

RIGA TECHNICAL UNIVERSITY

Faculty of Computer Science and Information Technology

Institute of Applied Computer Systems

Arturs BARTUSEVICS
PhD student of doctoral study program “Computer Systems”

THE DEVELOPMENT AND

IMPLEMENTATION OF MODEL–DRIVEN

SOFTWARE CONFIGURATION

MANAGEMENT SOLUTIONS

Summary of the Doctoral Thesis

 Scientific Supervisor

Dr. habil. sc. ing., Professor

LEONĪDS NOVICKIS

RTU Press

Riga 2015

Bartusevics A. The Development and Implementation

of Model–driven Software Configuration Management

Solutions. Summary of the Doctoral Thesis. — R.: RTU

Press, 2015. – 49 p.

Printed in accordance with the Resolution of the

Council of the Institute of Applied Computer Systems,

Faculty of Computer Science and Information

Technology, Riga Technical University, as of April 8,

2015, Minutes No. 12300–4.1/2.

The present research has been supported in part by the Latvian National

Research Pprogram SOPHIS under grant agreement No.10–4/VPP–4/11.

ISBN 978–9934–10–726–9

3

DOCTORAL THESIS IS PROPOSED TO RIGA TECHNICAL

UNIVERSITY FOR THE PROMOTION TO THE SCIENTIFIC DEGREE

OF DOCTOR OF

ENGINEERING SCIENCES

To be granted the scientific degree of Doctor of Engineering Sciences, the Doctoral

Thesis will be publicly defended on September 21, 2015 at the Faculty of Computer Science

and Information Technology, Meza Str. 1/3, Room 202.

OFFICIAL REVIEWERS:

Professor, Dr. habil. sc. ing. Jānis Osis

Riga Technical University, Riga, Latvia

Professor, Dr. sc. ing. Artis Teilāns

Rezekne University of Applied Sciences, Latvia

Assoc. Professor, Dr. sc. comp. Antanas Mitašiunas

Vilnius University, Lithuania.

DECLARATION OF ACADEMIC INTEGRITY

I hereby declare that the Doctoral Thesis submitted for the review to Riga Technical

University for the promotion to the scientific degree of Doctor of Engineering Sciences is my

own and does not contain any unacknowledged material from any source. I confirm that this

Thesis has not been submitted to any other university for the promotion to other scientific

degree.

Arturs Bartusevics …………………………….(signature)

Date: ………………………

The Doctoral Thesis has been written in Latvian; it contains an introduction,

5 chapters, conclusions, bibliography, 2 appendices, 55 figures, and 30 tables. The volume of

the present Thesis is 228 pages. The bibliography contains 115 reference sources.

4

ABBREVIATIONS

MTM Model — Transformation — Model

EAF Environment — Action — Framework

MDD Model–Driven Development

MDA Model–Driven Architecture

EM Environment Model

PIAM Platform Independent Action Model

PSAM Platform Specific Action Model

SCBM Source Code Branching Model

SM Service Model

PIEM Platform Independent Environment Model

CM Code Model

CIM Computing Independent Model

PIM Platform Independent Model

PSM Platform Specific Model

5

TABLE OF CONTENTS
INTRODUCTION .. 6

1. THE RESEARCH OF SOFTWARE CONFIGURATION MANAGEMENT 12

2. MODEL–DRIVEN SOFTWARE CONFIGURATION MANAGEMENT 13

3. DEVELOPMENT OF MTM APPROACH AND EAF METHODOLOGY 19

4. APPROBATION AND TESTING OF MODEL–DRIVEN CONFIGURATION

MANAGEMENT METHODOLOGY ... 29

5. IMPROVEMENT OF THE EAF METHODOLOGY .. 35

THE MAIN RESEARCH RESULTS, CONCLUSIONS AND FURTHER RESEARCH 40

BIBLIOGRAPHY .. 41

6

INTRODUCTION

In 2009 at the “Velocity Conference” a report “10 Deploys a Day” was presented by John

Allspaw and Paul Hammond. This report highlighted the problem that the sharp development

of a software development methodology (Agile), cloud computing technologies, operations,

which prepares software builds and tranches, is unable to timely deliver to the customer a

complete product [CON 2015]. The conference is considered to be the beginning of DevOps

methodology, which aims to accelerate the works of software development and installations, as

well as improve the quality of it [AZO 2014]. Tracy Ragan in her article [RAG 2014] marks

the modern construction and installations development tendencies of tools. Tools that support

software for the build and installations must be Model Driven due to the development of cloud

computing technology, static scripts can no longer provide fast and efficient software for the

construction and installation in the clouds [RAG 2014]. Lately, a lot of tools have appeared on

the market that support the construction and installation of the Model–Driven software, such as

Serena and Open Make company’s products, as well as many others [AZO 2014].

Configuration management leading specialists [УДО 2011 AIE 2010] note that today

modern software development projects are developing very fast, so each new project is required

to implement as soon as possible automation processes that provide quality support software

construction and installations process.

At present, most of the tools focus only on the construction and installation of the software,

but pay little attention to other processes that directly affect the software build. Software

configuration management is a discipline that reviews all the processes that affect the software

construction and proper installation of the build and delivery to the customer. As the industry’s

leading specialists [AIE 2010 MET 2002 УДО 2011] note, it is possible to build high–quality

software from a source code only if all the configuration management processes as a whole are

organized qualitatively. Thus, in this Doctoral Thesis a configuration management concept will

be discussed as widely as possible to identify as many factors as possible that affect the software

builds.

Analyzing the modern configuration management automation solutions and their

development tendencies, it should be admitted that Solutions are oriented to Model–Driven

Architecture format (MDA). First of all, Model Driven approach offered by the MDA allows

reducing the human factor in the transition from requirements to implementations [OSE 2011].

Secondly, while developing cloud computing technologies, statically software build scripts no

longer fit, because the solution is in the clouds and scripts cannot operate with absolute server

addresses and the other related values [RAG 2014].

Topicality of the Theme

The most important result of Configuration management process is a build from the source

code software that is supplied to the customer. To accomplish this configuration management

discipline manages the software source code and builds from it working software.

If any of these actions take place unsuccessfully and the customer receives a non–working

or low–quality software, the added value of a given software development project decreases.

The quality standard of Software development industry requires the orderly and automated

configuration management [AIE 2010]. In the source [УДО 2011] it is mentioned that one of

the configuration management process actual certifications is the fact that CMMI (Capability

Maturity Model Integration) standard configuration management process is just as important as

the structured development and testing process.

7

The Statement of the Problem

In the 21st century, when a software development approach develops rapidly and large and

complex software is designed, it is often the beginning of a new project that is similar to an

explosion. Already in a few days the customer is willing to obtain the first version of the

software. Meanwhile, formal and automated process that builds the software is not ready yet.

The so–called “master factor” arises, when one particular specialist knows how to prepare the

software release notes from the local workstation using only his practical skills. This situation

later causes unexpected errors in the configuration management process, as well as the process

becomes highly dependent on the specific human competences.

Today, there is the lack of scientifically–based approaches to configuration management

process automation, which would use the formal and strictly defined path from process

requirements to implementations. In addition, at the stage of implementation it should be

possible to re–use existing implementations for individual parts of the process. This could speed

up the configuration management process automation implementation time, because only

specific parts of a given project should be developed from zero, instead of full automation

implementations.

The Aim of the Doctoral Thesis

The aim of the present Thesis is to develop a Model–Driven approach and methodology for

introduction of the configuration management process automation, which allows the

introduction of automation to reduce the time and improve the quality of automation.

Model–Driven approach to configuration management process automation introduction

shows that with the help of models it is possible to automatically obtain the source code for

automation process. Models conform to the MDA (Model Driven Architecture) format. The

approach defines each model configuration management objective, main tasks and operating

principles. New models and methods within the methodology that implement the proposed

Model Driven approach principles have been developed. They allow one to automatically

obtain the source code configuration management for automation.

In the context of the present research, configuration management automation quality score

is a number of erroneous software builds. Software build is the main result of the configuration

management automation process; thus, the fewer number of erroneous builds corresponds to a

qualitative automation process.

The Tasks of the Doctoral Thesis

To reach the aim of the Thesis, the following tasks are set:

 To explore the existing configuration management solutions for process automation

implementation realizing the main problems and trends of solution development.

 To identify the main benefits and disadvantages of the most recent configuration

management automation solutions that meet modern trends.

 To develop an approach, methodologies, models and techniques for automation

configuration management process. The approach should focus on time reduction of

automation implementation re–using the company’s existing automation solutions.

 To develop a software prototype offered for model display automation.

 To develop criteria for assessing the proposed approach.

 To implement configuration management process automation in the software

development projects and following detailed criteria to determine the benefits and

drawbacks of the developed projects.

 Based on the results of an experiment, to determine the benefits of approach,

limitations, implementation risks, as well as make recommendations on the offered

approaches and models for the implementation of a software development project.

8

 To define the further development and improvement directions of the proposed

approach.

Object and Subject of the Research

The object of the research is software development and maintenance projects.

The subject of the research is software configuration management process.

The Hypotheses of Research

Configuration management research is based on the fact that by developing sharp software

development methodology, a software development project begins very rapidly compared, for

example, with a waterfall methodology. This fact leads to the necessity to implement the

automation of configuration management processes as quickly as possible so that the customer

could receive the first version of the software as soon as possible.

Developing a new approach and models for configuration management automation, the

following hypotheses are proposed:

 To reduce the time of configuration management automation implementation, one can

re–use the already existing automation solutions that are already functioning in other

software development projects.

 The longer the configuration management automation solutions are used in different

projects, the effectively they can be re–used by introducing configuration management

process automation in the new software development project.

The first hypothesis is based on the fact that it is faster to customize and configurate the

existing solutions than to develop a completely new one from zero. Any development takes

time, which is spent on development and testing of the solution. Re–using a solution this

duration is less, because the development and retesting of a complete solution should not be

repeated. If for the implementation of configuration management automation already existing

solutions are re–used, only parts of the process specific to a particular project should be

developed from zero.

The second hypothesis is based on the fact that in the software completely all of the errors

can not be detected during a testing phase. There are errors that can be discovered only while

software is exploited in real life. Solutions that automate configuration management are not an

exception. Thus, the longer this solution is used in configuration management processes, the

more errors and failures can be detected and make this solution more stable. As a result, the

efficiency of configuration management automation solution re–use will depend on how long

a given solution is used.

Research Methods

In the research, the following methods are used:

 Analysis of literature;

 Simulation and metamodeling;

 Model transformation;

 Planning and organization of experiments.

Scientific Novelty

Scientific novelty of the research is as follows:

 A new approach MTM (Model — Transformation — Model) has been developed for

the implementation of configuration management process automation with the help of

models, re–using already existing automation solutions.

9

 A new methodology EAF (Environment — Action — Framework) has been

developed, which implements the new MTM approach and defines the principles and

steps for the implementation configuration management automation.

 New models have been developed to display the configuration management process in

the methodology framework.

 A new method has been developed to store reusable solutions of configuration

management.

Theoretical Value

The theoretical value of this Thesis is as follows:

 The definition of configuration management has been analyzed and the main tasks of

configuration management have been defined.

 Based on the survey of literature about configuration management tasks, the

configuration management process automation has been defined.

 The existing solutions for automation configuration management have been analyzed

and the solution development trends have been summarized.

 A new approach, methodology, models and method for the implementation of

configuration management automation based on MDA format have been developed.

 Using MetaEdit+ tool, the modeling language has been developed, which allows

implementing new concepts of MTM approach, defining models, transformations and

additional elements for implementation of approach.

 It has been clarified that the Model–Driven approach for implementing a configuration

management process helps toreduce the risk of human factor moving from process

automation requirements to implementations.

Practical Significance

This Thesis has the following practical significance:

 The experimental software prototype has been developed, which automates the

generation and transformation of EAF methodology models.

 The competence group composed for practical testing activities of EAF methodology

has been established. The competence group comprised senior leaders and

programmers at Tieto Latvia Ltd, whose daily work was related to configuration

management processes.

 Criteria for the EDF methodology evaluation has been developed, and it has been

explained how to calculate the criteria scores.

 Experiments have been conducted introducing configuration management automation

in five software development and maintenance projects. Based on the results of

experiment, practical benefits of the EAF methodology, differences from other

configuration management automation solutions, methodology implementation risks

have been defined.

 A set of practical recommendations has been developed to implement configuration

management automation in the new EAF methodology.

Practical results of this Thesis can be used for software development companies that are

willing to improve the efficiency of configuration management automation solution and to

reduce the time needed to implement automation in new projects.

10

The Approbation of the Research Results

The results of the research have been reported at 10 international conferences in Latvia, Italy,

Turkey, France and Austria:

 October 13, 2011. The 52nd International Scientific Conference of Riga Technical

University, Riga, Latvia.

 October 12, 2012. The 53rd International Scientific Conference of Riga Technical

University, Riga, Latvia.

