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AF Autocorrelation function 
AI Artificial intelligence 
AV Allan variance 
DGPS  Differential GPS 
DR  Dead reckoning 
EKF  Extended Kalman filter 
ENU East-north-up  
GNSS Global navigation satellite system 
GM  Gaussian Markov 
GPS  Global positioning system 
IKF  Intellectual Kalman filter 
IMU  Inertial measurement unit 
INS Inertial navigation system 
ISA Inertial sensor assembly 
IS  Inertial sensor 
LKF Linear Kalman filter 
LPF  Low pass filtering 
LVNS  Land vehicle navigation system 
MEMS Microelectromechanical systems 
MSE Mean square error 
RMSE  Root mean square error 
PDF Probability  distribution function 
PDR Pedestrian dead reckoning 
PF Particle filter 
RADAR  Radio detection and ranging 
SINS Strapdown INS 
UKF Unscented Kalman filter 
WD Wavelet decomposition 
ZVU Zero velocity update 
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List of mathematical symbols 
 
Ia Raw acceleration measurement, [m/s2] 
Ig Raw gyroscope measurement, [deg/s] 
a Acceleration true value, [m/s2] 
  Angular rate true value, [deg/s] 
  Roll, [deg] 
  Pitch, [deg] 
bg Gyroscope bias,[deg/s] 
ba Accelerometer bias,[m/s2] 
S Scale factor 
ε Sensor measurement noise 
v Land vehicle velocity, [m/s] 
s Distance travelled by land vehicle, [m]
β Fading factor 
  Threshold in IKF 
  Heading, [deg]
N VRW, [m/s/ h1/2 ] or ARW, [º/h1/2 ]coefficient 
K ARW coefficient, [m/s2/h1/2 ], [deg/h /h1/2] 
B Bias instability coefficient, [m/s2], [deg/s] 
K KF gain coefficient  
H Measurement matrix 
Ф State transition matrix 
Q System noise covariance matrix
R Measurement noise covariance matrix  
P System error covariance matrix 
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INTRODUCTION 
 

Nowadays, the range of applications of low-cost MEMS based inertial sensors increases 
rapidly due to the recent advances in their reliability and system characteristics. MEMS 
technology creates a baseline for the next generation of inertial navigation systems. The 
applications of inertial sensors are from vehicle navigation and guidance, pedestrian dead-
reckoning (PDR) through to smartphone game applications. 

The era of inertial navigation began when gyros and accelerometers were used as a 
guidance tool in the German V2 rockets (1942). These navigation systems were gimbaled or 
floated systems [39]. These systems were very costly and very expensive to maintain. A next 
step of navigation system development began, when digital computers (with sufficient 
computational capabilities and memory options) became available. Analytic one (strapdown 
systems) replaced the mechanical based implementation of the inertial system orientation 
module [8]. Next development step began with MEMS technology development. Merging 
electrical and mechanical systems at micro scale, microelectromechanical systems (MEMS) 
technology has revolutionized inertial sensors [20].  

As the use of high performance inertial systems is limited by their high price and the 
regulation of governments, specifically low-cost MEMS inertial sensors started to be used 
widely in civil applications [79], [52], and [2].  

 
Actuality of the thesis 

 
A navigation technique is a method for determining position and velocity, either manually 

or automatically. Different technologies can be used for determining the position of land 
vehicles. One of them is an inertial navigation.  High-cost navigation systems are quite well 
developed, but it is not economically efficient to use it for land vehicle navigation.  The 
challenge now is in developing and designing    navigation systems using MEMS inertial 
sensors and its output data processing algorithms [2], [42], [52], [75], and [100].  

Nowadays the cost, performance, space parameters and power consumption of the inertial 
sensors are critical for the vehicle manufacturers. Thus, current inertial sensors development 
is focused on MEMS technology [42], [52], and [100]. 

However, the performance of MEMS inertial sensors is limited [2], [100]. The main reason 
of this is a rapid degradation of the navigation solution, when aiding source is not available. 
This limitation is caused by a high level of the measurement noise [54], therefore, it is 
necessary to provide regular updates of measurement data for the INS  from other sensors 
(GPS, odometer, speedometer) in order to limit the errors to an acceptable level [36], [91]. 
Thus, the sensor data fusion methods should be investigated for achieving a better 
performance of  the MEMS-based navigation systems. 

GPS signal outage is one of the primary reasons that affects the reliability and continuity 
of the navigation solution from GPS [91]. The performance of GPS degrades in harsh 
environments such as urban areas with high-rise buildings and forested areas, because the 
GPS signals becomes weak or can even be blocked by buildings or dense woods. In addition, 
GPS signals are not available in tunnels, underground and underwater. The inertial sensors 
can provide the position, velocity and attitude estimates during GPS signal outages 

The combination of an inertial sensors and GPS is well suited for the development of a 
range of applications as each system compensates for the other’s shortcomings [43], [63].  
The main function of the satellite-based navigation system is providing position information, 
while the main function of the inertial sensors is providing the attitude information of the 
object. The GPS system can be used for the calibration of inertial sensors, but the inertial 
sensors can be used for bridging the GPS signal outages [52]. 
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Aims and tasks of the research 
 

The goal of the doctoral thesis is investigating the  increasing performance of the  low-cost 
MEMS IMU Motion Node for land vehicle navigation. In order to realize this  goal the 
following tasks were planned:  

1. To investigate measurement noise characteristics of MEMS inertial sensors; 
2. To develop error signal models of  MotionNode IMU accelerometers and gyroscopes; 
3. To investigate sensors (GPS, magnetometer, MEMS gyroscope and accelerometer) data 

processing algorithms; 
4. To investigate Kalman-based state estimation algorithms of the low-cost navigation 

system; 
5. To evaluate the performance of the developed navigation system via field tests that 

include also  simulated GPS signal outages. 
 

Scientific novelty and main results 
 

1. The MotionNode MEMS IMU achieves tactical grade IMU performance, using 
developed sensors data processing algorithms (including sensors data fusion algorithms) for 
land vehicle navigation system. 

2. It was shown that it is necessary to implement systematic sensor calibration and use of  
special algorithms (the intellectual KF, the  adaptive KF) for the sensors data fusion in order 
to limit the increase in sensors measurement errors. 

3. The particle filter estimates the system states with any  probability density function. It is 
an advantage of MEMS inertial sensors data processing. However, for the modern low-cost 
navigation system, this algorithm is not efficient because of its heavy  computational 
requirements and  rather poor stability characteristics. 

4. The possibility of using Allan variance and data frame statistical analysis was shown 
for experimental inertial data processing in order to identify MEMS IMU noise signal models 
that are used  in data fusion algorithms. This allows to increase the performance of 
GPS/MEMS IMU integrated navigation systems, including maintenance of stand-alone  
inertial navigation solution during 60-90 s of  GPS signal outage that is near to tactical grade 
IMU performance. 

5. The MATLAB  scripts were developed. The main scripts are: sensors data 
preprocessing algorithms, inertial sensors signal analysis using Allan variance  algorithm,  the 
LKF algorithm and it improvements, object attitude estimation algorithm (including 
magnetometer calibration procedure), the EKF, PF, UKF algorithms. 
 

Statements presented for defence 
 

1. It is possible to improve the performance of  MEMS IMU up to the level of the  tactical 
IMU including maintenance of given estimation precision for the vehicle velocity and driving 
distance during 60-90 s GPS outages. 

2. Combined GPS/MEMS IMU/magnetometer data processing increases attitude 
estimation precision up to σ < 0.03º (zero velocity update) and driving distance estimation 
precision at least by 30%. 

3. The UKF-based low-cost sensors data fusion algorithm improves the GPS/MEMS 
IMU/magnetometer integrated navigation system performance using the results of the Allan 
variance and  data frame  statistical analysis of the  inertial sensors signals. 

4. It is necessary to define appropriate models of inertial sensors signals and its 
characteristics for elaboration of the low-cost MEMS-based integrated navigation system with 



9 

improved performance. This is the first necessary condition for the elaboration of a low-cost 
navigation system with improved performance. 

5. It was shown that the LKF and the UKF algorithms have similar performance, when 
land vehicle acceleration is near to zero and GPS signal is not available. In fact when the land 
vehicle dynamics changes quickly (GPS signal is not available), then the UKF algorithm has 
better estimation precision of the navigation system state (sensor bias, velocity). The choice 
of the appropriate system state estimation algorithm is the second necessary condition for the 
elaboration of a low-cost navigation system with improved performance.  
 

Research methodology 
 

Time series analysis, random process theory, elements and methods of  system theory and 
optimal system state estimation theory were used in this research. The main theoretical 
methods of the research are summarised in Table 1. 

 
Table 1.   

Some examples of the theoretical methods used in research 
 

Theory Methods 
Time series analysis Frame statistics 

The AV analysis 
Random process theory State models for the stochastic 

processes 
System theory State-space representation of the 

navigation system 
Optimal system state estimation theory The unscented Kalman filter 

The particle filter  
 

The process of elaboration of algorithms was as follows: 
a) scientific publications were analysed in order to find appropriate implementation 
solutions of  navigation systems (including data processing algorithms); 
b) field tests were conducted (with land vehicle, where low-cost sensors were installed) in 
order to obtain data for analysis; 
c) MATLAB scripts  were developed for data processing; 
d) improvements of algorithms were developed and new solutions were proposed taking in 
account the goal of the work; 
e) proposed algorithms were validated via field tests data for different land vehicle 
movement modes. 
 

