unity in order to ensure that the scale of the outs
comparable to the scale of the target signal. Foukivariate
filter, the situation is

(a (b)
Fig. 2: (a) 9-variable filter coefficients withouegularization and filter
constraints. The estimated filter coefficients l@skatic, unsmooth and do not
show a similar behaviour between the variablesamoevident decay towards
zero with an increasing lag coefficients. (b) Fikenplitudes corresponding to
the coefficients in Fig. 2a.

not so straightforward since all the input seriesagally do
not possess the same trend, therefore restrictimgrplitudes
to be of the same value at zero frequency may bepdimal.

If all the input series followed a common trencerthit would

be natural for a multivariate lowpass to set amghis at zero
frequency to be inverse of the number of inputesgrso that
summing over the amplitudes would result in unityzaro

frequency. Since the input series used in thisaresehave a
somewhat similar behaviour between each other,ldtter

approach is used in this case; however, there ragyotential
gains by using a more sophisticated amplitude caimstthat

will differentiate amplitude values at zero freqoagnfor

different input series; such an approach is dismlidater in

the section when applying the filter to a highenensional set
of explanatory variables.

The first-order constraint saves one d.f. per inparies;
thus, nine d.f. are saved for an unregularized -naréable
filter.

Fig. 3a and 3b show that the effect of amplitudestm@int
results in slightly more dispersed coefficiente(ftale of the

graph has changed), as well as slightly more exulod ..

amplitudes. Thus, the first-order constraint perdses not
seem to be of much help for an ill-posed high-disiemal
filter. Note that the amplitude constraint is bimglifor almost
all series since the unconstrained amplitudesrat frequency
are dispersed far away from the constrained val(8.(

52

K(a) : — 5 (ag)
Fig. 3: (a) Coefficients for a first-order constrad lowpass filter. (b) Filter
amplitudes corresponding to the coefficients in Bay

The second-order restriction imposes a vanishings@h
shift at zero frequency for a targeted lead or kagd also
saves a d.f. per input variable in an unregularipezblem.
This constraint is related to assuming the targatiable
follows the second-order integrated process, inciwhiase
there are two unit roots at zero frequency andeftbee, both
first- and second-order constraints will be implateel.
However, the time-shift constraint can be used auiththe
first-order constraint in order to ensure the otitpiroincident
with the target signal but not necessarily assuntieg the
target signal follows a second-order integrated cess.
Therefore, such a combination of constraints gag®ibd the
one typically seen in the time-domain applications.

The corresponding filter coefficient and amplitu(kee
Fig. 4a and 4b) show that the coefficients are backheir
original scale and also amplitudes look less exgdod
compared to the ones of the first-order constraifigdr.
(Evidently, higher amplitudes at the high-frequeregntent
indicate that zero time shift at zero frequencylitained by
attributing higher weight to the high-frequency o, which
is typically the case, when the explanatory vadabhre
lagging with respect to the target variable, whishin line
with the observation from Fig. 1a and 1b.) Stitle tsecond-
order constraint is not a panacea since the ardpktare still
erratic and since the number of degrees of freedanishes
for samples smaller than 9*(12-1)=99 months, whish8
years of data.

Turning to the new regularization features, Figto57
show the effect of coefficient smoothness restictiof
various extent corresponding #p being 0.01, 0.1 and 1,
which correspond to the effective degrees of frerd®, 43
and 30, respectively.

@ e
Fig. 4: (a) Coefficients for a second-order coris&d concurrent filter. (b)
Filter amplitudes corresponding to the coefficiantEig. 4a.



Technologies of Computer Control

2012/13

(b) » ) o _ Fig. 8: (a) Coefficients for an unconstrained filié i, = 0.01. (b) Filter
Fig. 5: (a) Coefficients for an unconstrained filié i, = 0.01. (b) Filter  ampjitudes corresponding to the coefficients in Big

amplitudes corresponding to the coefficients in By

' (a)i T T (b) R Fig. 9: (a) Coefficients for an unconstrained fili¢ i. =0.1. (b) Filter
Fig. 6: (a) Coefficients for an unconstrained fili¢ .1, = 0.1. (b) Filter ~amplitudes corresponding to the coefficients in Big
amplitudes corresponding to the coefficients in Bay
The effects of cross-sectional restriction diffesnfi those of
parameter smoothness restriction — mild crossomati
restriction seemingly improves the behaviour oftefil
coefficients and amplitudes (see Fig. 8a and 8b),flarther
cross-sectional restriction can be harmful if aggblalone (see
amplitude behaviour in Fig. 10b). Such a crossiseat
restriction analysis may help understand which eseror
clasters of series are different from the othersour research,
no series clearly stands out from the rest.