 October 17, 2013. The 54th International Scientific Conference of Riga Technical

University, Riga, Latvia.

 October 14, 2014. The 55th International Scientific Conference of Riga Technical

University, Riga, Latvia.

 April 27, 2012. LLU Applied Information and Communication Technology 2012,

Jelgava, Latvia.

 April 27, 2013. LLU Applied Information and Communication Technology 2013,

Jelgava, Latvia.

 November 22–24, 2014. The 3rd International Conference on Systems,

Communications, Computers and Applications (CSCCA"14), Florence, Italy.

 December 15–17, 2014. The 13th International Conference on Telecommunications

and Informatics TELE–INFO’14, Stambul, Turkey.

 February 9–11, 2015. The 3rd International Conference on Model–Driven Engineering

and Software Development MODELSWARD 2015, Angers, France.

 March 15–17, 2015. International Conference on Applied Physics, Simulation and

Computers, Vienna, Austria.

The results of the research are presented in the following publications:

1. Bartusevics A., Kotovs V., Novickis L. A Method for Effective Reuse–Oriented

Software Release Configuration and Its Application in Insurance Area. In: Scientific

Journal of Riga Technical University. Information Tehnology and Management

Science, 15th series, RTU Publishing House, 2012, Riga, Latvia, pp. 111–115.

(indexed: EBSCO, VINITI, Google Scholar).

2. Bartusevics A., Kotovs V. Towards the Effective Reuse–Oriented Release

Configuration Process. In: Proceedings of the 5th International Scientific Conference

“Applied Information and Communication Tehnologies”, 2012, Jelgava, Latvia,

pp. 99–103. (indexed: EBSCO, VINITI).

3. Bartusevics A., A Methodology for Model–Driven Software Configuration

Management Implementation and Support. In: Proceedings of the 6th International

Scientific Conference “Applied Information and Communication Tehnologies”,

2013, Jelgava, Latvia, pp. 252–258. (indexed: EBSCO, VINITI).

4. Bartusevičs, A., Novickis, L., Bluemel, E. Intellectual Model–Based Configuration

Management Conception. In: Scientific Journal of Riga Technical University.

Applied Computer Systems. 2014/15, pp. 22.–27. ISSN 2255–8683. e–ISSN 2255–

8691. (indexed: EBSCO, VINITI, Google Scholar).

5. Bartusevičs, A., Novickis, L. Model–Driven Software Configuration Management

and Environment Model. In: Recent Advances in Electrical and Electronic

Engineering. In: Proceedings of the 3rd International Conference on Systems,

Communications, Computers and Applications (CSCCA"14), Italy, Florence,

November22–24, 2014. Italy: WSEAS Press, 2014, pp. 132–140. ISBN 978–960–

474–399–5. ISSN 1790–5117. (Will indexed: SCOPUS).

6. Bartusevičs, A., Novickis, L., Lesovskis, A. Model–Driven Software Configuration

Management and Semantic Web in Applied Software Development. In: Proceedings

of the 13th International Conference on Telecommunications and Informatics

11

(TELE–INFO '14), Istanbul, Turkey December 15–17, 2014, pp. 108.–116. (Will

indexed: SCOPUS).

7. Bartusevičs, A., Novickis, L. Models for Implementation of Software Configuration

Management. In: Procedia Computer Science. Valmiera, Latvia: 2014, pp. 3–10.

(Will indexed: SCOPUS).

8. Bartusevičs, A., Novickis, L., Leye, S. Implementation of Software Configuration

Management Process by Models: Practical Experiments and Learned Lessons. In:

Scientific Journal of Riga Technical University. Applied Computer Systems. No.16,

2014, RTU Press, pp. 26–32. ISSN 2255–8683. e–ISSN 2255–8691. (indexed:

EBSCO, VINITI, Google Scholar).

9. Bartusevics, A., Novickis, L. Model–Based Approach for Implementation of

Software Configuration Management Process. International Conference

MODELSWARD 2015, France, Anxhe, 9–11 February. (Will be indexed:

SCOPUS).

10. Bartusevičs, A., Novickis, L. Towards the Model–Driven Software Configuration

Management Process. In: Scientific Journal of Riga Technical University.

Information Technology and Management Science. Vol.17, 2014, pp. 32–38. ISSN

2255–9086. e–ISSN 2255–9094. (indexed: EBSCO, VINITI, Google Scholar).

11. Bartusevičs, A., Lesovskis, A., Novickis, L. Semantic Web Technologies and

Model–Driven Approach for the Development and Configuration Management of

Intelligent Web–Based Systems. In: Proceedings of the 2015 International

Conference on Circuits, Systems, Signal Processing, Communications and

Computers, Austria, Vienna, March 15–17, 2015. Vienna: 2015, pp. 32–39. ISBN

978–1–61804–285–9. ISSN 1790–5117. (Will indexed: SCOPUS)

The Structure of the Doctoral Thesis

The Doctoral Thesis consists of an introduction, five chapters, conclusions, bibliography and

appendices. The volume of the Thesis is 228 pages, it contains 55 figues and 30 tables. The

bibliography contains 115 reference sources.

In the introduction of this thesis, the topicality of the research is stated, the aim and tasks of

the research are formulated, hypotheses are put forward, research methods are defined,

scientific novelty is described and practical importance of research results is provided, as well

as the approbation of research results is reflected.

In Chapter 1, the software configuration management concept is defined and configuration

management main tasks are determined. Based on the literature analysis, configuration

management process automation it defined. Chapter 1 analyzes the existing solutions for

automation of configuration management tasks, defines the main problems and solutions in

today’s trends.

Chapter 2 analyzes the existing approaches and tools for automation of configuration

management that uses MDA format and key principles. Based on the results of the analysis,

deficiencies in existing approaches are identified. In Chapter 2, the signs of configuration

management approach are given, which prevent the identified weaknesses in existing solutions.

 Chapter 3 describes a newly developed MTM approach to configuration management of

automation implementation with the help of models. A new EAF methodology for MTM

approach implementation is offered, whose development is based on the MDA format. For the

implementation of a new methodology, the author of the Doctoral Thesis defines new models

and according to the meta–models configuration management process for display, as well as

models of transformation laws that allow one to change patterns at the abstraction level. The

methodology proposes implementing configuration management process automation, using

12

existing automations for certain configuration management tasks. The method for storage of

existing configuration management automation solutions is developed.

In Chapter 4, a new EAF methodology is tested. Evaluation criteria of methodology are

provided and the theoretical approbation are described. During the methodology testing, five

software development projects have been implemented. As a result of experiment, benefits and

drawbacks of methodology have been defined. By analyzing the benefits, weaknesses, reviewer

feedbacks obtained by publishing the methodology theoretical foundations in inventories of

scientific conferences, it has been found out that existing benefits may be increased, but the

number of shortages can be reduced by making improvements in the methodology.

In Chapter 5, the development of improved version of EAF methodology is described. The

main objective in development is to prevent through experiments opened weaknesses and to

take into account the remarks made by the reviewers of scientific articles who got acquainted

with the EDF methodology. During repeated experiments, it has been shown that the

weaknesses have been prevented and the benefits increased. At the end of the chapter,

deficiency rectification activities are described. Based on the comparison of results of the first

and second round of experiments, methodology key benefits are defined, differences from other

configuration management automation approaches are determined, as well as methodology

implementation risks are identified and future development directions are defined.

In the final part of this Thesis, the main results of the research are provided, aims and tasks

are substantiated, the hypotheses are proven, as well as possible future research directions are

listed.

1. THE RESEARCH OF SOFTWARE CONFIGURATION

MANAGEMENT

The Definition of Software Configuration Management

As a result of literary analysis [AIE 2010, BER 2003, DEP 2010, PAU 2007, MET 2002,

KAN 2005, CON 2002, GLO 2012, BRU 2004, DAR 2001, WES 2005, MEL 2006, BEL 2005,

VAC 2006, WIK 2013, ОРЛ 2011, ЛАП 2004, УДО 2011, ЗАМ 2008], more than 20 different

definitions are found, which explain the concept of configuration management. In the found

definitions, common parts have been joined and, as a result, a configuration management

process has been defined.

Configuration Management software is a set of processes that identify and control software

items and their process of evolution, provide guidelines for the build and installation process of

software as well as make the software item status tracking.

Configuration Management software has the following main tasks:

 Item identification of configuration;

 Version control of configuration item;

 Finished product building (preparation process of tranche or installation packages

(building engineering));

 The installation of finished product (deployment);

 The parallel development support (with configuration items at the same time working

on a number of developers) (branching));

 Metrics collection for configuration item changes, versions and different product

configurations;

 Configuration item accounting and audit.

When analyzing the literature, the main configuration management definitions and main

tasks have been found out. Due to the fact that the aim of the Thesis is to develop an approach

13

and methodology for configuration management automation, based on the obtained information

of this chapter, configuration management automation will be defined.

Solutions of Configuration management automation — software, which implements

configuration management tasks defined in this chapter by minimizing human intervention.

Automation is mainly focused on version control, source code management, software building

development, software installation.

Thus, the wording “to develop automation for configuration management” within the

framework of the research means to develop a set of software (scripts, libraries, frameworks),

which with minimal human intervention is able to perform configuration management tasks

defined in this chapter, mainly version control, source code management, building and

installation development.

In this chapter, automation of software configuration management is defined. Automation

needs to solve the following tasks: version control, source code management, product builds

and installations, metrics collection.

During the research five important features have been identified, which characterize the

process of modern configuration management: the process solves complex of all tasks, the

process is the Model Driven, You are able to use the existing tools and scripts in the new Model–

Driven automation solution, version control works not only with a code, but also with models

to be able to support projects with the MDD (Model Driven Development) approach and the

process does not conflict with the quality standards.

The next chapter analyzes configuration management automation solutions, which

correspond to the Model–Driven Architecture format. For each approach the following factors

will be evaluated:

 Compliance of approaches for Model–Driven Architecture principles;

 Access area, resolving configuration management tasks;

 The possibility to use existing tools or scripts as well as create new solutions, which

can be applied repeatedly.

2. MODEL–DRIVEN SOFTWARE CONFIGURATION MANAGEMENT

General Principles of Model–Driven Architecture

Model–Driven Architecture initially has been designed for software development. Model–

Driven development is application of models during software development lifecycle. MDA is

related to such development methodologies, where the use of models is the main approach to

obtain primary artefacts, where knowledge about software is represented by a particular

modelling language.

Model in the context of MDA is the description of system or part of system using a language

with strong defined syntax and semantics and this language should be readable by a computer.

Each particular system could be defined by different models; however, strong relations should

be defined between mentioned models (e.g., full — part, where one model defines general

aspects of system, but the other model provides detailed information about a particular part of

system). Nowadays MDA has strong relations with UML; this fact allows reducing risks of

invalid model translations; however, domain specific languages expect some different notations

instead of UML [DON 2011, OSI 2011].

MDA allows designing models with a high level of abstraction and these models are

independent of particular platforms where they should be applied. The mentioned models could

be stored in special centralized repositories. MDA contains the following technologies: unified

modeling language (UML), metaobject facilities (MOF), interchange of XML metadata (XML

14

Metadata Interchange — XMI) and common warehouse metamodel (CWM) [DON 2011, OSI

2011].

Transformation of models is a unified process to convert a model with a particular level of

abstraction to other model with a different abstraction level; however, equivalence should be

saved between the mentioned models. Transformations between different models are basics of

a model–driven approach. Each model could be represented as a UML diagram, OCL

specification or a set of text. Model–driven approach defines a set of kinds of models. These

models could be abstract (related to functionality of system) or concrete, which describe

relations with a particular platform, technology or implementation. There are the following

kinds of models in the MDA:

 CIM — Computation Independent Model;

 PIM — Platform Independent Model;

 PSM — Platform Specific Model;

 Code Model or ISM (Implementation Specific Model.

There are options to make the following transformations in the context of MDA approach:

CIM to PIM, PIM to PSM and PSM to Code Model. It is also possible to make transformations

without changing the abstraction level. Many models with a lower level of abstraction could be

related to one model with a high level of abstraction, for example, from one PIM model many

PSM models could be created and each PSM model will represent information for a different

platform. General MDA process is provided in Fig. 2.1.

Fig. 2.1. Model–Driven Architecture.

Model–Driven Approaches for Software Configuration Management

Model–driven software configuration management [PIN 2009] contains models, a number

of definitions of meta–models and recommendations on how to improve relations between

configuration management and software development. The above–mentioned study describes a

tool called Model–Driven Configuration Editor. This tools has been developed in the Eclipse

environment using Eclipse Modeling Framework and Graphical Modeling Framework.

Transformations between models are implemented by openArchitectureWare (oAW). The

study provides guidelines on how to design another tool for modeling the software

configuration management process.

15

The approach described in [PIN 2009] has the following advantages:

 Conception of merging software configuration management and model–driven

development;

 The abstract model of product configuration;

 Instructions on how to improve and extend a tool for support of model–driven software

configuration management.