Work practical application 
 

1. Recommendations are given for low-cost navigation system elaboration. 
2. The possibility of automotive grade IMU  use for land vehicle navigation was shown. 
3. The MATLAB scripts were created for the  inertial system analysis and sensors data 

fusion. 
4. Work scientific results were used in the following  scientific projects: 
„Objekta telpiskā stāvokļa novērtēsana”, project „Inovatīvas signālapstrādes tehnoloģijas 

viedu un efektīvu elektronisko sistēmu radīšanai” (Valsts pētījumu programma V7692);  
„Mobīlo sensoru tīklu struktūras analīze”, LZP grant Z09.1552 „Jaunu ciparu signālu 

apstrādes, mobilo telekomunikāciju tīklu un to elektronisko komponenšu izpētes metožu 
izstrāde, efektivitātes pētīšana un realizācija”.  



10 

Approbation of the research results  
List of the publications 

 

1. Bistrovs V. Analyze of MEMS Based Inertial sensors Parameters for land Vehicle 
Navigation Application// RTU zinātniskie raksti. 7. sēr., Telekomunikācijas un elektronika. – 
Riga: RTU, 2008.  -   Vol. 8. -  pp. 43-47 
2. Bistrovs V. Analyse of Kalman Algorithm for Different Movement Modes of Land 
Mobile Object // Electronics and Electrical Engineering. – Kaunas: Technologija, 2008. - 
Nr.6 (86). -  pp. 89-92 
3. Bistrovs V., Kluga A. Combined Information Processing from GPS and IMU using 
Kalman Filtering Algorithm // Electronics and Electrical Engineering.  – Kaunas: 
Technologija , 2009.-  No. 5(93). – pp. 15-20. 
4. Bistrovs V., Kluga A.  Distance Estimation using Intelligent Fusion of Navigation Data// 
Electronics and Electrical Engineering. – Kaunas: Technologija, 2010.- No. 5(101). - 
pp. 47-52. 
5. Bistrovs V., Kluga  A. MEMS INS/GPS data fusion using particle filter//  Electronics and 
Electrical Engineering. – Kaunas: Technologija , 2011.  – No. 6(112). – pp. 77–80. 
6. Bistrov V. Study of the characteristics of Random Errors in Measurements by MEMS 
Inertial Sensors// Automatic Control and Computer Sciences. -  New York : Allerton Press, 
2011. -  Vol. 45(5).-  pp. 284–292. 
7. Bistrovs V., Kluga A.  Adaptive Extended Kalman Filter for Aided Inertial Navigation 
System//  Electronics and Electrical Engineering. – Kaunas: Technologija, 2012. – 
No. 6(122). – pp. 37–40. 
8. Bistrov V. Performance analysis of alignment process of  MEMS IMU // International 
Journal of Navigation and Observation. -  Hindawi Publishing Corporation, 2012.- Volume 
2012.  
9. Bistrovs V., Kluga A. The Analysis of UKF based Navigation  during GPS outage//  
Electronics and Electrical Engineering, – Kaunas: Technologija, 2013. – Vol. 19, No 10. – 
pp. 13 – 16. 
 

Participation in the international conferences 
 
1. 12TH INTERNATIONAL CONFERENCE of ELECTRONICS, Lithuania, Kaunas, May 05, 2008 
Analyse of Kalman algorithm for different movement modes of land mobile object. 
 
2. Riga Technical University 49th International Scientific Conference, Latvia, Riga, October 
11-13,2008  MEMS IMU parameter analysis for land vehicle navigation application 
 
3. 13TH INTERNATIONAL CONFERENCE of ELECTRONICS, Lithuania, Vilnius, May 14,2009, 
Combined Information processing from GPS and IMU using Kalman filtering algorithm. 
 
4. 14TH INTERNATIONAL CONFERENCE of ELECTRONICS, Lithuania, Kaunas, May 18, 2010 
Distance Estimation using Intelligent Fusion of Navigation Data. 
 
5. Riga Technical University 52nd International Scientific Conference, Latvia, Riga, October 
13-14,2011  Performance Analyse for MEMS IMU Alignment Process 
 
6. 15TH INTERNATIONAL CONFERENCE of ELECTRONICS, Vilnius, May  19, 2011 
MEMS INS/GPS data fusion using particle filter 
 
7. 16TH INTERNATIONAL CONFERENCE of ELECTRONICS, Palanga, June 18-20, 2012 



11 
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Participation in international conferences not related with the subject of the promotion work 
 

1. 12TH INTERNATIONAL CONFERENCE of ELECTRONICS, Lithuania, Kaunas, 21.05.2008 
Response time and probability of packet loss in communication system with batch arrivals,  
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Structure of the thesis 
 

Doctoral thesis consists of eight chapters, conclusion and list of references. The thesis 
contains 197 pages, 219 figures, 37 tables and a reference list of 100 sources. The description 
of the GNSS and inertial navigation system, the sensors data fusion possibilities, MEMS- 
based inertial sensors characteristics are given in the 1st and 2nd chapter. The analysis of the 
measurement error signal of the MEMS inertial sensors can be found in the 3rd chapter. Here, 
the sensor measurement error models are elaborated. The 4th chapter gives explanation about 
coordinate frames that used in the inertial navigation and investigates impact of the correction 
for inertial data due to the coordinate frame transformation. The problems of the alignment of 
the low-cost inertial navigation system and attitude estimation are discussed in the 5th chapter. 
Theoretical background of the data fusion algorithm and practical implementation and 
experimental results of the sensors data processing for the estimation of navigation parameters 
are considered in the 6th and 7th chapter. Finally, the performance of the estimation algorithm 
during GPS outage is analyzed in the 8th chapter. Then, conclusions and summary of the main 
results are given. The main conclusions, list of tests, and created programs using MATLAB® 
are reported in the end of chapters. 
 

1. NAVIGATION SYSTEMS 
 

Navigation system is a system, which aids in navigation. The different types of the 
navigation systems exist in the world. The inertial navigation and radio navigation systems 
(e.g. GNSS) are the most popular navigation system.  

 
1.1. GNSS 

 
The most popular satellite navigation system is GPS. GPS consists of three segments: the 

space segment (consist of satellites), the control segment (infrastructure for maintain and 
control of the navigation system), and the user segment (e.g. GPS signal receivers). Satellites 
continuously transmit radio signal (two spread spectrum with carrier frequency 1575.42 MHz 
and 1227.6 MHz) and user equipment receives it. It is necessary to have signal from four 
satellites in order to define position of the user (4th satellite is necessary for calculating 
receiver time offset, as theoretically only three satellites are necessary  for user position 
determination) [17]. 
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Fig. 1.1. 24-satellite constellation of GPS space segment [30] 
 

The GPS measurements, like all measurable quantities, contain errors and biases, which 
can be removed or reduced by combining the various GPS observables. In principle, there are 
three groups of the GPS errors and biases: satellite-related, receiver-related, and atmospheric 
errors and biases. 

Even under the full constellation of 24 GPS satellites, some periods of time exist when 
four satellites are not visible above a particular elevation angle. Such a satellite visibility 
problem is expected more at high latitudes (higher than about 55°), because of the nature of 
the GPS constellation (Fig. 1.1). This problem may also occur in some low- or midlatitude 
areas for a particular period of time. In urban and forested areas, the receivers sky window is 
also reduced as a result of the obstruction caused by the high-rise buildings and the trees [2], 
[13], [16], [17], [20]. 

 
1.2. Inertial navigation system 

 
The core units of inertial systems are accelerometers and gyroscopes. An accelerometer 

measures the specific force in an inertial reference frame. Then this measurement is used for 
acceleration estimation of the moving object (land vehicle, person, etc). The gyroscope is 
used for angular rate measurement with respect to the inertial frame. The inertial sensors do 
not require external signal for operating. This means that measurements of inertial sensors are 
available at all conditions and in all environments.  

Basically, inertial navigation system (INS) consists of inertial measurement unit (IMU), 
inertial sensor data processing unit (navigation processor), power supply and user interface. 
IMU consists of the accelerometers and gyroscopes (inertial sensor assembly) and additional 
electronics for sensor control and sensor signal processing. 

The IMU can be classified taking in account it precision and the level of noises. The most 
commonly used classes or grades of the IMU are   strategic, navigation (aviation), tactical and 
automotive [17]. The automotive grade IMUs are considered in this work.  

The strong points of inertial navigation systems are: 
a) it is self-contained system that does not need any external signals; 
b) the integration of the accelerometer and gyroscope outputs can already give useful 
navigation measures such as change of velocity and attitude of the vehicle; 
c) low level of short term  noise; 
d) high bandwidth of the signal. 
The INS can be gimballed or strapdown [16].  Strapdown inertial system is considered in 

this work.  
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1.3. Aided navigation system 
 

Several possibilities exist for MEMS inertial sensors aiding. The classification of the 
aiding sources can be following [2]: 

a) aiding in coordinate domain (GNSS, RADAR etc); 
b) aiding in velocity domain (zero velocity updates, nonholomic constraints, odometer);  
c) aiding in attitude domain (MEMS magnetometers, map matching).  
The combined processing of sensors data should be realized, when several sensors are 

used in the navigation system. This, in turn, allows realizing more robust, informative, 
reliable and precise navigation system.  

