PORE DISTRIBUTION AND WATER UPTAKE IN A CENOSPHERE-CEMENT PASTE COMPOSITE MATERIAL

JANIS BARONINS¹, JANINA SETINA², GENADIJS SAHMEMKO³, SANTA LAGZDINA⁴, ANDREI SHISHKIN⁵

¹ Department of Materials Engineering, Tallinn University of Technology, Tallinn, Estonia
² Institute of Silicate Materials, Riga Technical University, Riga, Latvia
³ Institute of Materials and Structures, Riga Technical University, Riga, Latvia
⁴ Testing Laboratory of Silicate Materials, Riga Technical University, Riga, Latvia
⁵ Laboratory of Powder Materials, Riga Technical University, Riga, Latvia

E-mail: genadijs.sahmenko@rtu.lv

The application of alumina silicate cenospheres (CS) is one of the discussed topics nowadays. As a significant waste material from power plants using coal, CS should be utilized in other industries to avoid the pollution of nature with ashes. The use of CS as Portland cement replacement material can control physical and mechanical properties and make a product lighter and cost-effective. In the frame of this study Portland cement paste samples were produced by adding CS in the range of concentration from 0 to 40 volume %. The water uptake of hardened samples was checked and pore size distribution by using the mercury porosimetry was determined. In cold climate where the temperature is often below 0 °C, it is important to avoid the amount of micrometer sized pores in the final structure and to decrease water absorption capacity of the material. In winter conditions water is filling such pores and causing additional stress to their walls when expanding while freezing. It was found that generally water uptake capacity for cement paste samples decreased up to 20 % by increasing the concentration of CS up to 40 volume %, at the same time the volume of micrometer sized opened pores increases.

ACKNOWLEDGEMENT

The research leading to these results has received the funding from Latvia state research programme under grant agreement “INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH”.

imateh
2nd International Conference

Innovative Materials, Structures and Technologies

Organised by the Faculty of Civil Engineering

Riga, Latvia, 30 September – 2 October 2015

Book of Abstracts

RTU PRESS
Riga – 2015
Chairman of Conference Scientific Committee
Sandris Rucevskis, Riga Technical University (Latvia)

Members of Conference Scientific Committee
Andrus Aavik, Tallinn University of Technology (Estonia)
Hakim Abdelgader, Tripoli University (Libya)
Diana Bajare, Riga Technical University (Latvia)
Kaspars Bondars, Riga Technical University (Latvia)
Andris Chate, Riga Technical University (Latvia)
Donatas Cigas, Vilnius Gediminas Technical University (Lithuania)
Nele De Belie, Ghent University (Belgium)
Raimonds Eizensmits, Chairman of the Board, Latvian Association of Consulting Engineers (Latvia)
Gregor Fischer, Technical University of Denmark (Denmark)
Boriss Gjunsburgs, Riga Technical University (Latvia)
Reiner Jager, Hochschule Karlsruhe (HfKA) (Germany)
Talis Juhna, Riga Technical University (Latvia)
Thomas Hanak, Brno University of Technology (Czech Republic)
Viktors Haritonovs, Riga Technical University (Latvia)
Aleksander Kozlowski, Rzeszow University of Technology (Poland)
Gintaras Kaklauskas, Vilnius Gediminas Technical University (Lithuania)
Miroslav Komljenovic, University of Belgrade (Serbia)
Aleksandrs Korjakins, Riga Technical University (Latvia)
Jana Korytárová, Brno University of Technology (Czech Republic)
Jarek Kurnitski, Tallinn University of Technology (Estonia)
Joao Labrincha, University of Aveiro (Portugal)
Stephen O. Ekolu, University of Johannesburg (South Africa)
Ainars Paeglitis, Riga Technical University (Latvia)
Lonbids Pakrastins, Riga Technical University (Latvia)
Ina Pundiene, Vilnius Gediminas Technical University (Lithuania)
Karlis Rocsens, Riga Technical University (Latvia)
Dimitris Serdjus, Riga Technical University (Latvia)
Juris Smirnovs, Riga Technical University (Latvia)
Genadijs Sahmenko, Riga Technical University (Latvia)
Renars Spade, Ministry of Economics (Latvia)
Rimvydas Stonys, Vilnius Gediminas Technical University (Lithuania)
Sigita Tamulevicius, Kaunas University of Technology (Lithuania)
Ralejs Tepfers, Chalmers University of Technology (Sweden)
Nikolay Vatin, Saint-Petersburg State Polytechnical University (Russia)
Viktorija Volkova, Dnepropetrovsk State Higher Educational Institution “National Mining University” (Ukraine)
Miroslaw Wesolowski, Koszalin University of Technology (Poland)
TABLE OF CONTENTS

EFFECT OF SILICA FUME ON TWO-STAGE CONCRETE STRENGTH 14
Abdelgader H., El-Baden A.

FINITE ELEMENT MODELLING AND ANALYSIS OF CONVENTIONAL
PULTRUSION PROCESSES .. 15
Akishin P., Barkanov E., Bondarchuk A.

FIBRE REINFORCED POLYMERS (FRP) AS REINFORCEMENT FOR
CONCRETE ACCORDING TO GERMAN APPROVALS 17
Alex R.

PREDICTION OF CORROSION RESISTANCE OF CONCRETE
CONTAINING NATURAL POZZOLANS FROM COMPRESSIVE STRENGTH 18
Al-Swaidani A. M., Ismat R., Diyab E., Dib Aliyan S.

COLOURED REACTIONS AND EMISSION OF ELECTRONS TOWARDS
EARLY DIAGNOSTICS OF POLYMER MATERIALS OVERLOADING 19
Aniskevich A., Bulderberga O., Dekhtyar Y., Denisova V., Gruskevica K.,
Juhna T., Kozak I., Romanova M.

FIBRE-REINFORCED ADHESIVE FOR STRUCTURE ANCHORING 20
Barnat J., Bajer M.

USAGE OF ALTERNATIVE, ENVIRONMENTALLY ACCEPTABLE
MATERIALS-EXPERIENCE FROM EASTERN CROATIA 21
Barisic I., Zagvozda M., Dimter S.

PORE DISTRIBUTION AND WATER UPTAKE IN A
CENOSPHERE-CEMENT PASTE COMPOSITE MATERIAL 22
Baronins J., Setina J., Sahmenko G., Lagzdina S., Shishkin A.

THE EFFECTS OF AGGRESSIVE ENVIRONMENTS ON THE PROPERTIES
OF FLY ASH BASED GEOPOLYMER .. 23
Bascarevic Z., Komljenovic M., Nikolic V., Marjanovic N.

EXPERIMENTAL STUDY ON TENSILE CRACK PROPAGATION OF HIGH
STRENGTH CONCRETE .. 25
Baskers B., Sprince A., Pakrastinsh L.

THE RHEOLOGY OF SELF COMPACTING PASTE AND MORTAR
INCORPORATING WASTE LIMESTONE FILLER AND
RECYCLED AGGREGATE ... 26
Borga R. P., Ferrara L., Lysdale C.

STRUCTURAL INVESTIGATION OF ALKALI ACTIVATED CLAY
MINERALS FOR APPLICATION IN WATER TREATMENT SYSTEMS 27
Bumanis G., Bajare D., Dembovska L.