There are the following conclusions about the approach described in the study [PIN 2009]:

 The provided approach is oriented to projects with a model–driven development

approach. There are no suggestions on how to apply the provided approach in projects

with classic methodologies of development, where main artefacts are a source code

instead of models.

 Approach is oriented only to one of the main tasks of software configuration

management — identification of software configuration items.

 Approach contains all main elements from general model–driven architecture: there

are meta–models, model creation rules, implementation of PIM and PSM is provided.

The study [PIN 2009] provides an abstract approach for implementation of model–driven

software configuration management. The provided approach is oriented to the identification of

software items; the items could be the following:

 Hardware components;

 Software components;

 Source code files and documentation files.

Each group of the above–mentioned software configuration items contains a meta–model.

From this meta–model the PIM model could be created. Finally, the PIM model could be

transformed to the PSM model using special transformation rules. The main result of the

mentioned modelling process is XML files, which describe configuration items and their

structure. Example of PIM model is provided in Fig. 2.2.

Fig. 2.2. PIM model.

Figure 2.3. represents the PSM model created by transformations from the mentioned PIM

model. The PSM model is related to Eclipse IDE.

16

Fig. 2.3. PSM model.

Finally, the model provided in Fig. 2.3. could be transformed to an XML file, which will be

parsed by a software configuration management tool.

The study [GIE 2009] describes a software configuration management process in general.

The main principles of software configuration management are taken from the ITIL framework

(Information Technology Infrastructure Library). Software configuration management process

is represented by different components. Each component has a meta–model, which allows

making an abstract software configuration management model. The next step of approach

describes how to transform this abstract model to a platform specific model. The approach is

based on main principles of MDA. The models allows describing a software configuration

management process with a different level of abstraction to improve a general overview of

process. The study describes a tool for implementation of model–driven software configuration

management. The abstract model of software configuration management has been designed for

ITSM (IT Service Management). Figure 2.4 provides an example of the above–mentioned

model.

Fig. 2.4. Abstract model of software configuration management.

The approach [GIE 2009] provides the following kinds of models:

 Model of management tools;

 Model of configuration management database (CMDB);

 Model of data repository (MDR).

Relations provided in Fig. 2.4 (Query/Update) should be implemented by transformations

between different kinds of models. There are no practical examples of implementation of the

mentioned transformations.

17

The approach provided in the study [CAL 2012] is oriented to improve the integration of

different tools using the software configuration management process for automation. There are

a number of different tools that should be integrated together to support an end–to–end software

configuration management process: version control tools, bug tracking systems, continuous

integration tools, building and deployment tools etc. Usually all these tools work independently.

There is a lack of integration between these tools. The authors of [CAL 2012] think that

improvement of integration of the mentioned tools could improve general automation of

software configuration management process. To improve the mentioned integration between

different tools, the authors of [CAL 2012] provide a general concept for each kind of tools.

Finally, the approach provides a task ontology for software configuration management process.

This ontology could be used as a general model of software configuration management. The

main scope of this model is to show integrations between different kinds of tools. Ontology is

oriented to a version control task, which is one of the main tasks of software configuration

management.

There are the following conclusions about the study [CAL 2012]:

 Ontology for an abstract software configuration management process is provided. The

provided ontology is independent of a concrete tool or a platform.

 The provided ontology could be used as a baseline for a platform independent model.

Principles of ontology are based on the elements of ISO standards and Subversion

version control system.

 Ontology is oriented to the integration of different kinds of software configuration

management tools.

 There are no suggestions on how to obtain the PSM model from the provided ontology.

The study [CAL 2012] is not a single attempt to apply artificial intelligent methods to

automate configuration of tools using the software configuration management process. There

are a number of studies related to the configuration of project management tools using artificial

intelligent methods for integration of different tools [BER 2012, BER 2011].

Analyzing the Configuration Management Model–Driven solutions, approaches and their

development trends [PIN 2009, GIE 2009, BUC 2009, CAL 2012, KR 2014, FIT 2014, FUG

2014, CRA 2008] have been explored, as well as the latest tools for Model–Driven approach

practical realization [OPE 2014, SER 2014, AZO 2014] have been studied. The compliance of

solutions for MDA format and comments are provided in Table 2.1.

Analyzing the latest tools, which introduce the process of Model–Driven configuration

management [OPE 2014, SER 2014, AZO 2014], the main benefits and disadvantages found

by the author of this Thesis have been summarized. The most essential achievements in tools

[OPE in 2014, SER 2014 AZO 2014] are as follows:

 The majority of the analyzed tools are consistent with the key principles of Model–

Driven approach. Tools allow one to relatively quickly model the configuration

management process of software development project, and then implement to specific

technologies and platforms.

 Configuration management process is reviewed and easily configurable thanks to the

intuitive understandable users’ graphical direct exposure. Configuration manager

forms the build scenarios of product with mouse clicks instead of writing huge scripts.

 Tools are fully in line with modern trends in the software development industry. The

possibility of establishing parallel builds has been implemented, the system has been

configured, which is capable to perform several dozen builds a day. Mostly all tools

have built–in functions that support the processes of build formation also in the clouds.

Consequently, one no longer has to write statically scripts for each project separately.

18

Table 2.1

Comparison of Model–Driven Solutions for Software Configuration Management
S

o
lu

ti
o
n

id
en

ti
fi

er

M
et

a
–
m

o
d

el
s

M
o
d

el
s

w
it

h
 a

d
if

fe
re

n
t

le
v

el

o
f

a
b

st
ra

ct
io

n

T
ra

n
sf

o
rm

a
ti

o
n

so
lu

ti
o
n

s

T
o
o
ls

 s
u

p
p

o
rt

Comments

[PIN 2009] + + +/– +/– Best of all mentioned solutions in a

substantive way, because there is a

partial solution to the meta–model, a

tool that performs model

transformations.

[GIE 2009] +/– +/– – +/– A purely theoretical solution, no

specific details of how this solution can

be implemented. The approach is

oriented to the only one technology.

[BUC 2009] – A purely

theoretical

solution

– +/– The solution is oriented only to the

version control rather than to the

configuration management process as a

whole.

[CAL 2012] +/– +/– +/– +/– Although the solution does not comply

with the general principles of Model–

Driven approach, there is an important

problem highlighted, which must be

taken into account in the Model–Driven

configuration management solution

development — mutual integration of

tools. At the theoretical level, as a

solution it is offered to create an abstract

integration model for tools that support

the configuration management process.

Gathering information from sources [OPE in 2014, SER 2014 AZO 2014], it has been

concluded that the tools have also disadvantages:

 Mainly all the tools are oriented to the following configuration management tasks:

construction and installation management, product release note preparation to the

customer and metrics collection. However, hardly any tool pays sufficient attention to

management automation of source code. In turn, without the deliberative source code

management construction and installation process cannot be qualitative [AIE 2010].

 By implementing the configuration management process with tools, which are

mentioned in these sources [OPE 2014, SER 2014, AZO 2014], lower abstraction level

models (scripts, project structure, compilation algorithms etc.) are defined. If they are

ignored, the solution will not work correctly. Often, however, the company has its own

specificities and approach to different script and project configuration. The company

will hardly be ready to apply the solutions and approaches that have been tested for

years. For example, if implementing some of the new building and installation tools,

it will be necessary for all Java projects to remake classes and package structure,

unlikely the company will be ready for that, while the customer most likely will not

want to pay for this activity.

19

3. DEVELOPMENT OF MTM APPROACH AND EAF

METHODOLOGY

Definition and General Description of MTM Approach

MTM (Model — Transformation — Model) — a newly developed approach to obtain the

source code for automation of software configuration management process. MTM Approach

provides that all configuration management processes are managed by a re–executed exit code

from a special configuration management server. This exit code is obtained automatically,

sequentially modeling configuration management automation processes. Models conform to the

MDA format. It is intended that software development in a company, which uses MTM, has

been implemented in the solution database that holds re–usable source code units for certain

configuration management tasks for individual platforms. The solution database stores

mentioned source code units following certain techniques that have been developed and later

upgraded within this Thesis.

MTM approach ensures that in the beginning a Configuration Manager simulates the

configuration management process regardless of a specific platform. Later, it is supplemented

with the implementation details, which configuration manager obtains from the solution

database. A platform specific model is formed for a specific configuration management process.

Finally, from this model the source code is automatically generated for configuration

management process automation. In Fig. 3.1, you can see the MTM approach scheme.

Software Configuration Management Domain

Software Configuration
Management in a Project

Software Development Enterprise

Solution Database

Implementation process

Model 1
(Platform independent model)

Model 3
(Code Model)

Choose implementation

Generates

Software Configuration
Management Server

Implements

Configuration
Manager

Configuration
Manager

Model 2
(Implementation for particular

platform)

Transformējas

Fig. 3.1. MTM elements and relations.

EAF Methodology for Implementation of MTM Principles

Methodology objective is to define the implementation steps of configuration management

automation and to provide an opportunity for a new process to use theb already existing

solutions. EAF is an abbreviation of of the methodology “Environment — Action —

Framework”. The EAF methodology implements MTM approach principles, implementing

models visible in Fig. 3.1 (Model 1, Model 2 and Model 3), as well as the solution database and

model transformation rules. A gradual transition from one model to another, using the model

transformation rules, defines configuration management automation source code formation

steps. The re–use of solution allows reducing the implementation time of automation, thus

minimizing the risk of unexpected errors that occur when all solutions are developed from

scratch. Development of EAF methodology is organized by many iterations. Results of the

mentioned iterations are described in papers [BAR 2012a, BAR 2012b, BAR 2013, BAR

2014f].

20

During the development of the EAF methodology the following concepts have been

introduced:

1. Project — a software development project, within which configuration management

is described.

2. Company — a specific company, which implements software development projects.

3. Configuration Manager — a user, who using the EDF methodology performs

modeling and implements configuration management process automation in the

project.

4. Configuration management solution warehouse (SCMWarehouse) — a structure,

where all configuration management automation solutions are held within the

company.

5. The management system of configuration management solution warehouse — an

application that manages the information at SCMWarehouse.

6. Platform — a specific operating system, in which a configuration management

process exit code is implemented.

7. Configuration management server (SCMServer) — a centralized server, from

which the execution of configuration management exit code is managed. The server is

focused on a specific platform.

8. Environment — a set of infrastructure, in which the developed software (application

servers, databases, external system interfaces, etc.) is located. Each environment is

designed for a specific activity in software development life cycle, for example,

development, testing, quality acceptance testing of exploitation, etc.

9. Action — the activity in the configuration management automation process. Usually

the activity solves one of the main configuration management tasks, such as: creation

of the software build, source code management, software installation in one of media,

etc.

The EAF methodology contains the following elements:

 Environment Model metamodel — a modeling language for the Environment Model

development.

 Environment Model (EM) — a configuration management process model that

represents all the specific project environments, among which the change occurs in the

transmission of software.

 Source Code Branching Model (SCBM) — a model that illustrates the laws of

software source code management depending on the Environment Model, shows what

branches of source code correspond to what environments and in which way a source

code changes transmission (merge) between the different branches.

 Platform Independent Action Model (PIAM) — a model that shows what actions

are to be taken to transfer the software changes between instances in the Environment

model. In this model, activities do not contain any implementation details and do not

depend on any platforms.

 Platform Independent Action Model metamodel — a modeling language for the

PIAM model development.

 Platform Specific Action Model (PSAM) — an extended variant of the PIAM model.

Unlike the PIAM, this model contains all the information on the operation

implementations: platform specific tools, scripts, instruction manual.

 Service Model — a model that shows the mutual integration tool. Model contains the

pairs of tools. For each tool located in a particular pair, there is a set of functions or

methods to call up the second pair of tools. Service Model is required for different tool

integration description. If the PSAM model can see the tools needed for the analysis

of configuration management activities, then the service model shows how tools work

21

with each other (integrate) to be able to maintain a full–fledged configuration

management operation flow.

 Service detection algorithm — an algorithm that depending on the tools of PSAM

model determines tool pairs, or services. During the implementation of PSAM model

the configuration manager in the beginning has to implement services, which are

determined by a service detection algorithm.

 The transformation laws "E–> S" — a set of laws that operate with the Environment

model and prepare the appropriate source code branching model.

 The transformation laws "E–> S" — a set of laws that operate with the Environment

model and prepare the appropriate PIAM model.

 Solution Choice Module (SCMWarehouse) — a storage, where all the company

existing configuration management solutions are stored.

Figure 3.2 demonstrates the EAF methodology general framework. Activities and

methodology key steps are marked by arrows. “Configuration Manager” is a user, who

implements company configuration management processes and produces various models.