Depending on application of the navigation system, it’s necessary to define types of the 
sensors, which will be involved in estimation of the navigation solution. Heading and 
longitudinal acceleration of the vehicle is one of the important estimated parameters for land 
navigation. Hence, longitudinal accelerometer, vertical channel gyro (or horizontal plane 
magnetometers) and GPS as aiding source are enough for land vehicle navigation. 

 
1.4. GPS/IMU integration schemes 

 
Roughly, two main GNSS/INS integration schemes are used in the design of integrated 

navigation system. These schemes are tightly and loosely coupled GPS/INS integration 
schemes.  

In loosely coupled integration scheme the GPS-derived position and velocity is used for 
correcting inertial navigation solution. This integration scheme is based on the independence 
of the GPS and inertial navigation functions.  

In tightly coupled schemes the pseudo-range or pseudo-rate measurements are used as 
aiding information.  The main advantage of this technique is maintaining of inertial system 
aiding even if signal from one satellite is available. The main disadvantage of this scheme is 
lack of the standalone GPS solution [17]. However, tightly coupled algorithms require more 
computational resources comparing with loosely coupled schemes. In addition,  
the measurement model is more complex in integration schemes. The larger dimension  
of the state vector in  tightly coupled integration scheme increases the time for filter 
convergence [16]. Therefore, the loosely coupled integration scheme becomes popular  
for implementing in many applications.  

 
1.5. Estimation algorithms of the navigation system 

 
Different types of the estimation algorithms can be  used in the navigation systems. The 

main types of those algorithms are Kalman filter (KF) based algorithms (including standard 
KF, extended KF, and unscented KF), artificial intelligence (AI) based methods (artificial 
neural networks and adaptive fuzzy systems) [2], [17]. The main difference between 
KF-based and AI-based algorithm is that AI-based methods do not use any predefined 
mathematical description of the system and measurement model and do not use any statistical 
information as input [2].  AI methods require empirical learning that takes considerable time 
and resources.  The only case, when AI-based methods can provide superior performance is 
during long outages of the measurement updates (e.g.  during GPS signal outages). The KF 
requires definition of the appropriate model of the system dynamics. If the processed data by 
the KF does not fit the model, estimation of the navigation parameters will be not optimal. 
The estimation of the states of  the low-cost land vehicle navigation system is considered as 
nonlinear problem. Hence, the estimation algorithm should be capable dealing with nonlinear 
dynamic system. The EKF is one of the widely used algorithms for such a navigation systems  
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[17], [25] . In practice, however, the EKF has several limitations. First, the derivation of the 
Jakobian matrices for both the system and measurement equations can be nontrivial and lead 
to significant implementation difficulties. Second, only small errors states should be 
processed by the EKF, otherwise the first order approximations can cause biased solution and 
even can lead to filter instability [14]. In order to avoid this problems and enhance estimation 
results of the nonlinear systems, it is recommended to use the UKF algorithm [17], [24], [27]. 
The key idea of the UKF is that it would be easier to approximate a Gaussian distribution than 
to approximate an arbitrary nonlinear function or transformation. The UKF has a big potential 
for application in low-cost land navigation system, because of its convenient and 
straightforward method of the system and measurement model definition comparing with the 
EKF. In addition, the UKF provides more efficient tuning possibilities for adjusting filter for 
optimal work. The main problem, when implementing the UKF algorithm, was avoiding 
covariance matrix to be non positive definite. 

The particle filters are usually not implemented for high dimension of the system [18].  
 

2. MEMS-BASED INERTIAL SENSORS 
 

The first micro machined accelerometer was designed in 1979 at Stanford University, but 
it took over 15 years before such devices became accepted mainstream products for large 
volume applications. Micro-fabrication is the set of technologies used to manufacture 
structures with micrometric features (e.g. MEMS sensors). MEMS technologies are offering 
low-cost, small size (below 100 micrometers), and light weight (< 1g) sensors with low power 
consumption [1], [16].  

In comparison to the accelerometers, gyroscopes are a challenging technology that is  in 
the development stage. MEMS gyroscopes use Coriolis effect to sense rotation [1].  

 
2.1. Real world MEMS based IMUs 

 
The MTi-G device from Xsens motion technologies and MotionNode IMU from GLI 

Interactive LLC were used as low-cost IMUs for the research.   
The MTi-G device is an integrated GPS and MEMS Inertial Measurement Unit with a 

navigation and attitude and heading reference system processor. The internal low-power 
signal processor runs a real-time Xsens Kalman Filter (XKF) providing inertial enhanced 
3D position , velocity and attitude estimates.  

The MotionNode IMU is a 3-DOF inertial measurement unit.  
 

2.2. Model of the inertial sensor signal 
 

There are two types of MEMS IS measurement errors: systematic (run-to-run bias, scale 
factor, sensor axis misalignment error)   and random (scale factor and in-run bias fluctuations, 
noise).  

A number of inertial sensor calibration methods exist for systematic part of measurement 
error reduce. A detailed description of these methods can be found in [2].  

Random errors can be approximated using stochastic process models. 
The systematic errors can be determined and compensated for during calibration by the 

manufacturer; therefore, the measurements of the sensors of the considered IMU can be 
represented as follows: 
 

),(,, aaSbaI randarandaa                                                        (2.1) 

),(,,   randgrandgg SbI                                                       (2.2) 
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The random bias of the MEMS IS in expressions (2.1) and (2.2) can be separated into two 
parts [17]: 
                                                 ,, adasranda bbb    

   ,, gdgsrandg bbb                                                                    (2.3) 

where bas and bgs are the static and bad and bgd are the dynamical parts of the bias. 
 

The static part of random bias is a fixed bias involving the run-to-run changing bias, as 
well as an uncompensated bias, in the course of the calibration by the manufacturer. This part 
of the bias remains constant during the inertial sensor (IS) operating within a single run. The 
dynamic part of the bias, which is known as the drift of the bias, varies with a time period of 
one minute (depending on the ISs characteristics) and includes a residual (uncompensated 
during the calibration) bias depending on the ambient temperature. The dynamic part of 
random bias is modelled as random process [2].  

Similarly, the scaling factor can be separated into static and dynamic components.  
 

2.3. Calibration of the inertial sensors 
 

In order to estimate uncompensated bias (systematic and random static) and scale factor of 
the accelerometers of IMU Motion Node, the six point calibration procedure can be 
performed in stationary mode [17]. The calculated bias and scale factor are shown in the 
Table 2.1. The bias estimation results show that IMU MotionNode belongs to 
consumer/automotive grade device. 

 
Table 2.1.   

Bias and scale factor of MotionNode IMU accelerometers [4] 
 

 X-axis 

bias,m/s2 SF 

mean -0.1418 -0.0043 
deviation 0.0014 9.6177e-005 

 Y-axis 

mean 0.2275 -0.00079 

deviation 0.0023 4.9800e-004 

 Z-axis 

mean -0.1060 -0.0019 

deviation 0.0020 1.6733e-004 

 
If it is assumed that maximal acceleration, experienced by land vehicle is 3 m/s2, then it is 

possible to neglect impact of the scale factor error on total error contribution of the 
accelerometer signal. Finally, the model of the accelerometer signal can be expressed as 

),(, abaI randaa                                            (2.4) 

 
2.4. Land vehicle dead reckoning system 

  
Now the performance of the dead reckoning system with one longitudinal accelerometer 

will be checked. The accelerometer signal model (2.4) is used. During experiments Motion 
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Node IMU was rigidly fixed and leveled inside vehicle. The direction of the vehicle 
movement and accelerometer sensitive axis coincide.  The route taken during experiments is 
shown in Fig. 2.1. 

 
The accelerometer data was recorded on HDD and then processed for obtaining estimation 

of the vehicle velocity and traveled distance according following steps: 
1. Calculation of the accelerometer bias via averaging of the accelerometer static signal; 
2. Calculation of the vehicle velocity and traveled distance via integration of true 

acceleration. 
The calculation results, when vehicle velocity during it uniform moving was around 

60 km/h and traveled distance was 1020 m, are shown in Fig. 2.3-2.4. These rather good 
estimations of the velocity and driving distance were due to the implemented rule-based 
artificial algorithm for the acceleration signal processing. According this rule stationary 
accelerometer measurements are replaced by zero, when the acceleration value is less than 
estimated standard deviation of the static accelerometer signal. 
 