K(a) : 0 % (ba)”
Fig. 7: (a) Coefficients for an unconstrained filté 4, =3. (b) Filter
amplitudes corresponding to the coefficients in Fay

Fig. 5 to 7 show that the filter coefficients are tonger

erratic; they are nice and smooth and they arangethore

linear as the smoothness parameigrincreases. If the

smoothness parameter is increased still furthee, fiher ‘

coefficients converge to horizontal straight linétowever, @ oo “’(ﬂb)

such an over-regularization is not necessary orat#e since Fig. 10: (a) Coefficients for an unconstrainedefitif i, = 1. (b) Filter

the considered small values of the smoothness duniamplitudes corresponding to the coefficients in Eiga.

coefficient already reduce a lot of degrees ofdoee and the

corresponding amplitudes look much closer to thibse are As for the third regularization feature, Fig. 1118 show

expected, i.e., most of their weights concentrate tbe the longitudinal effect, i.e. a lag decay restontiof various

passband[d.=,/6] and converge to zero in the stopbandextent corresponding té; being 0.01, 0.1 and 1, which

Nonetheless, the filter coefficients show neithenwergence correspond to the effective degrees of freedom382and 5,

to zero with higher lags, nor similarity acrosseer respectively, which is a stronger shrinkage that tbserved
Fig. 8 to 10 show the (partial) effect of crosstie@l with parameter smoothness or cross-sectional caetri

restriction of various extent correspondingitobeing 0.01,

0.1 and 1 (the rest of shrinkage parameters being),zwhich

correspond to the effective degrees of freedom485and 24,

respectively, which is close to that observed vatttameter

smoothness restriction.
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@ (b)
Fig. 11: (a) Coefficients for an unconstrainedefilif i ; = 0.01. (b) Filter
amplitudes corresponding to the coefficients in Eitp.

(@) ()
Fig. 12: (a) Coefficients for an unconstrainedefiltf iz = 0.1. (b)
amplitudes corresponding to the coefficients in ERg.

Filter

(é) : 0 > % m(b) o
Fig. 13: (a) Coefficients for an unconstrainedefiltif i; =1. (b) Filter
amplitudes corresponding to the coefficients in Ep.

Fig. 11 to 13 show that a lag decay restrictiorcdarfilter
coefficients to shrink towards zero as functionsagfand that
a sufficiently high shrinkage parameter vyields efilt
coefficients to be non-zero for a small numberagfs. Fig. 13
shows that a sufficiently high longitudinal shrigkaforces
filter amplitudes to shrink towards zero (see thales of Fig.
13b) and flatten, resembling those of an allpds fiwhich is
an expected behaviour since a short filter canisarichinate
between frequencies effectively.

Coefficients in Fig. 11a and 12a are rather smoatiich
resembles the effect of parameter smoothnessatéstri Also,
Fig. 11a and 12a show that longitudinal restricfites filter
coefficients to behave somewhat similarly acrosgsewhich
reminds of the cross-sectional shrinkage. Thesceffmight
suggest that the lag decay shrinkage is the mastlusf all
three shrinkages. Still, the longitudinal shrinkagay conflict
with e.g. parameter smoothness restriction for fficgntly
high lag decay restriction, see Fig. 13a. Howeirastead of
using both longitudinal and parameter
regularization features, one may just loosen thge dacay
restriction.

longitudinal and the cross-sectional shrinkagesmfrthe
considered regularization ‘troika’ since the partane
smoothness restriction can be obtained implicitly the
former two.

Recall that setting the longitudinal shrinkagedio= 1
yields only five e.d.f., which may suggest thatighsé change
in the sample size or in the number of explanasanyes can
yield close to zero e.d.f. Indeed, the estimatioatine can
break up if severe regularization is imposed. Tioees a
caution should be taken in empirical work so thau#Hicient
number of effective degrees of freedom are giventh®
estimation routine. Otherwise, the estimation matwill not
work not because of overparameterization but becaafs
‘underparameterization’.

Filter constraints have been found to be usefukai-time
signal extraction (see e.g. Buss, 2012). Therefaresider the
effect of longitudinal shrinkage combined with tfirst-order
constraint or second-order constraint or both-fesid second-
order constraints.

@ (b)

Fig. 14: (a) Coefficients if longitudinal regulagizon with.i, = 0.1 and the
first order constraint are implemented. (b) Fikenplitudes corresponding to
the coefficients in Fig. 14a.