Environment Model (EM)

PIAM

(Platform Independent Action Model)

Environment meta-model PIAM meta-model

Transformation Module

SCMWarehouse

 Transformation

Rules

(E->P)

Configuration Management Domain

PSAM

(Platform Specific Action Model)

 Transformation

Rules

(E->S)

SCBM

(Source Code Branching Model)

Pass

2.1. Transformation

Pass

3. CreatesService Model

Service

Detection

Algorithm

Pass
4. Transformation

Configuration
Manager

Configuration
Manager

Uses

1.
Creates
Model

2.2.
Transformation

Uses

Uses

Uses

Fig. 3.2. General scheme of EAF methodology.

It is intended that the company develops the Choice Module of Solutions that in a structured

manner holds all the company’s solutions for configuration management activities. The EAF

methodology contains four main steps:

22

 Configuration Manager makes the Environment Model for a specific software

development project.

 Transformation laws “E–>S” and “E–>P” convert the Environment Model into SCBM

and PIAM models. At this point, the user knows what source code repository branches

should be built to maintain a source code base for each environment from the

Environment model. Configuration management activities are also known that are

required to transfer the changes between environments.

 Using activities in the PIAM model, a Configuration Manager from a Solution Choice

module chooses one specific solution for each activity. As a result, the PIAM model

expands to the PSAM model that contains information about platforms, tools, scripts,

etc.

 PSAM model is processed by a Service detection algorithm that determines tool pairs

for integration.

Finally, both the tool integration and the PSAM model are implemented in the project

configuration management problem domain. The EAF methodology is ending when in a

configuration management problem domain a source code management system is implemented

according to the SCBM model, all integration shown in the SM model is implemented, and the

PSAM model is implemented.

Meta–Model for the Environment Model

The scope of the Environment Model is to show all flows of software changes between

different environment. Meta–model is a source for creation of the Environment Model. Each

flow of software changes is related to a particular event. One event could have multiple flows.

For example, an event called “Move changes from DEV to TEST environment” could have two

flows. The first one represents a flow of changes from DEV to TEST1 environment. In this

case, environment TEST1 is used only for validation of a particular software build. If this build

is valid, it could be installed on TEST environment by the second flow of the mentioned event.

In this case, TEST environment is used for real testing process. Only builds that are validated

in TEST1 environment could be installed to TEST. The Environment Model should provide

information about all flows and events related to transfer of software changes between different

environments in a particular project. The Environment Model could be created by software

configuration management that should make decision about environments, events and flows.

Graphical Representation of Elements and Examples

Table 3.1 contains information about elements of meta–model of the Environment Model.

Each element contains a set of attributes, which should be fulfilled during the modelling

process.

Table 3.1

Elements of the Environment Model

Name/Graphical

representation

Attributes and description

Actor

Software developer who makes changes in a source code.

Attributes:

Name

Description

Additional information about a developer

Environment

DEV(TEST)

Environment or instance where software is stored.

Usually it is a set of infrastructure (application servers,

database servers, firewalls etc.), in other words — all that

needed to run particular software. Each environment has

the following attributes:

23

Name — name of environment.

Description

CustumerSupportFlag — flag that shows a particular

environment supported by a customer.

DevelopmentFlag — a flag that shows whether

developers make changes in the software manually or

changes could be installed only by build. In other words,

this flag separates development environments from other

environments (test, qa, prod, etc.).

Original environment flag. It shows the scope of

environment. If value of this attribute is “Y”, it means that

the environment could be used for a real process, for

example, testing. If a value of this attribute is “N”, it

means that the environment should be used only for

validation of software build or continuous integration but

not for a real process.

OriginalEnvironmentName — if a particular

environment is not used for a real process, but only for

validation of build, this attribute contains the name of

original environment. For example, if TEST1

environment should be used to validate builds for TEST

environment, the value of attribute

OriginalEnvironmentName should be ‘TEST’.

ConfigurationItemFlow

1

Represents a way, by which changes should be transferred

from one environment to other. Attributes:

Name — a name of a particular flow and short description

about the meaning of particular flow.

Sequence — a sequence of a particular flow in the related

event.

Source — an environment, where the software changes

are stored.

Goal — an environment, where changes should be

transferred.

Description — additional information about a particular

flow.

Event

h_dev_test

1

Defines an event for representing transfer of changes from

one environment to some others. Attributes:

Name

ConfigurationItemFlows — an array of

ConfigurationItemFlows.

Description — additional information about a particular

event.

AllChangesMoveFlag — a flag that shows amount of

changes, which should be transferred between

environments (all new changes or only particular

changes).

24

Meta–Model for Platform Independent Action Model

Platform independent action model (PIAM) shows all actions needed to implement all flows

of changes defined by the Environment Model. The aim of PIAM model is to show all software

configuration management actions and all related attributes to implement the Environment

Model. Values of attributes in the PIAM model are empty, because this model is independent

of any platform and technology.

Table 3.2

PIAM Actions and Attributes

Name Identification Description

Development of

software changes

DEVELOPMENT Simulates action of development

of source code and rules related

to the mentioned development.

Saving changes in

version control

repository

COMMIT_CHANGES Defines rules and

implementations how to save

any changes in the version

control system and how to

manage different versions of a

source code.

Preparing baseline

for a particular

environment

PREPARE_BASELINE Defines the approach of

management of source code,

branching and merging

strategies, how to prepare

promotion branches, baselines

etc. Provides also details about

technical implementation of the

mentioned approach and

strategy.

Software building COMPILE_BUILD Defines the approach how to

build software from a source

code and all related

implementations (scripts, tools,

etc.)

Software

deployment

(installation)

INSTALL_BUILD Defines the deployment

approach in a particular project

and its implementation.

Software delivery

for a customer

PRODUCT_DELIVERY Defines the approach how to

deliver ready software to a

customer, how to prepare build,

installation guides and other

related documentation.

Notification about

updates of

environment

ENV_UPDATE_NOTIFICATION Defines environment post

update actions.

Elements of PIAM meta–model are related to main principles and practices of software

configuration management. Process could be decomposed to multiple tasks and implementation

of these tasks should be centralized, manageable and reusable [AIE 2010, BER 2003]. PIAM

model contains information not only about software configuration management tasks but also

about continuous integration server or, in other words, configuration management server. This

server implements centralized place where all tasks should be implemented [AIE 2010, PAU

25

2007, MET 2002]. Table 3.2 contains information about software configuration management

actions in the context of PIAM.

Table 3.3 contains attributes of PIAM actions with a short description.

Table 3.3.

Attributes of PIAM Actions

Attribute Description

Platform Name of platform, where a particular action should be

implemented

SolutionName Name of solution.

NeededTools Tools needed for implementation of a particular solution.

LocationsOfSolutions Locations of reusable solutions related to a particular action

(scripts, tools, implementation guides etc.)

Description Additional description notes about the implementation of a

particular action.

To apply all actions for software configuration management, a continuous integration server

or a configuration management server should be implemented. The PIAM model allows

describing such a server and contains an element called “Continuous Integration Server” with

the following attributes:

 Platform — a platform name, where a configuration management server should be

implemented,

 ToolName — a name of continuous integration server,

 InstallationNotes — notes about the implementation of a particular server,

 LocationOfSolutions — locations of reusable scripts to setup continuous integration

server (if such scripts are).

Additional elements in the PIAM meta–model are Events. All Events should be copied from

the Environment Model together with all related flows. Finally, the PIAM model shows all

configuration management actions needed to apply each flow of each event from the

Environment Model.

The PIAM model represents only empty attributes for each mentioned element, no details

about platform and implementation are given. Figure 3.3 represents the structure of elements

of the PIAM model.

Fig. 3.3. Elements of PIAM meta–model.

ContinuousIntegrationServer

Events

ConfigurationItemFlows

Actions

DEVELOPMENT COMMIT_CHANGES PREPARE_BASELINE COMPILE_BUILD INSTALL_BUILD PRODUCT_DELIVERY

26

ContinuousIntegrationServer

Platform: <name> ToolName: <name> InstallationNotes: <notes> LocationsOfSolutions: <locations>

All Actions:

Action1

Action2

Action3

….

ActionN

Event: <name>

ConfigurationItemFlow: <name>

ConfigurationItemFlow: <name>

Action: <name>

Action: <name>

Action: <name>

Action: <name>

Event: <name>

ConfigurationItemFlow: <name>

ConfigurationItemFlow: <name>

Action: <name>

Action: <name>

Action: <name>

Action: <name>

Graphical representation of the PIAM model is provided in Fig. 3.4.

Fig. 3.4. Graphical representation of the PIAM model.

Implementation of Platform Specific Action Model

The aim of platform specific action model (PSAM) is to define the implementation details

of a particular platform for all configuration management actions defined by the PIAM. All

attributes of all elements, which are empty in the PIAM model, should be fulfilled in the PSAM

model. It means that the PSAM model is an extended variant of PIAM, where details about the

implementation for a particular platform are given.

The main scope of the PSAM model is the following:

 Storing information about different reusable solutions for each action,

 Managing available solutions for each action for different platforms,

 Adding new reusable solutions for any actions.
To achieve main goals of the PSAM model, a Solution Selecting Module has been designed.

The module is represented in Fig. 3.5.

Solution Database

Solution Selecting Form

New Solution Form

Fig. 3.5. Solution Selecting Module.

Elements represented in Fig. 3.5. have the following description:

 Solution Database — stores information about reusable solutions for each action for

different platforms.

 Solution Selecting Form — allows choosing a particular reusable solution for

software configuration management actions.

27

 New Solution Form — allows adding a new solution to a Solution database if the

database does not contain the necessary reusable solution for a particular action.

Figure 3.6 represents an entity–relationship diagram for the Solution Database. This ER

diagram contains basic requirements for the Solution Database to apply main principles of the

PSAM model.

Fig. 3.6. Solution Database.

The algorithm for creation of PSAM model is the following:

1. Getting the PIAM model in the XML format.

2. Parsing element “Actions” and adding each action in the Solution Selecting Form.

3. Software configuration manager works with the Solution Selecting Form. For each

action one reusable solution from the Solution Database should be selected and

approved by selecting form. Then solutions for all actions are defined, XML file of

PIAM model should be fulfilled with details about reusable solution.

4. If software configuration manager detects that some action has not acceptable solution

in the database, he should enter a new solution using a New Solution Form. Then a

new solution is inserted in the database, the configuration manager returns to step ‘3’.

Figure 3.7 represents an application of basic EAF models for the following environments:

o DEV — a development environment,

o TEST — a test environment,

o Pre_TEST — an environment for testing of builds for a real test environment,

o QA — a quality–accepting environment.

Each original environment has a baseline of source code also represented in Fig. 3.7. Finally,

models are implemented using Jenkins continuous integration server.

28

ContinuousIntegrationServer

Platform: <Value> ToolName: <value> InstallationNotes: <value> LocationsOfSolutions: <value>

Events

dev test qa

ConfigurationItemFlows

dev:1

Action: DEVELOPMENT <attributes>

Action: COMMIT_CHANGES <attributes>

test:1

Action: PREPARE_BASELINE

<attributes>

Action: COMPILE_BUILD <attributes>

Action: INSTALL_BUILD <attributes>

test:2

Action: INSTALL_BUILD <attributes>

qa:1

Action: PREPARE_BASELINE <attributes>

Action: COMPILE_BUILD <attributes>

Action: PRODUCT_DELIVERY <attributes>

Action: ENV_UPDATE_NOTIFICATION

<attributes>

ContinuousIntegrationServer

Platform: Linux SUSE 11 ToolName: Jenkins
InstallationNotes:

CM_TOOLS/notes/jenkins

LocationsOfSolutions:

CM_TOOLS/notes/jenkins

Events

dev test qa

ConfigurationItemFlows

dev:1

Action: DEVELOPMENT <Real values>

Action: COMMIT_CHANGES <Real values>

test:1

Action: PREPARE_BASELINE <Real

values>

Action: COMPILE_BUILD <Real values>

Action: INSTALL_BUILD <Real values>

test:2

Action: INSTALL_BUILD <Real values>

qa:1

Action: PREPARE_BASELINE <Real values>

Action: COMPILE_BUILD <Real values>

Action: PRODUCT_DELIVERY <Real

values>

Action: ENV_UPDATE_NOTIFICATION

<Real values>

DEV

test

TEST

2

Pre_TEST

1

QA

qa 1dev 1

Branches DEV TEST QA

Fig. 3.7. Example of EAF models.

29

4. APPROBATION AND TESTING OF MODEL–DRIVEN

CONFIGURATION MANAGEMENT METHODOLOGY

Preparation for Experiments and Plan

To automate the creation of EAF models, prototype of software has been designed. Tool has

been designed and developed by RTU student by individual task of programming. During

implementation of tool, the following technologies have been used: .NET, HTML5, CSS un

JavaScript, jQuety, KineticJs. Software prototype has been validated by the author of the

present Thesis.

The mentioned tool allows creating the following EAF models:

 Environment Model;

 PIAM model;

 PSAM model.

Additionally, the tool supports transformations from EM to PIAM model using

transformation rules “E–>P”.

For the purpose of experiment, a competence group composed of employees of Tieto Latvia

Ltd has been established. The group included senior and leading technical specialists who in

their daily work deal with configuration management process automation.