 
Fig. 2.3. The velocity of vehicle estimation 
 

  
Fig. 2.4. The driving distance estimation  

(s = 1020 m) 
 

This simple example showed  
1. The velocity and distance can be easily calculated without noisy fluctuations via 

integration of the accelerometer signal (here, integration has a function of the LP filter); 
2. The IMU is self-contained unit without necessary to have external signal for 

operating; 

 

Fig. 2.1.  Route taken for experiments [6] 
 

Fig. 2.2. Accelerometer (x-axis) calibrated 
signals 
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3. It is not shown here, but it is evident that the estimation error of position and velocity 
increases rapidly with time if the accelerometer bias is not removed before integration of the 
acceleration; 

4. The IMU should be properly aligned and fixed inside vehicle for increasing position 
and velocity estimation accuracy; 

5. The estimated values have perfect short term accuracy (see Fig. 2.3, where moments 
of vehicle gear shifting are identified). 

In the considered above examples, it was assumed that accelerometer measurement error 
consists of constant in-run bias and gaussian noise. In fact the in-run bias is not constant for 
MEMS accelerometers and noises can have quite complicated nature and combination. 
MEMS gyroscopes have even more complex nature of the measurement error due to lack of 
the design maturity. In order to reduce negative impact of this measurement errors, quite 
sophisticated methods and algorithms should be developed, such as sensor data fusion 
algorithms. 
 

2.5. High frequency noise reduction 
 

The integration with GPS reduces only long term errors of the inertial system. In order to 
reduce high frequency noise , sensors signal processing methods, such as low-pass filtering, 
wavelet decomposition or LKF, should be implemented. LKF provides not only high 
frequency error decreasing, but also removes accelerometer bias (Fig. 2.5), which was 
included in the system model of the LKF.  

 
In turn, accelerometer aiding helps to reduce high frequency errors of the GPS derived 

velocity estimate. As an example, there are quite big noisy fluctuations of the velocity 
estimation based on GPS measurements (see Fig. 2.6). The fluctuations of estimated velocity 
decrease if the combined processing of the accelerometer and GPS data is done using the 
LKF [6].  
 

3. MEMS-BASED INERTIAL SENSORS SIGNAL ANALYSIS 
 

The analysis of the signals in the time and frequency domain was made in order to 
investigate characteristics of the measurement errors of  MEMS inertial sensors. Signal of the 
static accelerometer is shown in Fig. 3.1 

 
Fig. 2.5. Accelerometer measurements 

before and after post calibration process. 
Fig. 2.6.   Estimation of vehicle velocity, 

when v = 60 km/h. 
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Fig. 3.1. Static data (8 hours) of x-accelerometer of the MotionNode IMU 

 
Each point in Fig. 3.1  corresponds to the single measured value. As the measurement rate 

of accelerometer was 60 Hz and measurement was conducted during 8 hours, the points create 
corresponding lines. From Fig. 3.1, the resolution of accelerometer signal can be easily 
defined.  

The mode value of the static accelerometer signal can be used as estimation of constant 
bias term. 

 
3.1. Variations of the inertial sensors signals due to the temperature 

 
It is necessary to take in account variation of  the sensors signal due to the temperature 

change for the IMU without efficient algorithm of the temperature compensation. The 
variation of the output signal during IMU heating is shown in Fig. 3.2 and 3.3. The time 
necessary to stabilize the mean value of accelerometer bias can be up to 20 min for Motion 
Node IMU.  
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3.2. Accelerometer measurement error reduction 

 
The combined use of the LPF and the LKF allows considerably reduce sensor 

measurement error (Fig. 3.4).  
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This combination gives reduction of noise at least two times more comparing with use  
of LKF alone. 
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Fig. 3.4. Longitudinal acceleration signal analysis (TEST Jan7). Signal denoising using 

LPF+ LKF. The SD of the denoised signal is σ = 3.34·10-7 m/s2. 9th order Chebyshev type 
II digital filter ( stopband  edge frequency equals 3 Hz, stopband ripple equals 60 dB 

down) 
 

When reducing high frequency errors, it is necessary to remember about maintaining of 
true motion spectrum in signal.  
 

3.3. Identification of the measurement error type of the inertial sensors 
 

First, the types of the random sensor measurement errors should be identified. Then, the 
random errors are described using stochastic process models. Then, these models will be 
included in the estimation algorithm of the navigation system. The inertial sensor random 
errors can be described using following stochastic models or its combination: white noise, 
random constant, random walk, first-order Gauss-Markov model (GM). For most of the low-
cost inertial sensors 1st order Gauss-Markov or random walk and white noise models can be 
used for stochastic error description [17]. 

The noises of the dynamic component of the sensor bias are identified using Allan 
variance method, a detailed description of which can be found in the standard 
IEEE STD 647-2006. In order to calculate the Allan variance function, the signal is divided 
into different numbers of segments characterized by the same averaging time τ. The Allan 
variance for each individual time interval is determined from the formula 
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The calculated noise parameters for the IS of IMU MotionNode are given in Tables 3.1 
and 3.2 [8]. 

As expected, the maximum instability and large noises are exhibited by sensors of the 
y-axis (the vertical channel of the MotionNode IMU) due to the influence of the Earth’s 
gravity. The AV analysis shows that the sources of errors in the accelerometer signal are the 
noises of the velocity random walk and acceleration random walk. For the y-accelerometer, 
there is also a correlated noise (τ = 3.8 s). For the gyroscope, the noises of the angle random 
walk and rate random walk, as well as the flicker noise (corresponding to the range of 
instability of the zero bias on the function of Allan variance), are dominant; the latter is 
slightly more expressed than for the accelerometers, where there is almost no flicker noise. 
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Table 3.1.  
Noise parameters for accelerometers of  IMU MotionNode 

 

 N, m/s/ h1/2 AC  ,% K, m/s2/h1/2 AC  ,% B, m/s2  ,% 

X 0.06 -0.48 ±2.4 410326.9   0.50 ±15 2.233·10-4 ±3.4 
Y 0.057 -0.49 ±2.2 0.0051 0.65 ±15 3.602·10-4 ±2.1 
Z 0.06 -0.46 ±2.1 0.0021 0.57 ±15 2.8833·10-4  ±2.6 

 

Table 3.2.   
Noise parameters for gyroscopes of IMU MotionNode 

 
 N, deg/h1/2 AC  ,% K, deg/h /h1/2 AC  ,% B, deg/h  ,% 
X 1.94  -0.38 ±1 275 0.51 ±15 54 ±5.6 
Y 2.71  -0.36 ±0.6 2969 0.63 ±15 143 ±1.7 
Z 2.16  -0.40 ±0.6 - -  75 ±7.9 

 

It can be seen from the plots (Fig. 3.5) that the curves of Allan variance vary from one run 
to another. The greatest difference is observed in the range of averaging times τ > 30 s for 
accelerometers and τ  > 100 s for gyroscopes [8]. 
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Fig. 3.5. Curves of Allan's variance of the MotionNode IMU IS from one run to another 
 

The elaborated models for in-run bias of the IS of MotionNode IMU are given in 
Table 3.3. 

Table 3.3. 
Error models of in-run bias for IMU MotionNode inertial sensors 

 
Model validity period Till  several seconds Till few minutes 

X-accelerometer white noise SF+∆, ∆max≈10-3 
Z-accelerometer white noise SF+∆, ∆max≈10-3 

Y-gyroscope sum of GM and DF(2)  sum of GM and DF(2) 

 
The stochastic function (SF) can be defined by GM process or sum of GM and white 

process. The deterministic function (DF(n))is defined by polynomial of n degree. 
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4. ALIGNMENT OF THE IMU AND ATTITUDE ESTIMATION 
 

The IMU axes should be aligned with vehicle axes (to make the b-frame that coincide 
with the v-frame), before estimation of the navigation parameters. Then, the body frame is 
aligned with navigation frame. During the process of absolute alignment the pitch, roll and 
heading angles are estimated. 

The requirements of the initial alignment of the IMU are high accuracy and short time. An 
accurate alignment is very important for precise estimation of the navigation parameters. But 
accurate alignment can take considerable amount of time.  Thus a compromise of accuracy 
and time consumption of the initial alignment should be made.  

However, MEMS sensors have significantly high drift rates and noise characteristics, and, 
therefore, the gyroscope outputs cannot be used to estimate the azimuth or heading of the 
vehicle.When the GPS signal is available and the vehicle has a non-zero velocity, it is 
possible to calculate a heading of the vehicle using the GPS-derived velocity. When the GPS 
signal is not available, the magnetometers (which sense the Earth’s geomagnetic field 
strength) can be used for determination of the absolute heading with reference to the local 
magnetic North. 

The quaternion based KF was proposed for estimation of the object attitude. To test the 
proposed attitude calculation method, the attitude result is compared with the attitude output 
of the IMU  MTi-G. The attitude output from the IMU MTi-G and the proposed method with 
the calibrated data from the IMU MTi-G uses the same data, thus the attitude result 
comparison means only the comparison of the differences in the attitude calculation by the 
algorithms. The GPS signal for the IMU MTi-G was unavailable during the tests. 
Experiments for attitude estimation were conducted through simulating the certain value of 
pitch and roll angles of the IMU MTi-G using a tilt table. The results of the attitude estimation 
are given in Table 4.1-4.3 [10]. 

 
Table 4.1.  

The statistical characteristics of the estimated pitch and roll (θ = 0° and   =0° with a 
precision ±0.1°) 

 
 
 
 
 
 
 
 

Table 4.2.  
 