Implementing the first-order constraint togethetthwihe
longitudinal shrinkage yields similarly-behaved fficéents
and amplitudes, whose values at zero frequencgraiaverse
of the number of input variables, i.e 1/9. Ampliugalues
tend to diverge sharply and mostly increase forsipasd
frequencies, after which they
tend to converge and
decrease. ”

@ (®)
Fig. 15: (a) Coefficients if longitudinal regulaaizon with.i; = 0.1 and the
second order constraint are implemented. (b) Fiteplitudes corresponding
to the coefficients in Fig. 15a.

smoothness

The findings of this paper, indeed, suggest tha th

longitudinal shrinkage may be the most useful o three
regularization features. Moreover, this paper wileé only the
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Fig. 16: (a) Coefficients if longitudinal regulaaitton with.i; = 0.1 and both
the first- and the second-order constraints arelemented. (b) Filter
amplitudes corresponding to the coefficients in Egg.

(@)

The instability of the amplitudes at low frequersciaay be
explained by the restrictive nature of the firsi@r constraint
— it forces all amplitudes to be of the same smallue
although the unrestricted amplitudes are somewispedsed
around zero frequency. Also, some of the coeffitsieare
negative at low lags, which can be considered alesirable
effect for the dataset, where each series coreeladsitively
with the target.

The second-order constraint slightly increases tt’ﬁ]

dispersion of the coefficients but otherwise doed¢ add
drastic changes to the regularized filter.

Implementing both constraints simultaneously is rtast
restrictive case. Fig. 16a and 16b show that fitmefficients
behave more similarly among series than in the cdiseo
constraints or just the first-order constraint {t®the scale of

graphs), and so the corresponding amplitudes ass 1d°]

dispersed than in the case of no constraints drthes first
order constraint. Still, negative coefficient vaduenplied by
the first-order constraint may be considered sona¢wh
implausible/undesirable, as well as the cause dirth
implausibility — the restrictive and somewhat andoiy
amplitude constraint. Therefore, if the first-ordenstraint is
to be used, one should think of plausible valuesfoplitudes
at zero frequency. Otherwise, the practitioner rnaywilling

to use the cross-sectional shrinkage as a tool dtp h
controlling the degrees of freedom (at least fothen
homogeneous datasets),
constraint.

V. CONCLUSIONS

Nowadays, information is abundant. Statistical $oate
being developed that are suitable to process & kamgount of
information for a particular problem at hand. Thi&per has
considered the regularized multivariate direcefilapproach

Ginters BuSs. levads regularigta tie& filtra pieeja

(Wildi, 2012) as a tool for signal extraction armtefcasting
using high-dimensional datasets. The paper hagestutie

regularization properties of the filter: (i) coeffnt
smoothness, (i) cross-sectional shrinkage, andi) (ii
longitudinal shrinkage. Relative merits of the thre

regularization terms have been discussed. It has Baown
that the filter can be successfully applied to hilifmensional
datasets.
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Sis darbs fta regularizta ties filtra pieeju (Vildi, 2012) k& riku lieldimensioalu datu filte$anai un rala laika sigrilu iegiSanai. Lai gan Vildi (2012) agitina
filtru, tas neanaliz filtra regularizcijasipadbas uz raliem datiem, k af nepta iesgjas pielietot filtru lieldimensioflam datu kopm. Tadgjadi S petijuma
jauningjums ir padZinata filtra regularizcijas ipadbu izgete, kaslauj pielietot filtru uz reliem, potendili lieldimensioriliem datu mawviem. Vildi (2012)
regulariz filtru, kas izstadats Vildi (2011). Filtra regularizija ietver Vildi (2011) neregularéta filtra optimizacijas probtmas @arveidoSanu mako kvadatu
izteiksn® un tis regulariicijas locelu ievieSanu, kas atbild par filtra (i) koeficiengludumu, (ii) &érsgriezuma saSaudisanu un (iii) garengriezuma
saSaurinSanu. Koeficientu gluduma regulatdja nodroSina, ka filtra koeficienti mais gludi laika dimensij Pastipriata gluduma regularizija nodroSina, ka
koeficienti Kist arvien linaraki laika griezuna. Skérsgriezuma regularizija nodrosina filtra koeficientuidzigu uzvedou starp idzigiem ievaddatiem.
Robezgajuma koeficienti ir vieradi visiem ievaddatiem. Garengriezuma saSasena nodrosina filtra koeficientu dilSarid2 nullei idz ar auggku lagu.
Rezulati rada, ka visefeltakais regularizcijas loceklis ir garengriezuma saSaagiana, kam sekd&rsgriezuma saSaufifana. Sechts, ka regularidais filtrs
ir spejigs apstadat lieldimensionlas datu kopas, kont@bt efekivas biivibas pakpes, un ka filtra skdbSana idtra. Tapat seciats, ka regulariza tied filtra
pieeja ir \rtiga gan vienlaigai nowrtéSanai, gan prognézanai, izmantojot lieldimensialus datus.
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I'untep Byui. BBeenue B oXo1 pery/isipu30BaHHOIO MPSIMOro GHIbTPa