Experiments have the following aims:

 To compare configuration management automation implementation time with that of

old methods and EAF methodology.

 To compare the incorrect number of builds before and after the implementation of the

EAF methodology.

 Based on comparisons, to determine the changes in the configuration management of

automation implementation time, incorrect number of builds in the project, as well as

the total number of builds.

Conditions for experiments:

 There is at least one active software development project, which has at least one test

environment.

 In the project, the configuration management of software is implemented, the main

configuration management tasks described in the first chapter of the Thesis are

realized.

 Configuration management process is at least partially automated.

Methods and activities of experiments:

 For experiments five software development and maintenance projects have been

selected. In order to increase the reliability of the experiment, projects with different

development technologies have been selected.

 For competence group of specialists working at Tieto Latvia Ltd, training courses have

been organized, where specialists have been introduced with the offered methodology

and models.

 The Solution Choice Module for storing configuration management solutions

described in the previous chapter has been developed. Leading programmers have

developed software that allows one to manage automation solutions for configuration

management tasks. The software consists of the following elements:

o Oracle database re–used for automation solution storage.

o Oracle ADF–form that allows one to enter in the database a new configuration

management automation solution.

30

o Oracle ADF–form that receives the ready PIAM model and allows one to choose

from the mentioned database an automation solution for each configuration

management activity. As a result, the PSAM model is obtained.

 The established Solution Choice Module has been supplemented with solutions during

the following steps:

o Table “ContinuousIntegrationServer” replenishment with solutions for

configuration management servers. In this table, information about each

configuration management server used in the experiments has been placed.

o Configuration Manager, who was responsible for each individual experimental

project, was able to draw up instructions on how to install the configuration

management server, to determine tools, which are necessary in addition, as well as

summarize the existing solutions that ease the preparation of configuration

management server. When it is done, all the information mentioned above should

be placed in the database in table “ContinuousIntegrationServer”. The following

attributes are filled in the table:

 Platform — a platform, where a specific configuration management server

functions;

 SolutionName — a unique name of server;

 NeededTools — a tool list necessary to be implemented in order to activate the

configuration management server;

 SetupNotes — detailed instructions of configuration management server

installation;

 LocationsOfSolutions — a location of complete solution (if there is one)

o Filling of table “Solution”. Every configuration manager, who is responsible for a

particular software project, needs to restructure the corresponding automation

solutions in such a way as provided in the PSAM model and the Solution Choice

Module. Restructuring the existing automation solutions, each of them is placed in

the table “Solution” filling in the following table attributes:

 Platform — a platform, in which a given automation solution functions;

 Action — which automates configuration management activities;

 SolutionName —a unique name of automation solution;

 NeededTools — tools that are needed for solution implementation and use;

 LocationsOfSolutions — re–executable location of the code.

 Description — additional instructions for implementation of the solution.

 The evaluation criteria of EAF methodology indicators necessary for the calculation

have been developed. For each of five projects from Tieto Latvia Ltd the following

data have been obtained:

o Time spent on the configuration management process for the initial deployment.

o The average time per week spent on the configuration management process for

regular maintenance.

o Number of weeks until the intended end date of the project.

From each project configuration management database the following information has been

obtained:

 The amount of software build,

 The amount of erroneous software build.

In each of the five projects, the implementation of EAF methodology experiment has been

carried out according to the following plan:

 The environment model has been created. The model includes the entire development

and test environment, as well as the operating environment.

 Environment Model has been transformed into the PIAM model and the SCBM model.

31

 Configuration Manager works with the Solution Choice Module, supplements

configuration management activities in the PIAM model with implementations details.

As a result, the PSAM model has been obtained.

 From the PSAM model, the SM model has been obtained, which shows all tools

needed to integrate with each other.

 Configuration Manager develops the Service Model (SM) and management system of

source code according to the SCBM model.

 PSAM model has been implemented into the configuration management server.

 The time has been fixed, which has been consumed starting with the formation of the

Environment Model and ending with the PSAM model implementation.

 Software configuration management process has functioned following the EDF

methodology within three months. Subsequently, the following indicators have been

fixed:

o The average time per week necessary to maintain the process and the process of

correction of errors.

o The amount of software build.

o The amount of erroneous software build.

 The meeting has been held, in which the members of competence group examined time

spent and the number of the builds acquired originally and during the experiment.

Evaluation Criteria of Model–Driven Approach

For evaluation of the EAF methodology, the following evaluation criteria have been

developed:

 The time difference in the process of implementation. Criterion, which shows the

percentage difference between time spent on implementation of configuration

management automation following the old techniques and the new EAF

methodologies. If the value is positive, it means that the implementation of process

following the new methodology takes more time than the implementation following

old techniques.

 Time difference of regular maintenance. Criterion, which shows the percentage

difference between time necessary for manual maintenance process before and after

the implementation of the EAF methodology. If the value is negative, it means that

after the EAF methodology less time is required for manual maintenance process

automation. By contrast, in the case of positive values, you need to consume more time

for maintenance process after the EDF methodology.

 Time difference of common maintenance. A criterion that allows one to judge on

the long–term gains of EDF methodology. It takes into account the time for project

completion, time necessary for the implementation of the EAF and time necessary for

the implementation of the EAF and the time consumed on the average for manual

maintenance process before and after the implementation of the EAF. It shows the

percentage difference between the common time that would be required to maintain

the process until the end of the project following the old techniques and common time

that would be required in processes due to the implementation of the EAF.

 Erroneous build difference. This criterion shows in percentage changes in the

number of erroneous builds in a project after the implementation of the EAF

methodology.

 Common number difference of builds. This criterion shows in percentage changes

in the common number of builds in a project after the implementation of the EAF

methodology.

32

Table 4.1 shows the calculated evaluation criteria of the project.

Table 4.1

The Evaluation Criteria of Project

Criteria

P
ro

je
ct

T
im

e
d

if
fe

re
n

c
e

in

p
ro

ce
ss

 o
f

im
p

le
m

en
ta

ti
o
n

(%
)

T
im

e
d

if
fe

re
n

c
e

o
f

re
g
u

la
r

m
a
in

te
n

a
n

ce

(%
)

T
im

e
d

if
fe

re
n

c
e

o
f

co
m

m
o
n

 m
a
in

te
n

a
n

ce

(%
)

E
rr

o
n

eo
u

s
b

u
il

d

d
if

fe
re

n
c
e

(%
)

C
o
m

m
o
n

 n
u

m
b

er

d
if

fe
re

n
c
e

o
f

b
u

il
d

s
(%

)

1 6 –10 23 –27 4

2 –23 –7 36 –40 –43

3 –58 –25 –10 –33 3

4 –11 –38 –28 –60 –3

5 –46 0 71 –29 3

Time difference of automation process

Figure 4.1 shows a schedule, where the horizontal axis contains the project number, and a

vertical axis — the time difference of implementation as a percentage.

Fig. 4.1. Time difference of automation process implementation comparison by the project.

Analysis of Changes in the Number of Erroneous Builds

Figure 4.2 shows changes in the number of the erroneous builds after implementation of the

EAF methodology in all five projects. Schedule reveals another significant benefit of the EAF

methodology: the reduction of erroneous build number. The tendency of reduction shows an

average reduction of 38 % in the number of erroneous builds.

6

-23

-58

-11

-46

-60

-40

-20

0

20

1 2 3 4 5

D
if

fe
re

n
ce

 (
%

)

Projects

Difference of process implementation
time (%)

33

Fig. 4.2. The difference in the number of erroneous bulds.

Conducting experiments mentioned above and analyzing their results, the following EAF

methodology benefits have been detected:

 Methodology reduces the time that is required for configuration management process

routine maintenance. Due to the fact that all configuration management activities are

fulfilled from a centralized place, the level of automation and transparency increases.

All activities have an appropriate source code that allows avoiding manual operations.

Conducting experiments in five projects, time needed to process the daily maintenance

of software has decreased by an average of 16 percent

 The methodology significantly reduces the number of erroneous builds. Creating the

source code for each configuration management operation in practice some steps are

reviewed, additional quality checks are added, error handling and logging system is

improved. This has allowed reducing the number of erroneous builds by an average of

38 percent.

 The implementation of configuration management automation takes less time than

after implementation provided by old techniques. The Solution Choice Module

contains finished and tested solutions for individual configuration management

activity automation. Experiments have shown that if the Solution Choice Module

contains implementations for configuration management activities, then the time of

process implementation after the EAF methodology is reduced by an average of 34

percent.

Table 4.2 provides the summary of EAF methodology shortages.

-27

-40

-33

-60

-29

-70

-60

-50

-40

-30

-20

-10

0

1 2 3 4 5

D
if

fe
re

n
ce

 o
f

in
va

lid
 b

u
ild

s
(%

)

Projects

Difference of invalid builds

34

Table 4.2

EAF Methodology Shortages

Sequence number

of shortage
Description

1 The structure of the Solution Choice Module. As a result of experiment,

it has been discovered that it is too extensive to structure a configuration

management source code by the main configuration management tasks

(compile, deploy, prepare baseline). In this case, functions contain a lot

of parameters and functions; body contains a lot of ramifications.

2 The structure of the Environment Model. The existing interpretations of

the Environment Model restrict the projects very much. Firstly, in the

Environment Model the possibility should be provided that software

transmission between environments will take place in several events

(Event), and ConfigurationItemFlow can also be subdivided depending

on project specifics. Secondly, as noted by the reviewers of conference

article and technical specialists, definitions Event and

ConfigurationItemFlow are not intuitively understandable. Thus, it

would be necessary to find a way to more easily structure configuration

management activities, which transmit software changes between the

environments. In addition, during environment modeling, the

configuration manager should provide the opportunity to more freely

structure activities by events and streams. Finally, the definitions of

event and flow should be reviewed in order to make definitions

intuitively understandable for configuration managers.

3 The essence of PIAM model. A set of actions described in

 PIAM meta–model, not complete. It should be possible to attach new

activities. In addition, transformation from the EM to PIAM model

extremely imitates the projects, for which additional steps not defined

in the transformation laws should be carried out. When submitting

descriptions of models in scientific conferences MODELSWARD

2015, there was a suggestion to combine the EM and PIAM models,

allowing the user to choose by himself activities, as well as extend a

set of actions in the meta–model.

4 Source code branching model does not reflect a variety of source code

management strategies. There are projects that already have other

strategies, and in this case the implementation of EAF methodology is

impeded by the fact that the methodology requires a certain branching

approach. Therefore, there is a suggestion to serve the branching

approach only as a recommendation, but to leave some freedom for the

branch project name and the branching approach choice.

5 Service model does not provide action with several instances and

technologies. Let us suppose that there is a situation, when a particular

software release description needs information from a number of

different application processing systems. In this case, the Service model

has to be flexible enough to allow different systems to connect so that

the functions should not take into account the specifics of the project.

The main results of development of the EAF methodology and results of its testing are

represented in the following scientific papers: [BAR 2014a, BAR 2014b, BAR 2014c, BAR

2014d, BAR 2014e, BAR 2015].

35

Justification of the Need for the Second Phase Development of EAF Methodology and

Repeated Experiment

The results of experiments have shown that the EAF methodology allows reducing the time

of configuration management automation implementation. Introducing configuration

management automation to five projects reduces the implementation time by an average of 34%

tcompared to introduction of automation by old methods. This tendency on the one hand allows

concluding that the aim of this Thesis has been achieved. However, during the experiment, as

well as while publishing the EAF methodology foundations in international conference

proceedings, essential prerequisites for the second round of development have been reviled:

 Solution Choice Module. When configuration management automation has been

introduced in the last of five projects, it has been established that a re–executable exit

code becomes difficult to maintain. When discussing the results with specialists of

leading competence group, who participated in the organization of experiment, it has

been found out that the existing implementation of the EAF methodology is unable to

fully provide the repeatedly usable source code for automation processes.

 Reviewer’s article reviews [BAR 2015]. It should be noted that this article will be

applied for Conference MODEL AWARD 2015 especially dedicated to both MDA

and MDD latest achievements. Even though the article has been accepted, one of the

reviewers has noted significant deficiencies in the PIAM model, which essentially

restricts software configuration managers to create new operations as well as change

their order. The reviewer has recommended to combine the Environment Model and

the platform independent operation model, so that the user could freely simulate not

only the environments but also activities.

Due to the fact that the Solution Development Module, EM and PIAM models are the basic

elements of the EAF methodology and these elements need modifications, it has been decided

to organize the second development round of the EAF methodology. The main objective has

been to improve the structure of solution choice module and to combine the EM and PIAM

models.

Taking into account that at the final stage of experiment the EAF methodology basics and

the results of experiment have been published in scientific papers, in the methodology it has

been necessary to change basic elements. The second round of experiment is necessary,

because a number of basic elements of EAF methodology will be changed and, as a result, it

will become different. Consequently, it will be necessary to make sure that the first version

deficiencies are rectifieda and no benefits are destroyed.