The statistical characteristics of the estimated pitch and roll (  =39.5° with a precision ±0.5°, 
and θ = 0°) 

 
 

 
 
 
 

 

Statistical 
characteristics, 
degree,  [ °] 

Pitch  estimation by Roll estimation by 

MTi-G 
Proposed 
algorithm 

MTi-G
Proposed 
algorithm 

Mean value -0.4699 -0.3142 0.3433 0.4896 
Standard 
deviation 

0.1270 0.0168 0.1949 0.0150 

Statistical 
characteristics, 
degree,  [°] 

Pitch  estimation by Roll estimation by 

 MTi-G 
Proposed 
algorithm

MTi-G 
Proposed 
algorithm 

Mean value 39.7758 39.4934 39.3042 39.6591 
Standard 
deviation 

0.1336 0.0307 0.3483 0.0318 
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Table 4.3.  
The statistical characteristics of the estimated heading 

 
 

 
 
 
 
 

 
 
MEMS IMU is capable to estimate the initial attitude angles (the pitch and roll) in the 

stationary mode without correction from an external sensor such as the GPS. The attitude 
estimation precision (±0.5°) is sufficient for a vehicle navigation application. The 
convergence rate of the proposed algorithm is very fast: less than 1 second is necessary to 
obtain the estimations of the  pitch and roll. 

It is possible to decrease the standard deviation of the pitch/roll estimation for a stationary 
object even more. For this purpose, the state transition matrix Ф in the KF algorithm should 
be replaced by the corresponding identity matrix (Ф = I). The system noise level should be 
decreased for at least 1000-10000 times comparing to the value defined according to the 
MEMS gyroscope specification. The results of the attitude estimation (when pitch and roll are 
zero) after such modification are given in Table 4.4 [10]. 

 
Table 4.4.  

The statistical characteristics of the estimated pitch and roll (R=0.01·I) 
 
 
 
 
 
 
 
 
 
 

The impact of the system noise value σ in the LKF for the standard deviation of the roll 
and pitch estimation was analysed (Fig. 4.1, 4.2). 
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Statistical 
characteristics, 
degree,  [ °] 

Heading  estimation 
by 

 MTi-G 
Proposed 
algorithm

Mean value 119.0114 118.5133 
Standard 
deviation 

0.8005 0.4083 

Statistical 
characteristics, 
degree,  [°] 

Pitch  estimation 
by 

Roll estimation 
by 

KF 
Modified 
KF  

KF 
Modified 
KF 

Mean value 0.2648 0.2646 0.4512 0.4510 
Standard 
deviation 

0.0096 0.0040 0.0128 0.0055 
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The standard deviation of the pitch/roll estimation has greater minimal value, when the 
LKF algorithm is used without signal preprocessing by a wavelet algorithm. And there is only 
one optimal value of the system noise deviation   that minimizes the standard deviation of 
the pitch/roll estimation, when only LKF algorithm is used for data processing.  

In most cases, it is sufficient to have accelerometer data for pitch and roll estimation, 
when a vehicle is in stationary mode. When the vehicle is moving, it is not possible to obtain 
a reliable solution for the vehicle pitch and roll attitude angles using only accelerometer 
signals. It is related to the fact that the accelerometer signal contains the information not only 
about the object misalignment, but also additional signal components due to vehicle 
acceleration. Thus, the information from the gyroscope signal should be used for the attitude 
estimation of a moving vehicle. Taking this into account, the following modification of the 
algorithm was proposed. The Kalman gain matrix values are set to zero, when the vehicle has 
velocity change more than certain value during 1 second. This value of velocity (0.15 m/s) 
change was determined empirically. The state transition matrix Ф is replaced by the 
corresponding identity matrix (Ф = I), when the vehicle has velocity change less than 
0.15 m/s during 1 second [10].  

The results of the vehicle attitude estimation are shown in Fig. 4.7-4.9. The vehicle was 
stationary for the first 60 seconds and the last 10 seconds of the experiment. As expected, the 
estimation of the pitch and roll based on accelerometer data (when vehicle is stationary) has 
less fluctuations comparing with the attitude estimation, when the vehicle is moving [10]. 
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5. ESTIMATION ALGORITHMS 
 
Estimation algorithms are used for navigation solution calculating using available data 

from the sensors. The KF-based algorithms are widely used for this purpose.  
 

 
Fig. 5.1. Simplified comparison of LKF, EKF, UKF and PF algorithm. 

 
Usually, the navigation system is modeled as nonlinear dynamic system and appropriate 

estimation algorithms should be used taking in account nonlinearity of the system. The EKF 
is considered as a standard estimation algorithm used in modern navigation systems. EKF 
uses linear approximation (made by Taylor series) of the nonlinear model of the navigation 
system. The standard KF is used if the considered estimation problem can be described by 
linear system. The advantage of the LKF  is simple implementation and low computational 
burden.  

Simplified comparison of the estimation algorithms (the LKF, EKF, UKF and PF) 
operating for the system with one state is shown in Fig. 5.1. Algorithms comprise prediction 
and update step. The UKF algorithm working principle is different from the LKF and EKF, as 
in the input of the UKF, there are several estimations (sigma points) of one state of the 
system. Sigma points make approximation of state mean value and covariance. Then these 
sigma points are processed by  the UKF algorithm. The particle filter processes even more 
state estimations (can be more than 100). These estimations make approximation of the PDF 
of the system state. 

One of the LKF drawbacks is limited estimation capability e.g. no possible to estimate 
scale factor of the sensors. Thus, it  is necessary to develop specific modification of the LKF 
in order to improve estimation performance. These modifications are considered below 
(see section 5.1 and 5.3).  
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5.1. Kalman gain matrix correction algorithm 
 

The designed Kalman gain matrix correction algorithm (KGCA) can be used to decrease 
system state variables (position, velocity) estimation errors [5]. The algorithm steps are : 

a) Step 1: to detect time epoch when acceleration start to change;  
b) Step 2: to add special function values to diagonal elements of  the Kalman gain matrix 
in order to improve the  algorithm performance during vehicle velocity change and post 
change period.  
Therefore, equations for the Kalman gain matrix updating and correcting are following: 
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where f - special function’s values at time epoch k,  - number of state variables in the  
dynamic system model.  

 
Fig. 5.2. Profiles of three types of the function f 

 
Table 5.1.  

Three types of functions 
 

MSE error of position estimation using KGCA 
and three types of function 
function #1 #2 #3 

MSE 26 300 2569 

 
 Three functions, f, were tested. The general forms of these functions are shown in 

Fig. 5.2. The duration of those functions is defined taking in account duration of the 
estimation error with high values, i.e. from t = 30 s till t = 100 s ( see Fig. 5.2). The MSE error 
of estimated position (using these functions for correction in (5.1)) when acceleration 
ax = 10 m/s2 take place from t = 30 s till t = 50 s are shown in the Table 5.1 [5]. 

Simulating results show that function #1, used for the Kalman gain matrix correction, 
allows reducing estimation error of position in a greater degree. The reason of this can be that 
the function #1 has smooth transition and, hence the Kalman gain correction is conducted 
softly without extra disturbance just after the acceleration has changed. The mathematical 
description of function #1 is [5] 
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where A, B - fixed values are decided by user or designer, tD - time epoch, when acceleration 
has changed. 
 

5.2. GPS and accelerometer data fusion using LKF 
 

The LKF was applied for the estimation of the distance traveled by land vehicle. 
The estimation results of the distance traveled   by vehicle with velocities 40, 60, 80 km/h 

are represented in Table 5.2 [6]. The LKF (total state implementation) was used for GPS and 
accelerometer data fusion.  The precision of the estimated distance is very good for both 
methods as we can see from  Table 5.2. The mean error is 5.33 m for the direct method of the 
distance estimation that is  based only on GPS measurements. The mean error is 4.67 m for 
the combined GPS and accelerometer data processing method using LKF. 

 
Table 5.2.  

Estimation of the distance traveled by vehicle 

 
5.3. Intelligent Kalman filter algorithm 

 
The goal of the  calculated distance values processing by an  intelligent algorithm - is 

error decreasing of distance estimation [7]. This error occurs mainly due the noise and 
uncertainty of the measured values by GPS sensor.  

 The distance is determined by successive summing up of distances between adjacent 
points, which coordinates in ECEF frame defined by GPS measurements: 

 
sx_GPS,i= sx_GPS,i-1+ sx_GPS,i,i-1                                                                  (5.3) 

where  
sx_GPS,i –passed distance value at time t=ti;sx_GPS,i-1-passed distance value at time t=ti-1 ; 
 sx_GPS,i,i-1-passed distance during time period [ti-1  ti ] measurement.  

 
The rule of intelligent algorithm applied to passed distance measurements is following [7]: 
 
                        sx_GPS,i= sx_GPS,i-1+ sx_GPS,i,i-1 if ax>γ at time t=ti-3, ti-2, ti-1, 
                        sx_GPS,i= sx_GPS,i-1+ 0              if ax≤ γ at time t=ti-3, ti-2, ti-1,                      (5.4) 

 
where ax- estimated accelerometer  signal;γ -defined threshold, that correspond to noisy level 
of estimated acceleration signal; sx_GPS,i - driving distance  at time t=ti; sx_GPS,i-1-driving 
distance value at time t=ti-1 ;sx_GPS,i,i-1-driving distance during time period [ti-1  ti ].  
 

