Dzelzceļa vagonu cisternu balsta fasonķepu formas optimizācija

Aleksandrs Januševskis¹, Anatolijs Meļņikovs², Aleksandrs Boiko³ ¹⁻³*Rīgas Tehniskā universitāte*

Kopsavilkums. Šajā darbā ilustrēta autoru piedāvātā formas optimizācijas metodika reālu industriālo objektu - dzelzceļa vagonu cisternu balsta fasonķepu - formas iegūšanai, kas būtiski samazina spriegumu koncentrāciju cisternu stiprināšanas apgabalos. Kā liecina statistiskie dati, plaisu veidošanās tieši šajos apgabalos ir biežākais vagonu cisternu bojājumu iemesls. Formas optimizācijas metodika balstās uz CAD/CAE, eksperimentu plānošanas, aproksimācijas un optimizācijas programmatūru izmantošanu. Fasonķepu forma tiek uzdota ar splaina līkņu atbalsta punktu koordinātām, kas tālāk kalpo par optimizācijas parametriem. Optimizējot pilno GEM modeļu vietā tiek izmantoti augstvērtīgi objekta - cisternvagonu - metamodeļi lokālo polinomiālo aproksimāciju veidā, kas ievērojami samazina skaitļošanas darbietilpību. Darbā dotas konkrētas rekomendācijas fasonķepu formas izveidei.

Atslēgas vārdi: balsta fasonķepa, dzelzceļa cisternu vagoni, eksperimentu plānošana un analīze, formas optimizācija.

I. IEVADS

Uz galīgo elementu analīzi (GEA) balstīta formas optimizācija tiek arvien plašāk izmantota projektēšanas praksē, jo GEA var sekmīgi aizstāt fizikālos eksperimentus visdažādākajās inženiertehniskajās jomās. Konstrukciju topoloģijas un formas optimizācijai parasti tiek izmantotas tā sauktās homogenizācijas metodes [1] dažādas realizācijas. Tomēr reālās konstrukcijās optimizācijas parametru skaits var sasniegt miljonu un pat vairāk, un līdz ar to šī metode kļūst ļoti darbietilpīga. Cietu ķermeņu gadījumā ar to bieži vien tiek iegūtas raupjas, negludas formas, kas tehnoloģiski ir grūti izgatavojamas. Šajā darbā tiek izmantota resursus taupoša formas optimizācijas metodika [2] konkrēta objekta - cisternu balstošo fasonķepu - optimizācijai. Šai pieejā forma tiek ģenerēta kā ģeometriskā robežvirsma, kas tiek definēta ar CAD līkņu palīdzību. Pateicoties CAD/CAE programmatūru un metamodelēšanas metožu attīstībai, iepriekšminētā pieeja pēdējā laikā kļūst arvien efektīvāka un populārāka [3]–[4]. Šajā rakstā tiek detalizēti atainota dzelzceļa vagonu cisternu balsta fasonķepu formas optimizācija.

II. FORMAS OPTIMIZĀCIJAS PROCEDŪRA

Konstrukciju kvalitāte projektēšanas procesā parasti tiek novērtēta, aprēķinot ar GEM to uzvedību pie dažādiem slogojumiem, kas sarežģītu mehānisko objektu gadījumā var būt ļoti darbietilpīgs process. Šajos gadījumos pilno detalizēto modeļu vietā tiek lietoti atbilstoši vienkāršotie metamodeļi. Kā parādīts mūsu darbā [5], ģeometrisko robežu visefektīvākā parametrizācija ir panākama, izmantojot nevienmērīgo racionālo B-splainu (NURBS) daudzstūru atbalsta punktus. Piedāvātās formas optimizācijas procedūras etapi ir doti un detalizēti izskaidroti ar vienkāršiem testa piemēriem darbā [2]. Šī pieeja jau ir sekmīgi izmantota arī dažādu citu reālu mehānisko objektu formas optimizācijai (1. att.).

1. att. Objektu ar optimālo formu ģeometriskie modeļi: a) dobs celtniecības bloks [6]; b) dzelzceļa vagonu mērīšanas sistēmas eliptiskais montāžas disks šķērsgriezumā [7]; c) automobiļa kontroles mērinstrumentu panelis un tā kronšteins [5].