5. IMPROVEMENT OF THE EAF METHODOLOGY

Database Solutions
Database solutions — a method that shows how to keep re–applicable automation solutions

for configuration management activities and use these solutions in the EAF models. The method

includes the re–used structure of solutions and solution selection algorithm. Figure 5.1 shows

the structure of database solutions.

36

Platform 1
Platform 2
Platform 3

Linux_shellLinux_shell

Framework 1
Framework 2
Framework 3

SUBVERSIONSUBVERSION subversion_functions.sh
(Reusable functions)

GET_NEW_REVISIONS() – get new SVN revisions
SUBVERSION_MERGE() – merge two SVN branches

SUBVERSION_COMMIT() – commit changes
...

Actions of Software Configuration
Management

(Defined in PIEM model)
getRevisions()

prepareBaseline()

subversion_common_variables.sh
(Environment variables, implementation

notes)

JAVA_HOME, SVN_HOME, etc.

Fig. 5.1. Improved structure of Database solutions.

As can be seen in Fig. 5.1, all re–applicable solutions are grouped into platforms and

frameworks. In turn, each frame has the following key attributes:

 Configuration management activities, which are automated with the help of the EAF

methodology and defined by the modeling environment project.

 Repeatedly enforceable functions.

 Environment variables and framework implementation guidance.

Working with Database solutions within EAF shown in Fig. 5.1 , the Configuration Manager

performs the following steps:

 Selects the platform for all configuration management activities to be implemented.

At this point, only frames that match the chosen platform become available to the

configuration manager.

 A framework is selected for each operation. At this point, the configuration manager

receives the frame functions as a re–used source code for a specific platform and

instructions for framework implementations.

Platform Independent Environment Model (PIEM)

This model is the combination of EM and PIAM models defined in the previous chapter,

which not only shows the project environment similar to the EM model, but also allows the

configuration manager in a moment to define the configuration management action framework.

Like the EM model, the new PIEM model does not contain any details of the configuration

management activity implementations for a specific platform. Figure 5.2 provides the example

of a newly developed model PIEM.

37

test_delivery

DEV Move

DEV_TO_TEST

Implements

Has job

Actions
prepareBaseline()

makeBuild()
deployBuild()

sendNotification()

Has actions

TEST

Environment

Application servers
Database servers

Webservices
Internal tools

Firewall
...

DEV – development
TEST – testing

PROD – production

Fig. 5.2. Platform Independent Environment Model.

In the improved version of the EAF methodology, the following improvements have been

carried out:

 Modified Solution Database;

 Combined EM and PIAM models by creating PIEM (From platform independent

environment model). The main objective was to allow the configuration manager by

himself to define the structure of the automated configuration management activities.

 Introduced source model — a directory and file structure, which automatically

generates from a platform specific operation model taking into account the specific

platform and specific programming language laws.

Figure 5.3 demonstrates the EAF advanced version of model based on the example.

An example that is seen in Fig. 5.3 illustrates the situation, when one software development

project has two environments: DEV — development environment and TEST — test

environment. It is necessary to regularly transfer software changes from the development to test

environment. The process has to be fully automated. It has been decided that automation will

be implemented with the help of Jenkins continuous integration server. The server will be

installed on the Linux platform and configuration management activities will be automated by

Linux shell scripts. EAF task is to generate a source code for the mentioned scripts.

Figure 5.3 shows the EAF models and operational steps:

 Configuration Manager environment, when modeling environment and configuration

management activities model the PIEM model;

 PSAM (Platform Specific Operation Model) model is formed from the PIEM.

Configuration management operation structure, which is marked in the PSAM model

with green, is copied from the PIEM model. In turn, implementation details are granted

by the Configuration Manager by selecting for each operation framework from the

Solution Database.

 From the PSAM model, the Code Model is generated, which is a set of Linux shell

scripts in configuration management operation defined by the PIEM model for

automation.

38

Configuration
Manager

Configuration
Manager

Solution Database

PIEM (Platform Independent Environment Model)

DEV Move

test_delivery DEV_TO_TEST

Implements

Has job

Actions
prepareBaseline()

makeBuild()
deployBuild()

Has actionsTEST

PSAM (Platform Specific Action Model)

Project Name

test_delivery

DEV_TO_TEST

Actions:
prepareBaseline()

makeBuild()
deployBuild()

FrameworkCommonVariables

SUBVERSION

CommonVariables:
(JAVA_HOME, SVN_HOME, ..)

subversion_functions.shReference

Code Model

ProjektsProjekts

dev_to_test.sh

BuildServerJobsBuildServerJobs
test_deliverytest_delivery

FrameworkVariablesFrameworkVariables SUBVERSIONSUBVERSION

subversion_common_variables.sh

Fig. 5.3. Practical application of improved EAF models.

Testing of Improved Version of the EAF Methodology

When testing a new version of the EAF methodology, experiments have been carried out

with the same projects described in the previous chapter. In order to compare the experiment

results with the first round of experiments, the same evaluation criteria and the same

characteristics have been used. Table 5.1 demonstrates the criteria for the second round of

experiments.

Table 5.1

Summary of the Results of Second Round Experiments

Criteria

T
im

e
d

if
fe

re
n

c
e

in

p
ro

ce
ss

 o
f

im
p

le
m

en
ta

ti
o
n

(%
)

T
im

e
d

if
fe

re
n

c
e

o
f

re
g
u

la
r

m
a
in

te
n

a
n

ce

(%
)

T
im

e
d

if
fe

re
n

c
e

o
f

co
m

m
o
n

 m
a
in

te
n

a
n

ce

 (
%

)

E
rr

o
n

eo
u

s
b

u
il

d
s

d
if

fe
re

n
c
e

(%
)

C
o
m

m
o
n

 n
u

m
b

er

d
if

fe
re

n
c
e

o
f

b
u

il
d

 (
%

)

–9 –20 8 –33 –2

–90 –7 –1 –20 –39

–41 –25 –3 –67 –2

–89 –50 –49 –70 3

–96 0 5 –57 2

39

Thanks to improvements in the EAF methodology, the implementation time of process has

been significantly reduced. The average grade of implementing the processes for time reduction

in all five projects is 65 percent, which is a very good indicator, considering that initially the

Solution Database is empty. Figure 5.1 shows the schedule, in which the time difference

between the introduction the first and second experiment round is compared.

Fig. 5.2. Time comparison of process implementation for two iterations.

Analyzing the results of second round experiments, the following benefits of the EDF

methodology have been detected:

 Introducing the EAF methodology in the mentioned five projects, the configuration

management automation implementation time decreased by an average of 65 percent.

This shows the tendency, that the use of an existing automation solution really allows

significantly reducing the introduction of automation into new projects.

 EAF methodology helps to release the project from manual operations in configuration

management process maintenance. Thanks to the methodological principles of

configuration management executable source code, manual operations are no longer

made. Experiment shows that in the project with a relatively low degree of automation,

the EAF methodology significantly improves it.

The EAF methodology in experimental projects has reduced the number of erroneous builds

by 49 percent. The experiments has shown that thanks to the smart error handling and automated

tool mutual integration, the number of erroneous builds in the project decreases. Thanks to the

Solution Choice Module complete restructuring the number of erroneous builds is even about

10 % less. This tendency demonstrates storage of the re–used source code for configuration

management automation.

The improved version of the EAF methodology and results of experiments of second

iteration have been published in the scientific paper [BAR 2015a].

6

-23

-58

-11

-46

-9

-90

-41

-89
-96

-120

-100

-80

-60

-40

-20

0

20

1 2 3 4 5

D
if

fe
re

n
ce

 o
f

im
p

le
m

en
ta

ti
o

n
 t

im
e

(%
)

Projects

Difference of two iterations of experiments

First iteration Second iteration

40

THE MAIN RESEARCH RESULTS, CONCLUSIONS AND FURTHER

RESEARCH

The aim of the Thesis has been to develop the Model–Driven approach and methodology for

configuration management process automation implementation, which would allow reducing

the time of the introduction of automation and improving the quality automation process. To

achieve the aim, the following steps have been made:

 The existing solutions and approaches to the automation of configuration management

process have been examined.

 The main benefits and disadvantages in the latest configuration management

automation solutions have been identified.

 An approach and methodology for automation of configuration management process

have been developed.

 A prototype for automation of new methodology implementation has been developed.

 Criteria for new methodology evaluation have been developed.

 Configuration management automation in software development projects have been

implemented and following the developed criteria methodology benefits and

drawbacks have been defined.

 The improved version of methodology has been developedthat eliminates

shortcomings identified as a result of experiment .

 Experiments have been repeated and practical evidence has been gained that the

improved version of methodology has removed initially identified deficiencies.

Within this Thesis the methodology has been developed and all new models have

experimentally been analyzed in order to verify the hypotheses. Experimental results have

shown the following:

 The first hypothesis has demonstrated the comparison of configuration management

automation implementation time using the old methods, when existing solutions have

not been re–used. Results of experiments have shown the tendency that using the EAF

methodology can implement automation approximately twice as fast. In experiments

average was 65 %.

 The second hypothesis has proven by comparing with each other configuration

management automation timing of introduction after a new methodology for different

projects. Experiments have shown that, initially, when the existing solution database

is empty and all the solutions have to be constructed from zero, the gain is only 9

percent. In turn, the longer the solutions exist in the database and develop, then they

become more stable and automation implementation time decreases. In the last project,

in which automation has been implemented, the implementation time decreased by 96

percent compared with the introduction without EAF Model–Driven approach.

While analyzing literature, working with different tools for solving tasks of configuration

management and developing a new methodology, it has been concluded:

 Nowadays, the configuration management processes are often incompletely defined,

emphasizing only some of the tasks, which are mentioned by industry experts, quality

standards and scientific studies.

 Another tendency noticed by the author of this Thesis is that the configuration

management tends to be regarded simply as a set of tools. Sometimes the industry

professionals believe that installing the tools, processes can be considered introduced

and they no longer have to worry about them.

 This position has led to losses not only for projects in Latvia but also around the world.

No matter what tools are used in the project, it is important to choose the effective tool

41

implementing methodology, which could effectively choose, configure tools, as well

as make recommendations performing configuration management process activities.

Results of the research have been used in research projects and in one RTU Course “Applied

Computer Software” in the study process:

 The execution of the project by the Latvian Council of Science “The Development of

Models and Methods for Constructive Intellectual Software Based on Dispersive

Artificial Intellect, Knowledge Management and Progressive Web Technologies” (

Prof. J. Grundspenkis); The development of Model–Driven software management

methods.

 The European Commission’s 7th FP project eINTERASIA “ICT Transfer Concept for

Adaptation, Dissementation and Local Exploitation of European Research Results in

Central Asia’s Countries”, 2013–2015 (project coordinator — prof. Leonid Novitsky);

The development of manegements models in software framework.

 The study course “Applied Computer Software”. Learning tool has been developed

(subject “Applied Computer Software” / L. Novitsky, V. Kotov, A. Lesovskis A.

Bartusevičs, RTU, 2012. – 67 p.; Section: Applied Software Configuration

Management).

 National research project VVP Y8089 “Cyber Physical Systems, Ontologies and

Biofotonita for Safe and Easy City and the Public (since 2014) — Software

Configuration Management”.

Further development directions of the Doctoral Thesis:

 Environment initial installation process formalization. Currently, the EAF

methodology requires that all environments have already been established. However,

actually, at the very beginning of software development project environments are

created from zero: the operating system, application servers, databases, configures

firewalls and so on are installed.

 The EAF methodology compliance should be accessed for the most popular quality

standards and guidelines, such as CMMI, ISO, ITIL, etc.

 One more model should be developed that would allow automatically generating a

configuration management plan from the PEM, PSAM and CM models.

BIBLIOGRAPHY

[ABO 2014] About CMMI Institute. 2014. [ONLINE] Available at:

http://whatis.cmmiinstitute.com/about–cmmi–institute. [Apskatīts 02

Septembrī 2014].

[AIE 2010] Aiello, R. Configuration Management Best Practices: Practical Methods that

Work in the Real World (1st ed.). Addison–Wesley, 2010.

[ALT 2008] Altmanninger K. Models in conflict – towards a semantically enhanced

version control system for models. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 2008;5002 LNCS:293–304.

[ALT 2010] Bruce Altner, Brett Lewinski. A Roadmap to Continuous Integration.

Proceedings of the 2010 IT Summit, NASA, 2010.

[ASN 2010] Asnina, E. & Osis, J. 2010, "Computation independent models: Bridging

problem and solution domains", Proceedings of the 2nd International

Workshop on Model–Driven Architecture and Modelling Theory–Driven

42

Development, MDA and MTDD 2010, in Conjunction with ENASE 2010,

pp. 23.

[AZO 2008] Azoff M., The Benefits of Model Driven Development. MDD in Modern

Web–based Systems, Published March, Butler Direct Limited, 2008.