The distance to be passed by 
vehicle is 1004±1m  

Distance estimation method 

direct using only GPS 
data 

fusion of GPS and  
accelerometer data 

TEST 1 with  v = 40 km/h 1008 m 1007 m 

TEST 2 with v = 60 km/h 1009 m 1009 m 

TEST 3 with v = 80 km/h 1011 m 1010 m 
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This rule was defined experimentally through analysis of the accelerometer signals, 
measured by the sensor during different modes of vehicle movement, and values of driving 
distance measured by digital measuring wheel DigiRoller Plus II. The main idea of this rule is 
to exclude distance increasing due to the uncertainty of GPS measurements and 
uncompensated measurement noise of accelerometer. 

Experiments show that the value of γ depends on the vehicle movement mode, type of the 
road. Having information about driving distance value measured by DigiRoller Plus II, it is 
possible to find optimal values of γ (when the distance estimation error approaches to 
minimum); and also relationship between the vehicle movement mode and value of γ [7]. 

For the case of moderate dynamic mode of vehicle movement (velocities up to 90 km/h) 
the optimal values of parameter γ are almost the same for these three tests: γ =[ 0.16… 0.18]. 
For the case of low dynamic mode of vehicle movement (velocities up to 50 km/h), optimal 
values of parameter γ are almost the same: γ =[0.04…0.05]. These results are very important 
as give us quite narrow range of optimal γ to be used in developed algorithm in order to obtain 
reliable distance estimation for different types of vehicle movement. 

The experiments were conducted for different vehicle movement velocities: 40 km/h, 
80 km/h and for two types of road: road with asphalt covering and earth road. The reference 
value of distance was obtained by measuring wheel and the passed distance by vehicle was 
always the same and equal 1005 m. 

Table 5.3. 
Distance estimation error for the KF and IKF algorithm 

 
Test # Distance estimation 

error, m 
Test description (velocity, 

road) 
KF IKF 

1   38 9 40 km/h , earth road 
2   21 5 50 km/h, asphalt road 
3   22 6 40 km/h, asphalt road 
4   15 6 80-90 km/h,  asphalt road 
5  20 5 80-90 km/h,  asphalt road 
6   21 1 80-90 km/h,  asphalt road 

 
It is evident from Table 5.3 that the IKF algorithm has better estimation (more precise) 

of the passed distance [7]. 
 

5.4. 1-D navigation system with EKF estimation algorithm 
 

The implementation scheme of such navigation system with EKF is shown in Fig. 5.3. 
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Fig. 5.3.  Closed loop implementation  
of EKF 
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Fig. 5.4. Estimates of scale factor  
of MEMS accelerometer 

 
Here, the errors estimated by the EKF are fed back every iteration, to correct the system 

itself, zeroing Kalman filter states in process. This feedback process keeps the Kalman filter 
states small, minimizing the effect of neglecting high order products of the states in the 
system model [17]. 

Accelerometer scale factor is not possible to estimate using the LKF. Thus, the EKF is 
used for sensor scale factor estimation. The sensors data was obtained during field tests. The 
estimated scale factors of the accelerometer according data from three experiments are shown 
in Fig. 5.4 [9].  

The step jumps of the estimation of scale factor are due to the switch over from the stage 
when system state (scale factor) is not observable due to the almost zero value of vehicle 
acceleration to the stage with  observable  state, when  the  acceleration is not zero. The worst 
estimation is found for test #3. The reason of this is less exact synchronization of GPS and 
IMU data achieved for this test.  

 
5.5. Unscented Kalman Filter 

 
The main disadvantage of the PF is high computational resource requirement and poor 

algorithm stability characteristics. When using the EKF algorithm, it requires appropriate 
linearization of nonlinear problem and the performance become poor, when the error states 
become large. The UKF filter can be considered as compromised choice between the PF and 
EKF. Of course, if the estimated system can be described by linear model, the LKF is 
preferable choice. Thus, the UKF estimation algorithm was selected for use in MEMS based 
integrated navigation system, which integrates results of investigation of this work. 

The block diagram of such system is shown in Fig. 5.5. Equipment installation inside car 
is shown in Fig. 5.6 
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Fig. 5.5. Implementation of the GPS/MEMS IMU integrated navigation system 
 

The fusion algorithm (UKF) of sensor data consists of the prediction and updating step. 
For the prediction step, the frequency f2 = 50 Hz was chosen. This frequency perfectly suits 
for our experiments, since the land vehicle is not moving faster than 30 m/s. The frequency of 
the updating step is equal to the GPS output data rate f1 = 1 Hz. This GPS data is used to 
compensate measurement errors in the accelerometers and gyroscope readings [11].  
 

 
Fig. 5.6. Equipment installation inside land vehicle 

 
The navigation system state vector selected for the UKF is: 

],[ ywzxzxaak wbvvaabb
yzx

x                                              (5.9) 
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where  
xab  and 

zab  are the estimates of accelerometer biases, xa  and za  are the estimates of 

acceleration along x-axis and z-axis, xv  and zv  are the estimates of velocities along x-axis 
and z-axis of the vehicle coordinate frame, 

ygb  is the estimate of gyroscope signal bias , yw  is  

the estimate of  angular rate of vehicle around y-axis of vehicle coordinate frame,   is the 
estimate of the heading of the vehicle. The orientation of the vehicle coordinate frame is 
shown in the Fig. 5.7. The longitudinal axis of the vehicle coordinate system is x. The lateral 
axis of the vehicle coordinate system is z, and the y-axis points downwards. The IMU is 
placed in the car in order the IMU x-axis and z-axis has the same orientation with the vehicle 
longitudinal and lateral axis. 

 
Fig. 5.7. The vehicle coordinate frame 

 
The navigation system state vector is propagated with the frequency f2 = 50 Hz between 

measurements using the following equations [11]: 


  iaia xx
bb ,11, ˆˆ  ,                                                         (5.10) 


  iaia zz

bb ,21, ˆˆ  ,                                                                  (5.11) 


  iwiw yy
bb ,31, ˆˆ  ,                                                                (5.12) 





  iaixixix x

bffa ,1,,1, ˆ)(5.0ˆ ,                                            (5.13) 




  iaiziziz z

bffa ,1,,1, ˆ)(5.0ˆ ,                                              (5.14) 





  iwiyiyiy y
bw ,1,,1, ˆ)(5.0ˆ  ,                                          (5.15) 





  1,,1, ˆˆˆ ixixix aTvv ,                                                           (5.16) 





  1,,1, ˆˆˆ iziziz aTvv ,                                                          (5.17) 





  1,,1, ˆˆˆ iyiyiy wT ,                                                         (5.18) 

where 1 , 2 , 3  are the fading factors; ixf , , izf ,  are the  raw measurements of MEMS 

accelerometers, iy,  is the raw measurement  of MEMS gyroscope, T is the sampling time. 

The values for the fading factors were determined experimentally during the process of 
adjusting algorithm parameters in order to guarantee acceptable performance of the algorithm, 
i.e. minimal estimation error of the vehicle velocity. In most of the cases the fading factors 
were equal to 0.9999. 

The navigation system measurement vector is [11]: 

][ ENk vvy  ,                                                                    (5.19) 

where Ev   is the  east component of the vehicle velocity, Nv - is the north component of the 
vehicle velocity. 
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The observation model is given by the following nonlinear equations [11]: 

)ˆcos(])ˆ()ˆ[(ˆ ,
2

,
2

,,
  kykzkxkN vvv  ,                                                  (5.20) 

)ˆsin(])ˆ()ˆ[(ˆ ,
2

,
2

,,
  kykzkxkE vvv  .                                                     (5.21) 

These nonlinear equations are directly used in the UKF algorithm. 
 

 
 

Fig. 5.8. Trajectory estimation of the moving  land vehicle (blue curve). TEST Jan2 
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Fig. 5.9.  The heading estimation.  TEST Jan2 
 

0 50 100 150 200 250 300
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

R
ol

l (
de

g)

 
Fig. 5.10. The roll estimation. TEST Jan2 
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Fig. 5.12.  The roll estimation. TEST Jan9 

 
The field experiment were conducted for the kinematics data collection of moving land 

vehicle and then position was estimated using described above algorithm. The estimated 
trajectory in the navigation coordinate frame (ENU) was superimposed on the map provided 
by (c) 2013 Google. The results of moving vehicle trajectory estimation are shown in the Fig. 5.8.  

The results of the vehicle attitude estimation are shown in Fig. 5.9-5.12. These results are 
obtained using magnetometers data processing and  LKF (for accelerometer and gyroscope 
data fusion). 
 

6. ESTIMATION ALGORITHMS PERFORMANCE DURING GPS OUTAGE  
 
Here the performance results of the navigation solution during GPS signal outages are 

presented. The sensor data was obtained during field kinematics tests. The car was driven on 
the asphalt road during field tests. The vehicle movement trajectory is shown in the Fig. 6.1.  