Parādīto objektu komponentes tiek iegūtas, izmantojot tādas CAD programmatūras iezīmes kā "ekstrudēšana" (*extrude*), "rotēšana" (*revolve*), "izvilkšana pa trajektoriju" (*sweep*) un "izvēršana" (*loft*). Iegūstamās formas ir atkarīgas no NURBS līknēm, kuru definēšanai bieži vien vajadzīgs pietiekami mazs uzdodamo atbalsta punktu skaits. Savukārt šo punktu koordinātas kalpo par optimizācijas parametriem. Rezultātā objekta forma tiek efektīvi kontrolēta tikai ar nedaudziem parametriem, kas ir ļoti būtiski veiksmīgai optimizācijai.

III. VAGONU CISTERNU FASONĶEPAS FORMA

Tālāk tiek analizēta šķidrumu transportēšanai paredzētu dzelzceļa vagonu cisternu elementu stiprība un bojājumi. Latvijas dzelzceļa ekspluatācijas apstākļos konstatēti [8] šādi bojājumi (2. att.) un to biežums: plaisas balsta fasonķepu metināto šuvju apvidū – 50 % gadījumu; cisternas bojājumi ratiņu apvidū, kur tā balstās uz gulšņiem – 30 %; cisternas galu metinājumu bojājumi – 15 %; balsta fasonķepu stiprinājumu defekti – 5 %. Līdzīga aina bojājumu sadalījumā ir iegūta arī vagonu cisternām sašķidrinātās gāzes transportēšanai [9] (3. att.). No minētajiem datiem seko, ka ļoti aktuāla ir spriegumstāvokļa uzlabošana tieši cisternu balsta fasonķepu

2. att. Vagona cisternas bojājumu zonas: 1 – apskates lūkas metinājumu šuves;
 2 – fasonķepu metinājumu šuves;
 3 – šķidruma noliešanas ierīces metinājumu šuves;
 4 – gulšņu atbalsta metinājumu šuves;
 5 – cisternas galu metinājumu šuves.

3. att. Vagonu cisternu 903P (gaišie stabiņi) un 15-1407 (tumšie stabiņi) bojājumu statistiskie dati [9]: 1 – fasonķepu metinājumu šuvju plaisas; 5 – gulšņu atbalsta bojājumi; 10 – cisternas galu metinājumu šuvju defekti; 13 – fasonķepu stiprinājumu defekti; 14 – cisternas savilcējstīpu defekti. Pārējie bojājumu punkti attiecas uz vagona rāmi un šeit netiek komentēti.

4. att. Cisternas balsta fasonķepas fotogrāfijas: a) jauna; b) bojāta; c) remontēta, veicot metinājumu šķērsvirzienā.

apgabalā. Šim nolūkam tiek veikta vagona cisternas modeļa 15Ц863 (4. att.) balsta fasonķepu formas optimizācija. Cisterna ir izgatavota no tērauda Bct3, kura tecēšanas spriegums ir 245 MPa un sagrūšanas spriegums $[\sigma] = 390$ MPa. Veidojot aprēķinu modeli, tiek izmantota objekta simetrija. 5. attēlā redzama satīklota puse no cisternas ar fasonķepām bez bojājumiem, un 6. attēlā parādīti sākotnējās konstrukcijas spriegumi, ko galvenokārt rada transportējamā šķidruma hidrauliskais trieciens. Pārējās pieliktās slodzes atbilst normatīvajiem slogojumiem, kas noteikti dokumentā [10] (1. ārkārtējais režīms un transportējamā šķidruma radītais spiediens). Kopsummā pieliktā kvazistatiskā slodze sastāv no piecām komponentēm: 1) iekšējais spiediens, kas rodas hermētiski noslēgtā cisternā - 15 000 N/m²; 2) tāds šķidruma svara radītais spiediens uz cisternu, kas aprakstīts ar lineāru sakarību y*2546 N/m², kur y ir koordināte vertikālā virzienā; 3) hidrauliskā trieciena radīts spiediens cisternas šķērsvirzienā $(x*32008 \text{ N/m}^2 - \text{spiediens palielinās no cisternas centra (kur$ x = 0) uz cilindriskās cisternas sānu čaulu); 4) hidrauliskā trieciena radītais spiediens uz cisternas kupolveida galu -290 000 N/m²; 5) inerciālā slodze no cisternas paātrinājuma (a) garenvirzienā $a_x = 30 \text{ m/s}^2 \text{ un (b)}$ šķērsvirzienā $a_x = 10,05 \text{ m/s}^2$.

5. att. Satīklots 1/2 cisternas un balsta fasonķepu modelis.

 att. Mizesa spriegumu sadalījums (skats no apakšas) un materiāla tecēšanas sprieguma vērtība.