[AZO 2014] Azoff, R., DevOps: Advances in Release Management and Automation.

[ONLINE] Available at: http://electric–cloud.com/wp–

content/uploads/2014/06/EC–IAR_Ovum–DevOps.pdf [Apskatīts

20 Oktobrī 2014].

[BAM 1995] Bamford, R., 1995. Configuration Management and ISO 9001. Software

Systems Quality Consulting, DO–25 V6, 7., 1995.

[BAR 2012a] Bartusevics A., Kotovs V., Novickis L. A Method for Effective Reuse–

Oriented Software Release Configuration and Its Application in Insurance

Area. Proceedings of Riga Technical University „Information Tehnology

and Management Science”, 15th series, RTU Publishing, 2012, Riga, Latvia,

pp. 111–115.

[BAR 2012b] Bartusevics A., Kotovs V. Towards the effective reuse–oriented release

configuration process. Proceedings of the 5–th International Scientific

Conference „Applied Information and Communication Tehnologies”, 2012,

Jelgava, Latvia, pp. 99–103.

[BAR 2013] Bartusevics A., AMethodology for Model–Driven Software Configuration

Management Implementation and Support. Proceedings of the 6th

International Scientific Conference „Applied Information and

Communication Tehnologies”, 2013, Jelgava, Latvia, pp. 252–258.

[BAR 2014a] Bartusevičs, A., Novickis, L. Model–Driven Software Configuration

management and Environment Model. No: Recent Advances in Electrical

and Electronic Engineering. Proceedings of the 3rd International Conference

on Systems, Communications, Computers and Applications (CSCCA"14),

Itālija, Florence, 22.–24. novembris, 2014. Italy: WSEAS Press, 2014, 132.–

140. lpp. ISBN 978–960–474–399–5. ISSN 1790–5117.

[BAR 2014b] Bartusevičs, A., Novickis, L., Leye, S. Implementation of Software

Configuration Management Process by Models: Practical Experiments and

Learned Lessons. Applied Computer Systems. Nr.16, 2014, 26.–

32. lpp. ISSN 2255–8683. e–ISSN 2255–8691. Pieejams: doi:10.1515/acss–

2014–0010

[BAR 2014c] Bartusevičs, A., Novickis, L. Models for Implementation of Software

Configuration Management. No: Procedia Computer Science. Valmiera,

Latvia: 2014, 3.–10. lpp.

[BAR 2014d] Bartusevičs, A., Lesovskis, A., Novickis, L. Model–Driven Software

Configuration Management and Semantic Web in Applied Software

Development. Proceedings of the 13th International Conference on

Telecommunications and Informatics (TELE–INFO '14), IIstanbul, Turkey

December 15–17, 2014.

[BAR 2014e] Bartusevičs, A., Novickis, L. Towards the Model–driven Software

Configuration Management Process. Information Technology and

Management Science. Nr.17, 2014, 32.–38. lpp. ISSN 2255–9086. e–ISSN

2255–9094.

[BAR 2014f] Bartusevics Arturs, Leonids Novickis and Eberhard Bluemel. 2014.

Intellectual Model–Based Configuration Management Conception. Applied

Computer Systems. 15(1): 5–41. Retrieved 28 Nov. 2014, from

doi:10.2478/acss–2014–0003

43

[BAR 2015] Bartusevičs, A., Novickis, L. Model–based Approach for Implementation of

Software Configuration Management Process. No: MODELSWARD 2015:

Proceedings of the 3rd International Conference on Model–Driven

Engineering and Software Development, Francija, Angers, 9.–11. februāris,

2015. Lisbon: SciTePress, 2015, 177.–184. lpp. ISBN 978–989–758–083–

3.

[BAR 2015a] Bartusevičs, A., Lesovskis, A., Novickis, L. Semantic Web Technologies

and Model–Driven Approach for the Development and Configuration

Management of Intelligent Web–Based Systems. No: Proceedings of the

2015 International Conference on Circuits, Systems, Signal Processing,

Communications and Computers, Austrija, Vienna, 15.–17. marts, 2015.

Vienna: 2015, 32.–39. lpp. ISBN 978–1–61804–285–9. ISSN 1790–5117.

[BEL 2005] Bellagio, M. What Is Software Configuration Management? Internet

http://ptgmedia.pearsoncmg.com/images/0321200195/samplechapter/bella

gio_ch01.pdf, 2005.

[BER 2003] Berczuk, Appleton. Software Configuration Management Patterns:

Effective TeamWork, Practical Integration (1st ed.). Addison–Wesley, 2003.

[BER 2011] Berziša, S. & Grabis, J. 2011, "Combining project requirements and

knowledge in configuration of project management information systems",

ACM International Conference Proceeding Series, pp. 89.

[BER 2012] Bērziša, Solvita. Application of Knowledge and Best Practices in

Configuration of Project Management Information Systems : promocijas

darbs / S.Bērziša ; zinātniskais vadītājs J.Grabis ; Rīgas Tehniskā

universitāte. DATORZINĀTNES UN INFORMĀCIJAS TEHNOLOĢIJAS

FAKULTĀTE. Informācijas tehnoloģijas institūts. Vadības informācijas

tehnoloģijas katedra. Rīga : [RTU], 2012. 196 pp.

[BIL 2014] Bill Chamberlin's HorizonWatching. 2014. Top 18 Trends in Application

Software Development for 2014. [ONLINE] Available at:

http://www.billchamberlin.com/top–18–trends–in–application–software–

development–for–2014/. [Apskatīts 20 Oktobrī 2014].

[BRA 2008] Bastian Braun. SAVE – Static Analysis on Versioning Entities. ICSE:

International Conference on Software Engineering, 2008.

[BRO 2002] Brouse, Peggy S. Configuration Management Interenet:

http://www.eolss.net/Sample–Chapters/C15/E1–28–03–02.pdf , 2002.

[BRO 2005] A. B. Brown, A. Keller, and J. L. Hellerstein, A model of configuration

complexity and its application to a change management system, IFIP/IEEE

International Symposium, Integrated Network Management, pp. 631– 644,

2005.

[BRU 2004] Brugge, B., Dutoit, A. Software Configuration Management. Internet

https://files.ifi.uzh.ch/rerg/amadeus/teaching/courses/software_engineering

_hs08/folien/Kapitel_23_Addendum_SCM.pdf, 2004.

[BUC 2009] Buchmann T., Dotor A., Westfechtel B. MODEL–DRIVEN

DEVELOPMENT OF SOFTWARE CONFIGURATION MANAGEMENT

SYSTEMS. ICSOFT 2009 – 4th International Conference on Software and

Data Technologies 2009.

[BUS 2011] Bushehrian O., Automatic object deployment for software performance

enhancement. The Institution of Engineering and Technology 2011, Vol. 5,

Iss. 4, pp. 375–384, 2011.

44

[CAL 2012] Calhau R., Falbo R. A Configuration Management Task Ontology for

Semantic Integration. Proceedings of the 27th Annual ACM Symposium on

Applied Computing Pages 348–353 ACM New York, NY, USA, 2012.

[CLE 2012] Clemencic M., Mato P., A CMake–based build and configuration

framework. Journal of Physics: Conference Series 396 (2012) 052021, 2012.

[CMC 2014] CMCrossroads | Three Major Trends in Software Release Management You

Should Adopt . 2014. [ONLINE] Available at:

http://www.cmcrossroads.com/article/three–major–trends–software–

release–management–you–should–adopt. [Apskatīts 20 Oktobrī 2014].

[COM 2011] Comas J., Mostashari A., Mansouri M., Turner R. A Software Deployment

Risk Assessment Heuristic for Use in a Rapidly–Changing Business–to–

Consumer Web Environment International Journal of Software Engineering

and Its Applications Vol. 5 No. 4, October, 2011.

[CON 2002] Configuration Management Training. Section 1: Explaining Configuration

Management, EESA, 2002. Internet:

http://esamultimedia.esa.int/docs/industry/SME/Configuration/Section_1–

CM.pdf

[CON 2015] The Convergence of DevOps « IT Revolution IT Revolution. [ONLINE]

Available at: http://itrevolution.com/the–convergence–of–devops/.

[Apskatīts 28 Janvārī 2015].

[CRA 2008] Cravino P., Enterprise Software Configuration Management Solutions for

Distributed and System z. 1st ed. USA: Redbooks. 2008.

[DAR 2001] Dart, S. Concepts in Configuration Management Systems. Internet

http://sceweb.uhcl.edu/boetticher/swen5230/concepts–in–configuration–

management.pdf, 2001.

[DEP 2010] Department of Defense, USA Military Handbook. Configuration

management guidance (rev. A) (MIL–HDBK–61A). Retrieved January 5,

2010, from http://www.everyspec.com/MIL–HDBK/MIL–HDBK–0001–

0099/MIL–HDBK–61_11531/

[DEV 2014] DevOps Implementation | Giga Promoters. 2014. [ONLINE] Available at:

http://gigapromoters.com/offerings/services/it–services/devops–

implementation/. [Apskatīts 10 Novembrī 2014].

[DOD 2014] Do DevOps tools really exist?. 2014. Do DevOps tools really exist?.

[ONLINE] Available at: http://www.scriptrock.com/blog/devops–tools–

exist. [Apskatīts 11 Novembrī 2014].

[DON 2011] Doniņš Uldis. Topoloģiskā biznesa sistēmu modelēšana un programmatūras

sistēmu projektēšana. Metodiskais līdzeklis. RTU Izdevniecība. Rīga 2011.

[EIL 2006] T. Eilam, M. H. Kalantar, A. V. Konstantinou, G. Pacifici, and J. Pershing,

“Managing the Configuration Complexity of Distributed Applications in

Internet Data Centers,” IEEE Communications Magazine, vol. 44, pp. 166–

177, 2006.

[EST 2013] Estler, H.–Christian, Unifying Configuration Management with Merge

Conflict Detection and Awareness Systems. In 22nd Australian Conference

on Software Engineering. Austalia, 4–7 June 2013. Austalia: IEEE. 201–

210.

[FIT 2014] Fitzgerald B., Stol J., Continuous software engineering and beyond: trends

and challenges. Proceeding in RCoSE 2014 Proceedings of the 1st

International Workshop on Rapid Continuous Software Engineering, Pages

1–9. ACM New York, NY, USA, 2014.

45

[FUG 2014] Fuggetta A., Nitto E., Software process. Proceeding in FOSE 2014

Proceedings of the on Future of Software Engineering, Pages 1–12, ACM

New York, NY, USA, 2014.

[GAL 2009] Galup, S. D., Dattero, R., Quan, J.J., Conger, S., An Overview of IT Service

Management. Commun. ACM, 2009, vol. 52, no. 5, pp. 124–127., 2009.

[GHE 2012] Giacomo Ghezzi, Michael Würsch, Emanuel Giger, Harald Gall. An

Architectural Blueprint for a Pluggable Version Control System for

Software (Evolution) Analysis, In: 2nd Workshop on Developing Tools as

Plug–ins, Zurich, 03 June 2012 – 03 June 2012.

[GIE 2009] Giese Holger, Seibel Andreas, Vogel Thomas. A Model–Driven

Configuration Management System for Advanced IT Service Management.

Available at:

http://www.hpi.unipotsdam.de/giese/gforge/publications/pdf/GSV–

MRT09_paper_7.pdf, 2009.

[GLO 2012] IT Glossary. Defining The IT Industry. SCM Software Configuration

Management. Internet http://www.gartner.com/it–glossary/scm–software–

configuration–management/, 2012.

[GRO 2007] H. Gronniger, H. Krahn, B. Rumpe, M. Schindler, and S. Volkel. Textbased

Modeling. In 4th International Workshop on Software Language

Engineering, 2007.

[GUO 2005] Guozheng Ge, E., Whitehead, Jr. Automatic Generation of Rule–based

Software Configuration Management Systems. ICSE'05, May 15–21, 2005,

St. Louis, Missouri, USA.

[HAG 2010] Hagen, S., Kemper, A., Model–Based Planning for State–Related Changes

to Infrastructure and Software as a Service Instances in Large Data Centers.

Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on,

On page(s): 11–18, Volume: Issue: , 5–10 July 2010

[HAT 2012] Hideaki Hata, Osamu Mizuno, Tohru Kikuno. Bug Prediction Based on

Fine–Grained Module Histories. ICSE: International Conference on

Software Engineering, Feb2012, p200–210.

[HIS 2014] History of software configuration management – Wikipedia, the free

encyclopedia. 2014. [ONLINE] Available at:

http://en.wikipedia.org/wiki/History_of_software_configuration_managem

ent. [Apskatīts 05 Novembrī 2014].

[HIST 2014] A History of Version Control. [ONLINE] Available at:

http://ericsink.com/vcbe/html/history_of_version_control.html. [Apskatīts

11 Novembrī 2014].

[HUA 2009] Shi–Ming Huang, Chih–Fong Tsai, Po–Chun Huang. Component–based

software version management based on a Component–Interface Dependency

Matrix, The Journal of Systems and Software, 2009.