Orta pabora Hccieayer IOAXOJ peryisipusoBaHHOro mpsiMoro ¢umbtpa (Bummu, 2012) B kadecTBe MHCTpyMeHTa (HIBTPALUHM MHOIOMEPHBIX JAQHHBIX H
[OJIyYCHUSI CUTHAJIOB B PEKHMME peanbHOro BpemeHn. Xotsi B Buaun (2012) paccunrtan (uiasTp, sTa paboTa He aHAIM3HPYET CBOICTBA PETyIsipU3alld HA
peanbHBIX JAaHHBIX, a TAKXKEC HEC HCCICAYeT BO3MOXKHOCTH HCIOIb30BaHHS (GMIbTpa Ui MHOTOMEPHBIX JaHHBIX. TakuM 00pa3oM, HOBHM3HA JaHHOTO
UCCIICIOBAHUs COCTOMT B YIUTyOJICHHOM M3YYCHHH CBOMCTB Peryssipu3alud (UIbTPa, KOTOPBIC MO3BOJSIOT MPUMEHSTh (UIBTP K PEaNbHbIM, MOTCHIHAILHO
MHOTOMEPHBIM TaHHbIM. Bunan (2012)perymspusyer ¢puinbtp, co3nansbii 8 Buaau (2011). Perymsipu3arms Bimrodaet TpaHc(HOPMALHIO 3a1a4eii ONTHMH3ALMI
HeperyaspusoBanHoro (uiastpa Bummu (2011) B ycioBHsS HaHMMEHBIIMX KBAaApaTOB M BBEACHHM TPEX WICHOB PEry/IpH3allnM, KOTOpPbE OTBedaroT 3a (i)
raaakocth koadduumenros, (i) nonepeunyro ycanky u (iii) mpomonsnyro ycaaky. [magkocts K03(p(GUIHEHTOB rapaHTUpyeT, 4to Ko3hQHUIHeHTs (ribTpa
IUIABHO WM3MEHSIOTCS BO BPEMCHHOH JuMeHCHH. [IOBBIMICHHAs ITI4AKOCTh PEry/SIPU3ali OOECIICYMBACT BCE OOJIBIIYI0 JIHHEHHOCTH KOA(D(PUIHEHTOB BO
BPEMEHHOIT quMeHcnH. TlonepedHas ycaaka rapaHTHpyeT CX0Xkee MoBeaeHHe Ko UIMeHTOB (GUIBTPa IIPU CXOXHX BXOAHBIX JaHHBIX. B mpenensHOM ciydae
KO3 HULMEHTB OJMHAKOBBI /Ul BceX JaHHbIX. [IpojosbHasi ycaJaka rapaHTUpyer, 4To Kod(GGUUHUEHTb GUIBTpA CTPEMSATCS K HyII0 HpU Oosee aeKux
OTCTaBaHMSX. Pe3ysIbTaThl MOKA3BIBAIOT, 4TO Hanbosee IQ(EKTHBHBIM METOIOM PEry/SIpU3aLMy SIBISIETCS IPOJOJIBHAS yCa/Ka, BTOPEIM 110 3G (EeKTHBHOCTH —
nonepedHast ycagka. CrenaH BBIBOA, YTO PEryisipH3OBaHHBIA (HIBTP crocobeH oOpabarbiBaTh HAOOPHI MHOTOMEPHHX [JAaHHBIX, WCIOJB3YS YHPABICHHC
9(PEKTUBHBIMU CTEHEHAMH CBOGOIBI, U YTO BBIYHCICHHS (PHIBTPANIPOBOASATCS OnepaTHBHO. TakKe YCTAHOBJICHO, YTO MOJXOJ PEryJsIpU30BaHHOTO MPSIMOTO
(ubTpa ABISETCS LCHHBIM KaK ISl OAHOBPEMCHHOM OLICHKH, TaK W UL IPOrHO3UPOBAHMS IIPU HCIIOIB30BaHNH MHOTOMEPHBIX JAHHBIX.
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