6. attēlā redzams, ka noslogotās zonas atbilst iepriekš aprakstītajām, praksē novērotajām bojājumu zonām. Lai detalizēti izpētītu slogojumu fasonķepu apgabalā tiek izmantots

cisternas ¼ modelis ar tīklojuma smalcinājumu attiecīgajās zonās (7. att.).

7. att. Satīklots ¼ cisternas un balsta modelis ar detalizētu tīklojumu noslogotākajā apgabalā sākuma variantam.

8. attēlā parādīts Mizesa spriegumu sadalījums konstrukcijā detalizētajam ¼ cisternas modelim ar sākotnējo fasonķepas formu.

 8. att. Mizesa spriegumu sadalījums sākotnējā fasonķepas konstrukcijā (skats no cisternas apakšas).

9. att. Fasonķepas gala formas uzdošana ar NURBS līkni (skats no cisternas apakšas).

Lai mazinātu spriegumus bīstamajā apgabalā, tiek meklēta fasonķepas forma, kas tiek variēta, uzdodot 9. attēlā redzamo NURBS splaina līkni. Līkne dotajā gadījumā tiek uzdota ar trim atbalsta punktu koordinātām X1, X2 un X3, kā arī ar tās galapunktu virzienu vektoriem (10. att.).

10. att. NURBS līknes uzdošana ar atbalsta punktu koordinātām.

Tālāk tiek ģenerēts Latīņu hiperkuba eksperimentu plāns, kas tiek izmantots, lai plānotu NURBS splaina atbalsta punktu koordinātas nepieciešamajos diapazonos, kuros jāveic GEM aprēķini. Šo datoreksperimentu veikšanai tiek izmantots minimālā vidējā kvadrātiskā attāluma kritērijs [11], lai sarēķinātu plāna punktus. Šis ir telpas aizpildes eksperimentu plāns, kas dod minimālo vidējo kvadrātisko attālumu MSD (*Mean Squared Distance*) starp telpas tīklojuma (tā sauktajiem treniņa) punktiem plānošanas telpā *R* un tuvāko eksperimentu plāna punktu:

$$MSD = \sqrt{\left(\frac{1}{n}\right) \sum_{v=1}^{n} \min_{u=1,...,N} \left[\sum_{i=1}^{s} \left(y_{i}^{v} - x_{i}^{u}\right)^{2}\right]},$$
 (1)

kur y^{ν} ir punkti no liela faktoru telpas iztvēruma kopas R^{s} (v = 1,...,n), N ir eksperimentu plāna punktu skaits, un n ir atbalsta punktu skaits. Mūsu gadījumā tiek izmantots vienu miljonu liels latīņu hiperkuba iztvērums kā treniņa punkti. Šāda veida plāniem ir raksturīgi vienmērīgi izkliedēti plāna punkti, un tiem ir tendence minimizēt sagaidāmo vidējo kvadrātisko kļūdu lokālajām kvadrātiskajām aproksimācijām.

1. tabulā parādīts eksperimentu plāns ar mainīgajiem faktoriem X1, X2 un X3, kā arī iegūtās atbildes – maksimālie ekvivalentie spriegumi konstrukcijā un fasonķepas tilpums.

Atbilžu metamodeļi tiek iegūti ar programmatūru *EDAOpt* [12] lokālo kvadrātisko aproksimāciju (ar Gausa kodolu) veidā (11. att.).

Tālāk iegūtie metamodeļi tiek izmantoti, lai risinātu parametriskās optimizācijas uzdevumu, minimizējot fasonķepas tilpumu pie uzdota ierobežojuma uz maksimāliem ekvivalentajiem spriegumiem apskatāmajā cisternas apgabalā.