[JIA 2009] Jiang, L., Eberlein, A., An Analysis of the History of Classical Software

Development and Agile Development. Proceedings of the 2009 IEEE

International Conference on Systems, Man, and Cybernetics San Antonio,

TX, USA – October 2009.

[JOH 2011] Johnsen E., Schlatte R. Integrating Aspects of Software Deployment in

High–Level Executable Models, presented at the NIK–2011 conference,

2011.

[JUI 2002] Juite Wanga, Yung–I Lin, A fuzzy multicriteria group decision making

approach to select configuration items for software development.

MathematicsWEB, Fuzzy Sets and Systems, 2002.

46

[KAN 2005] Ronald Kirk Kandt. Configuration Management Principles and Practices. Jet

Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91 109, USA

Internet: http://trs–new.jpl.nasa.gov/dspace/bitstream/2014/10507/1/02–

2525.pdf , 2005.

[KAP 2008] Kapitza R, Baumann P, Reiser HP. Using object replication for building a

dependable version control system. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 2008;5053 LNCS:86–99.

[KAR 2009] G. Karsai, H. Krahn, C. Pinkernell. Design Guidelines for Domain Specific

Languages. Proceedings of the 9th OOPSLA Workshop on Domain–Specific

Modeling DSM'09, page 7–13., 2009.

[KEL 2008] S. Kelly and J.–P. Tolvanen. Domain–Specific Modeling: Enabling Full

Code Generation. Wiley, 2008.

[KR 2014] Krusche S., Alperowitz L., Introduction of continuous delivery in multi–

customer project courses. Proceeding in ICSE Companion 2014 Companion

Proceedings of the 36th International Conference on Software Engineering,

Pages 335–343. ACM New York, NY, USA, 2014.

[LAV 2011] Jannik Laval, Simon Denier, Stéphane Ducasse, Jean–Rémy Falleri.

Supporting simultaneous versions for software evolution assessment.

Science of Computer Programming, 2011.

[LES 2014] Lesson 11: Devops & Configuration Management Intro — OSU DevOps

Bootcamp 0.0.1 documentation. 2014. [ONLINE] Available at:

http://devopsbootcamp.readthedocs.org/en/latest/11_devops.html.

[Apskatīts 10 Novembrī 2014].

[LI 2012] Jingyue Li, Michael D. Ernst. CBCD: Cloned Buggy Code Detector. ICSE:

International Conference on Software Engineering, Feb2012, p310–320.

[MAL 2012] Malek S. An Extensible Framework for Improving a Distributed Software

System’s Deployment Architecture. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY

2012.

[MEL 2006] Mellon, K. A Framework for Software Product Line Practice, Version 5.0.

Internet:

http://www.sei.cmu.edu/productlines/frame_report/config.man.htm, 2006.

[MER 2005] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop

domain–specific languages. Technical Report SEN–E0309, Centrum voor

Wiskunde en Informatica, Amsterdam, 2005.

[MET 2002] Anne Mette Jonassen Hass. Configuration Management Principles and

Practice, Addison–Wesley Professional. Part of the Agile Software

Development Series series, 2002, pages 432.

[MUR 2008] Leonardo Murta, Chessman Correa, Joao Gustavo Prudencio. Towards

Odyssey–VCS 2: Improvements over a UML–based Version Control

System. ICSE: International Conference on Software Engineering, 2008.

[NIK 2008] Nikulsins, V. & Nikiforova, O. 2008, "Adapting software development

process towards the model driven architecture", Proceedings – The 3rd

International Conference on Software Engineering Advances, ICSEA 2008,

Includes ENTISY 2008: International Workshop on Enterprise Information

Systems, pp. 394.

[NIK 2009] Nikiforova, O., Cernickins, A. & Pavlova, N. 2009, "Discussing the

difference between model driven architecture and model driven

development in the context of supporting tools the projection of two–

47

hemisphere model into the component model of MDA/MDD", 4th

International Conference on Software Engineering Advances, ICSEA 2009,

Includes SEDES 2009: Simposio para Estudantes de Doutoramento em

Engenharia de Software, pp. 446.

[OPE 2014] OpenMake Products. [ONLINE] Available at:

http://www.openmakesoftware.com/build–management. [Apskatīts 22

Novembrī 2014].

[OSE 2002] Oject–Oriented Software Engineering Using UML, Patters and JAVA

“Software Configuration Management” Internet:

http://www.bilkent.edu.tr/~bakporay/cs_413/Bruegge_L28_Configuration

Management_ch12lect1.ppt , 2002

[OSI 2008] Osis, J., Asnina, E. & Grave, A. 2008, Formal problem domain modeling

within MDA. Proceedings of the 2nd International Conference on Software

and Data Technologies, ICSOFT 2007; Barcelona; Spain; Volume 22 CCIS,

2008, Pages 387–398.

[OSI 2010] Osis, J. & Donins, U. 2010, "Platform independent model development by

means of topological class diagrams", Proceedings of the 2nd International

Workshop on Model–Driven Architecture and Modelling Theory–Driven

Development, MDA and MTDD 2010, in Conjunction with ENASE 2010,

pp. 13.

[OSI 2011] Osis J., Asnina E. Model–Driven Domain Analysis and Software

Development: Architectures and Functions. IGI Global, Hershey – New

York, 2011, 514 p.

[PAI 1999] R. Paige, J. Ostroff, and P. Brooke. Principles for Modeling Language

Design. Technical Report CS–1999–08, York University, December 1999.

[PAU 2007] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration:

Improving Software Quality and Reducing Risk. (1st ed.). Addison–Wesley

Professional, 2007.

[PFA 1997] P. Pfahler and U. Kastens. Language Design and Implementation by

Selection. In Proc. 1st ACM–SIGPLAN Workshop on Domain–Specific–

Languages, DSL ’97, pages 97–108, Paris, France, January 1997. Technical

Report, University of Illinois at Urbana–Champaign.

[PIN 2009] Pindhofer Walter, Model Driven Configuration Management. Master work

of Wien University, Wien, 2009.

[RAG 2014] Ragan, T., 21st–Century DevOps––an End to the 20th–Century Practice of

Writing Static Build and Deploy Scripts, Linux Journal, 230, pp. 116–120,

Computers & Applied Sciences Complete, EBSCOhost, viewed 22 October

2014.

[RAZ 2007] Saad Razzaq, Fahad Maqbool, Bilal Anjum. The Challenges & Case for

Mining Software Repositories. International MultiConference of Engineers

and Computer Scientists, 2007.

[ROS 2010] Alessandro Rossini, Adrian Rutle, Yngve Lamo, UweWolter. A

formalisation of the copy–modify–merge approach to version control in

MDE. The Journal of Logic and Algebraic Programming, 2010.

[RUA 2003] Ruan Li, Zhong Yong, A New Configuration Management Model for

Software Based on Distributed Components and Layered Architecture.

Parallel and Distributed Computing, Applications and Technologies, 2003.

PDCAT'2003. 27–29 Aug. 2003.

[SAR 2008] Anita Sarma, David Redmiles, André van der Hoek. Empirical evidence of

the benefits of workspace awareness in software configuration management.

48

Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of software engineering, 2008

[SAT 2011] Laika Satish, Identifying the Dissimilarities based on Working of Programs

among Versions in DVCS (Distributed Version Control Systems).

International Journal of Computer Applications (0975 – 8887) Volume 36–

No.6, December 2011.

[SCH 2010] Holger Schackmann, Horst Lichter. Process assessment by evaluating

configuration and change request management systems. Proceedings of the

Warm Up Workshop for ACM/IEEE ICSE 2010

[SCM 2001] Software Configuration Management Internet:

http://dogbert.mse.cs.cmu.edu/charlatans/References/Configuration%20Ma

nagement/0130912972.pdf 2001.

[SEK 2012] Atsuji Sekiguchi, Kuniaki Shimada, Yuji Wada, Akio Ooba, Ryouji

Yoshimi, Akiko Matsumoto. Configuration management technology using

tree structures of ICT systems. Proceedings of the 15th Communications and

Networking Simulation Symposium Publisher: Society for Computer

Simulation International, 2012

[SER 2014] Serena Deployment Automation Overview. Serena Deployment Automation

Overview. [ONLINE] Available at:

http://www.serena.com/index.php/en/products/featured–products/serena–

deployment–automation/overview/. [Apskatīts 22 Novembrī 2014].

[SHI 2010] Shih C., Huang S. Exploring the relationship between organizational culture

and software process improvement deployment, Information &

Management 47 (2010) 271–281p., 2010.

[SIN 2008] Sindhuja P. N., Surajit Ghosh Dastidar. Software Deployment: Concepts and

Technologies. ICFAI Journal of Systems Management, 2008.

[SIN 2010] Sinan Si Alhir. Understanding the Model Driven Architecture (MDA).

Available at: http://www.methodsandtools.com/archive/archive.php?id=5,

2010.

[SIY 2008] Harvey Siy, Parvathi Chundi, Daniel J. Rosenkrantz, Mahadevan

Subramaniam. A segmentation–based approach for temporal analysis of

software version repositories. Jornal of Software Maintenance and

Evolution: Research and Practice, 2008.

[SOF 2014] Software configuration management – Wikipedia, the free encyclopedia.

2014. [ONLINE] Available at:

http://en.wikipedia.org/wiki/Software_configuration_management.

[Apskatīts 05 Novembrī 2014].

[STA 2008] Glen Stansberry. 7 Version Control Systems Reviewed. At

http://www.smashingmagazine.com/2008/09/18/the–top–7–open–source–

version–control–systems/, 2008.

[TAK 2014] Taking Release Management to the Next Level. 2014. [ONLINE] Available

at: http://www.slideshare.net/xebialabs/taking–

releasemanagementtothenextlevel. [Apskatīts 20 Oktobrī 2014].

[TAR 2011] Alexander Tarvo, Thomas Zimmermann, Jacek Czerwonka. An integration

resolution algorithm for mining multiple branches in version control

systems. IEEE international conference on software maintenance, ICSM;

2011. 402 p.

[THA 2009] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al–

Kofahi, Tien N. Nguyen. Clone–Aware Configuration Management. ASE

49

'09: Proceedings of the 2009 IEEE/ACM International Conference on

Automated Software Engineering, 2009.

[TOL 2005] J. Tolvanen, S Kelly. Defining Domain–Specific Modeling Languages to

Automate Product Derivation: Collected Experiences. Proceeding SPLC'05

Proceedings of the 9th international conference on Software Product Lines

Pages 198–209. 2005.

[TRE 2014] Trends in Software Engineering – Dice News. 2014. [ONLINE] Available

at: http://news.dice.com/software–engineering–talent–community/trends/.

[Apskatīts 20 Oktobrī 2014].

[VAC 2006] VACCAPERNA Systems Limited. Software Configuration Management

(SCM). Internet http://www.vaccaperna.co.uk/scm/about_scm.html, 2006.

[VAS 2013] Vasiljevics, I., Milosavljevics, G., Dejanovics, I., Filipovics, M.,

COMPARISON OF GRAFICAL DSL EDITORS. The 6th PSU–UNS

International Conference on Engineering and Technology (ICET–2013),

Novi Sad, Serbia, May 15–17, 2013.

[WET 2012] Wettinger J., Concepts for Integrating DevOps Methodologies with Model–

Driven Cloud Management Based on TOSCA. Institute of Architecture of

Application Systems University of Stuttgart, 2012.

[WHA 2014] What Are Current Hot Trends In The Field Of Software Engineering?. 2014.

[ONLINE] Available at: http://bloggless.com/it/software–

engineering/what–is–currently–popular–in–software–engineering/.

[Apskatīts 20 Oktobrī 2014].

[WIL 2003] D. Wile. Lessons Learned from Real DSL Experiments. Proceedings of the

36th Hawaii International Conference on System Sciences, 2003.

[WIL 2004] D. Wile. Lessons learned from real DSL experiments. Science of Computer

Programming, 51(3):265–290, June 2004.

[WES 2005] Westfechtel, B., Conradi, R. Software Architecture and Software

Configuration Management Internet

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.3085&rep=re

p1&type=pdf, 2005.

[ЗАМ 2008] Заметки о Software Configuration Management. Управление

конфигурацией программного обеспечения. Интернет: http://scm–

notes.blogspot.com/p/scm–books.html, 2008.

[ЛАП 2004] Лапыгин, Д. Новичков, А. Конфигурационное управление проектами

разработки программного обеспечения. Интернет:

http://citforum.ru/SE/quality/configuration_management/, 2004.

[ОРЛ 2011] Орлик, С. Программная инженерия. Конфигурационное управление

Перевод главы из SWEBOK с комментариями. Архивировано из

первоисточника 14 марта 2012. Проверено 18 июня 2011.

[УДО 2011] Удовиченко, Ю. Управление изменениями и кессонная болезнь

проектов. Интернет: http://experience.openquality.ru/software–

configuration–management/, 2011.