 

 
 

Fig. 6.1. Vehicle movement trajectory on the map [9] 
 

6.1. Adaptive EKF 
 

The GPS signal outages rise more serious problem of proper KF-based algorithm 
adjusting and navigation system performance increasing. Innovation based adaptive 
estimation techniques for the EKF can be used in order to fix such problem The vehicle 
velocity estimation (Test1) during simulating GPS outages is shown in Fig. 6.2 [9]. 
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The velocity error increases with time, when standard EKF used, whereas the velocity 
estimation by the adaptive EKF is very near to reference value. The reference velocity  
corresponds to estimated velocity, when the  GPS measurements are available.   
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The adaptation process of position measurement noise value for Test 1 is shown in 

Fig. 6.3. During period of GPS signal outage, we see abrupt increase of R value, because 
uncertainty of position measurements increase, as GPS signal is blocked. 

The results of compare for conventional and adaptive EKF during GPS signal outage 
simulating are presented in Table 6.1. The position and velocity estimation error are much 
smaller for adaptive EKF except Test 3, where difference is not so big. The reason of this is 
that parameters of the conventional EKF for Test 3 were carefully adjusted by numerous data 
processing cycles and even with this huge effort, the performance didn’t reach one of the 
adaptive EKF [9]. 
 

Table 6.1.  
EKF algorithm performance analyze during GPS signal outage 

 
Test 

# 
Velocit

y* 
Period of 

GPS signal 
outage 

RMSE** of 
velocity, 

EKF 

RMSE** of 
velocity, 
adaptive 

EKF 
1 60km/h 200…280 s 6.70 km/h 0.54 km/h 
2 60km/h 80…160 s 6.11 km/h 1.74 km/h 
3 70km/h 60…160 s 4.79 km/h 1.72 km/h 

* typical profile of velocity during test is shown in Fig. 8.2 
** RMSE value during period of GPS signal outage 
 

Again not perfect results of Test 3 for position estimation with the adaptive EKF can be 
explained by imperfection of the  GPS and IMU data synchronization [9]. 
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6.2. UKF algorithm 
 

The analysed velocity profile in the following tests contains different types of the vehicle 
motion: stationary periods during t  s82...0  and t  s198...175 , high dynamic periods with 

variable acceleration of the vehicle during t  s115...82  and t  s175...137 , period with nearly 

constant vehicle velocity t  s137...115 [11]. The GPS signal outages are simulated during 

mentioned above time periods of the vehicle moving for the comparative performance 
analysis of the sensor data processing algorithms.  The tuning parameters of data processing 
algorithms remain identical for each of the analysed GPS signal outage simulation case. 

The KF, EKF and UKF performance analysis for stationary mode is given in Table 6.2. 
The GPS signal outage time was equal to 60 s for each simulation. Only the starting time for 
GPS signal outage was different, so that the time period, when the vehicle was in the 
stationary mode with the presence of the GPS signal, with each next simulation was increased 
by 5 s. The velocity estimation error (RMSE) continuously decreases (for the EKF and the 
UKF) with increasing of the initial time of the vehicle stationary mode with the presence of 
GPS signal. This is correct behavior of the algorithm, which correctly estimates errors of the 
inertial sensors and adequately models considered here low-cost integrated navigation system. 
As we can see from Table 6.2, the velocity estimation error was smaller for the UKF 
algorithm except the cases when the initial time (in this case it is 5-6 s) for the UKF algorithm 
adaptation was not enough [11].  

The velocity estimation errors for high dynamic mode of the vehicle motion are presented 
in Table 6.3. Very good performance metrics for the KF, when vehicle was moving with 
nearly constant velocity, are not surprising, because parameters (acceleration and velocity of 
the vehicle, accelerometer bias) of the system changes slowly during small GPS signal outage 
period and hence it can be easily predicted by KF. In all other cases the UKF algorithm 
considerably outperforms the KF and the EKF algorithms.  The rather high value of the 
velocity estimation error (RMSE) by the UKF for GPS signal outage during 120…180 s can 
be explained by the fact that the GPS outage period starts quite quickly after high dynamic 
mode of the car motion. This does not allow for the UKF to stabilize state estimates [11].  
 

Table  6.2.  
Velocity estimation errors* during GPS signal outage 

 
Period of 

GPS 
outage 

KF EKF UKF 
RMSE  
km/h 

∆V, 
km/h 

RMSE 
km/h 

∆V, 
km/h 

RMSE 
km/h 

∆V, 
km/h 

5…65 s 20.7     36.0 19.0 33.0 24.3 41.0 
6…66 s 9.2 16.0 17.6 31.0 22.0 37.0 

10…70 s 6.6 11.0 15.2 26.0 13.1 22.0 
15…75 s 13.9 26.0 9.0 18.0 8.0 13.5 
20…80 s 6.7 13.5 6.8 13.0 3.5 5.7 
21…81 s 15.8 27.0 5.4 10.7 3.3 5.4 

* estimation errors include RMSE of velocity estimate (RMSE) and absolute maximal 
estimated velocity error  (∆V) during GPS signal outage.  
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Table 6.3. 
Velocity estimation errors* during GPS signal outage 

 
Period of 

GPS 
outage 

KF EKF UKF 
RMSE,  
km/h 

∆V, 
km/h 

RMSE,  
km/h 

∆V, 
km/h 

RMSE,  
km/h 

∆V, 
km/h 

20…120 s 40.8 95.0 20.2 41.0 3.3 5.7 
120..180 s 33.3 74.0 18.2 33.0 7.3 11.0 
20…180 s 60.1 103.0 23.6 41.0 8.1 20.0 
116..136 s 3.24 7.0 5.9 10.0 5.4 7.0 
120..130 s 3.1 5.0 1.7 2.8 2.1 2.5 

* estimation errors include RMSE of velocity estimate (RMSE) and absolute maximal 
estimated velocity error  (∆V) during GPS signal outage.  
 

The velocity estimation error (for the KF, EKF, UKF) reaches maximum (∆V) in the end 
of GPS signal outage period, when the car was in stationary mode or moving with nearly 
constant velocity, but that’s not necessarily the case, when the car was moving with variable 
acceleration. 

The comparative performance analysis of the UKF, EKF and KF for the car velocity 
estimation was performed for different dynamic mode of the vehicle movement during GPS 
signal outages. 
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   Fig.6.4. Estimate of the accelerometer          Fig.6.5. Estimate of the vehicle 
                       bias velocity 
 
The UKF algorithm, adapted for the low-cost sensors data processing, has smaller velocity 

estimation error during GPS signal outages comparing with the EKF algorithm. This is 
especially obvious for the cases, when vehicle has experienced quick changes in the car 
dynamics. 

The estimate of the vehicle velocity (using UKF) during GPS signal outage period is 
shown in Fig. 6.5. The estimate of x-accelerometer bias is shown in Fig. 6.4. The reference 
velocity is estimated using GPS data (see Fig.6.5). 
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CONCLUSIONS  
 

In the process of performing the tasks required to meet the goals of the research stated in 
the introduction chapter, the following main results were obtained: 

 
1. The experimental analysis of the noise characteristics of the MotionNode IMU inertial 
sensors produced following results: 

a) the useful signal frequency bandwidth was estimated for inertial sensors;  
b) the noise types of the  accelerometers and gyroscopes signals were identified; 
b) the MotionNode IMU requires a warming up period of 10-20 min for more reliable and 
precise navigation solution calculation; 
c) the magnetometers require recalibration whenever its  surrounding environment is 
changed, for example, when the unit location is moved within the car; 
d) the Gaussian PDF is suitable approximation of  probability distribution function of the 
MotionNode accelerometer measurement error for short periods (several minutes); 
e) the spectrogram and data frame statistical analysis (including AV) of MEMS sensors 
signals  provide essential information about its characteristics. 

 
2. The signal models of the MotionNode IMU sensors were developed: 

a) the in-run bias of lateral and longitudinal accelerometer and vertical channel gyroscope 
of MotionNode IMU can be modelled using sum of deterministic function and stochastic 
function; 
b) constant part of the run-to-run bias of the stationary accelerometer can be  estimated as 
mode value of it error signal using less than 100 samples of the data. 

 
3. The performed analysis of the sensor data processing algorithms showed: 

a) MEMS accelerometers can be used for the pitch and roll estimation in the static mode 
with sufficient precision, when denoising algorithms are additionally used (the precision 
(1σ) of the roll/pitch estimation  is equal to 0.03 deg); 
b) the heading estimation using GPS and magnetometer data has similar results for in-
motion land vehicle (the precision (1σ) of the  heading estimation is equal to 0.3 deg in 
motion); 
c) for attitude estimation in both the  static and in-motion position, adaptive algorithm for 
accelerometer, and gyroscope data processing with detection of driving mode is required. 
4. The modifications (KGCA and IKF) of the LKF  improves accuracy (the achieved 
result is 30%) of the driving distance estimation.  

 
5. The most suitable signal denoising algorithms (Chebyshev type II filter, wavelet transform 
and LKF) and its combinations were experimentally investigated for selecting the most 
appropriate method for reducing of the high frequency measurement noise of MEMS sensors. 
The combination Chebyshev type II filter +LKF shows the best results. 
 
6. The following findings allow simplifying implementation of the sensor data processing 
algorithms: 
6.1. It was proved that contributions of the Earth and transport rate component are minor 
comparing  the measurement noises of   MotionNode inertial  sensors. Especially this is true 
for MEMS gyroscope; hence, it is possible to neglect this contribution for MEMS gyroscope; 
6.2. It was proved that contribution of the Earth and transport rate component can be included 
and modeled in the static part of the accelerometer bias, when the land vehicle heading is not 
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changing. When the vehicle heading is changing, then this contribution is changing too. The 
range of changing is ~10-3 m/s2. This can be modeled using deterministic function; 
6.3. It was shown that in order to simplify navigation algorithm without introducing 
additional errors in navigation solution, the IMU coordinate frame (b-frame) should be 
aligned with the v-frame and n-frame.  
 
7. The particle filter and the Kalman-based estimation algorithms (the LKF, EKF, and UKF) 
were investigated and adjusted for  use in navigation processor and tested using experimental 
test data. The UKF algorithm was defined as preferable option for use in navigation 
processor, because of the convenient and straightforward method of the system and 
measurement model definition, tuning capability and estimation precision during GPS signal  
outages with  period t = 60 ...90 s. The particle filter requires high computational burden that 
may not be acceptable for the low-cost navigation systems. The operating stability of the 
simplest PF was not acceptable. The EKF requires linearization of the nonlinear dynamic 
system. This can be often nontrivial problem for MEMS-based navigation system, even 
without solution. The major drawback of the KF-based algorithms implementation in 
GPS/MEMS IMU integrated navigation system is considerable time and efforts needed for 
algorithm tuning. 
 
8. The performance of the developed GPS/MEMS IMU integrated navigation system was 
evaluated using field test data that includes simulated periods of the GPS signal outages. The 
UKF algorithm has smaller velocity estimation error during GPS signal outages comparing 
with the LKF, EKF algorithm. This is especially obvious for the cases, when vehicle has 
experienced quick changes in the dynamics of the car movement. 
 
9. The architecture of the GPS/MEMS IMU integrated navigation system (including 
navigation processor) and the design methodology of MEMS-based integrated navigation 
system with specified performance and reduced computational burden were developed.  
 
10. It was shown that GPS/MEMS accelerometer integrated system can provide additional 
information about car (door opening and closing, engine switching on/off, passenger moving 
inside car) with exact timing of the event. 
 

FUTURE WORK 
 

1. To elaborate the self-tuning inertial data processing systems with optimal performance 
(basing on the  LKF and the UKF) according vehicle movement dynamics. 
2. To elaborate the adaptive models of the output signal for low-quality inertial sensors. 
3. To increase an autonomous operating time of the low-quality inertial sensors with 
achieving specified performance characteristics for the land vehicle navigation. 
4. To elaborate MEMS gyroscopes data processing algorithms for increasing precision of 
attitude estimation.  
5. To investigate the GPS measurement accuracy impact on low-cost integrated land vehicle 
navigation system. 
 

 



 38

BIBLIOGRAPHY 
 
1. Acar Cenk, Shkel Andrei. MEMS vibaratory gyroscopes.-  Springer Science, 2009, -262 p. 
2. Aggarwal Priyanka, Syed Zainab Noureldin Aboelmagd and El-Sheimy Naser, MEMS-

Based Integrated Navigation. London:  Artech House, 2010. 
3. Bekir Esmat.  Introduction to Modern Navigation Systems. – Singapore:World Scientific 

Publishing Co, 2007.-255 p. 
4. Bistrovs V. Analyze of MEMS Based Inertial sensors Parameters for land Vehicle 

Navigation Application// RTU zinātniskie raksti. 7. sēr., Telekomunikācijas  
un elektronika. – Riga: RTU, 2008. - Vol. 8. - pp. 43-47. 

5. Bistrovs V. Analyse of Kalman Algorithm for Different Movement Modes of Land Mobile 
Object // Electronics and Electrical Engineering, ISSN 1392-1215. - 2008 Nr.6 (86).- pp.  
89.-92 

6. Bistrovs V., Kluga A. Combined Information Processing from GPS and IMU using Kalman 
Filtering Algorithm // Electronics and Electrical Engineering,  ISSN 1392-1215. - 2009,  
No. 5(93).- pp. 15-20 

7. Bistrovs V., Kluga A.  Distance Estimation using Intelligent Fusion of Navigation Data// 
Electronics and Electrical Engineering, ISSN 1392-1215. - 2010, No. 5(101).- pp. 47-52. 

8. Bistrov V. Study of the characteristics of Random Errors in Measurements by MEMS 
Inertial Sensors// Automatic Control and Computer Sciences. - Allerton Press 2011, Vol. 
45, No. 5, pp. 284–292. 

9. Bistrovs V., Kluga A. Adaptive Extended Kalman Filter for Aided Inertial Navigation 
System// Electronics and Electrical Engineering, – Kaunas:Technologija 2012. – 
No. 6(122). – pp. 37–40. 

10.Bistrov V. Performance analysis of alignment process of MEMS IMU // International 
Journal of Navigation and Observation, Volume 2012, 2012/ 

11.Bistrovs V., Kluga A. The Analysis of UKF based Navigation during GPS outage// 
Electronics and Electrical Engineering, – Kaunas:Technologija 2013 Vol 19, No 10. – 
P.13 – 16 

12.Brown R. G., Hwang Y. C.. Introduction to random signals and applied Kalman filtering. -
New York: J. Wiley,  4d edition, 2012. – 400 p. 

13.El-Rabbany Ahmed. Introduction to GPS. The Global Positioning System. - Boston 
London: Artech House, 2002, 176 p. 

14.Farrell Jay A. Aided Navigation. – New York: McGraw-Hill, 2008. 
15.Godha S., Cannon M. E. GPS/MEMS INS integrated system for navigation in urban 

areas// GPS Solut , 2007, No. 11, p.193–203 
16.Grewal M., Weill  L., Andrews A.  Global Positioning Systems, Inertial Navigation, and 

Integration .- New Jersey: John Wiley & Sons, Inc., 2007. -525 p. 
17.Groves Paul D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation 

Systems. Second Edition London: Artech House, 2013.-776 p. 
18.Gustafsson F., “Particle filter theory and practice withpositioning applications//”Aerospace 

and ElectronicSystems Magazine, IEEE, 2010,vol. 25, no. 7.- pp. 53–82. 
19.Honglei Qin, Li Cong, Xingli Sun.   Accuracy improvement of GPS/MEMS-INS  

integrated navigation system during GPS signal outage for land vehicle navigation//  
Journal of Systems Engineering and Electronics, 2012, Volume 23, Issue 2.- pp. 256-264 

20.Kaplan Elliott D., Christopher J. Hegarty Understanding GPS: Principles  
and Applications. - Artech House, 2005 - 723 p. 



 39

21.Kealy Allison , Retscher Günther, Grejner-Brzezinska Dorota, Vassilis. Gikas , Gethin 
Roberts.- Evaluating the performance of MEMS  based inertial navigation sensors for land 
mobile applications//Archives of Photogrammetry, Cartography and Remote Sensing, 
Vol. 22, 2011.- pp. 237-248. 

22.Mohd-Yasin F., Nagel D. J. and Korman C. E. Noise in MEMS Measurement science and 
technology 21, 2010.-pp. 1-22 . 

23.Nassar  S., Schwarz, K.P., El-Sheimy N.  INS and INS/GPS Accuracy Improvement Using 
Autoregressive (AR) Modeling of INS Sensor Errors// Proceedings of the ION 2004 
National Technical Meeting (NTM 2004), San Diego, California, USA, January 26-28, 
2004. 

24.Noureldin Aboelmagd, Tashfeen B. Karamat, Jacques Georgy. Fundamentals of Inertial 
Navigation, Satellite-based Positioning and their Integration.-Springer, 2013.- 313 p. 

25.Otman Ali Awin, Application of Extended kalman filter algorithm in SDINS/GPS 
Integrated Inertial navigation system// Applied Mechanics and Materials, 2013, p. 528-535 

26.Salychev Oleg S. MEMS-based Inertial Navigation:Expectations and Reality.- BMSTU 
Press, Moscow, Russia, 2012.-208 p. 

27.Soken, H. and Hajiyev, C. (2013). Adaptive Fading UKF with Q-Adaptation: Application 
to Picosatellite Attitude Estimation. //J. Aerosp. Eng., 26(3), pp. 628–636. 

28.Titterton D. et al., Strapdown inertial navigation technology, 2nd edition.- USA:  
The institution of electrical engineers, 2004. - 558 p. 

29.Корнилов А.В. Система ориентации летательного аппарата на интегральных 
датчиках, Микромеханические системы, Труды Нижегородского государственного 
технического университета им. Р.Е. Алексеева № 4(83), 2010, стр. 327-332. 

30.Federal Agencies Unanimously Say That LightSquared Interferes With GPS System/ 
Internet.- http: //www.fieldtechnologies.com/federal-agencies-unanimously-say-that-
lightsquared-interferes-with-gps-system/ 