	VI V2 V2 TELEVICE								
Nº	XI,	<i>X</i> 2, cm	<i>X</i> 3, cm	max. Mizesa	Tilpums,				
	CIII	CIII	CIII	spriegums,	CIII				
				MPa					
1	6,910256	3,769231	2,076923	611,258	7263,739				
2	4,038462	3,538462	2,179487	577,369	7252,133				
3	4,756410	4,384615	2,025641	461,405	7255,753				
4	5,833333	3,846154	2,435897	673,7	7269,984				
5	5,205128	3,230769	2,000000	600,717	7250,273				
6	5,025641	3,692308	2,307692	647,283	7261,617				
7	3,679487	4,538462	2,153846	406,993	7255,811				
8	6,282051	3,615385	2,948718	639,738	7286,954				
9	6,461538	5,846154	2,230769	328,739	7278,817				
10	5,115385	5,076923	2,692308	419,437	7282,452				
11	5,743590	5,230769	2,051282	424,043	7265,923				
12	5,384615	3,000000	2,564103	731,473	7267,601				
13	5,653846	5,692308	2,384615	375,239	7278,644				
14	6,730769	4,615385	2,794872	559,626	7290,302				
15	3,948718	5,000000	2,666667	506,097	7276,106				
16	3,589744	5,384615	2,282051	331,084	7264,599				
17	4,307692	3,307692	2,538462	616,375	7263,288				
18	3,769231	4,076923	2,461538	482,324	7263,082				
19	3,858974	3,461538	2,820513	617,895	7270,819				
20	7,000000	4,000000	2,410256	582,506	7275,835				
21	4,846154	4,153846	2,615385	461,108	7273,105				
22	6,192308	3,153846	2,256410	662,186	7262,568				
23	4,935897	3,384615	2,871795	711,418	7277,054				
24	6,102564	4,846154	2,512821	537,455	7280,060				
25	6,551282	3,076923	2,641026	663,727	7275,477				
26	4,487179	5,615385	2,102564	378,457	7264,023				
27	6,012821	3,923077	2,717949	560,556	7280,396				
28	5,923077	4,230769	2,128205	524,662	7263,497				
29	3,500000	5,153846	3,000000	447,44	7287,142				
30	6,371795	5,461538	2,897436	469,32	7296,780				
31	4,397436	4,692308	2,358974	386,602	7266,151				
32	5,294872	4,769231	2,333333	474.51	7270.095				
33	4,128205	6,000000	2,743590	397,738	7285,408				
34	6,641026	5,538462	2,589744	480,925	7288,638				
35	4,217949	4,307692	2,846154	494.967	7278.385				
36	5,474359	4,461538	2,923077	503,504	7287,314				
37	4,666667	5,307692	2,974359	464.683	7290.534				
38	6,820513	4,923077	2,205128	376.938	7273.603				
39	5.564103	5.923077	2,769231	425 452	7290 776				
40	4.576923	5.769231	2.487179	335.515	7277 498				
-0	+, <i>310923</i>	5,109251	2,70/1/9	555,515	1211,420				

1. TABULA

Edit Project File	First-linear			- State Columnation	i Sme Bee	A	2 446
	 Second First-linear 	Options	Approximate	View Gopha	Clear Filtration	Tables X Cance	1 1000
Functions Yiz n	nises	volume					
Sigma Cross	36.722169	0.382858	(Change and Change an		and the second data as		(E) (
Sigma Cross%	33.80%	3.32%	ar Opine	ins for Local Ap	reximation		
Sigma	7.547073	0.055535	Bandward	th /nearant 10	Kemel		X Cancel
Signati	6.947453	0.400954	Candwide	n (numuradeo	Gaussian	a= 11	
Sigma0	8.834816	0.065011			C Trimba	w-lu	
Sigma0%	8.132885	0.563019	Automatic	éc.	C Incode	N	
MeanExpValue	507.938622	74.422514			< [1-0] 4	Number of Test Po	ext=110000
StDev of Exp	108.630781	11.546905			C Uniform		
Exp. Range	402,734000	46.507000	10		C Triangle	Do not use	terms less than Limit.
MaxError	26.150252	-0.159861	10		C Epanechnikov	In second la	
Bad Point No.	6	38		000	C Biweight	11 0.0 12 0.0	
Max Bel Error	412%	0.21%	12				
BadReiPointNo.	6	38	1.1		< I mweight		10
No olActualExp	37	37	- 17		C Coonus		

11. att. Atbilžu aproksimācija (EDAOpt [12] dialoga forma).

Iegūtā cisternas atbalsta fasonķepas forma (sk. 9. att.) un ekvivalento spriegumu sadalījums tajā redzami 12. attēlā.

12. att. Mizesa spriegumu sadalījums konstrukcijā atrastajai fasonķepas formai.

IV. Secinājumi

Darbā veiktā vagonu cisternu atbalsta fasonķepu formas optimizācija ļauj samazināt ekvivalento spriegumu maksimālo līmeni par ~27 % cisternas bīstamajos apgabalos pie fasonķepām, kur visbiežāk, kā novērots praksē, parādās bojājumi. Iegūtie rezultāti apliecina piedāvātās formas optimizācijas metodikas efektivitāti, risinot konkrētu mašīnbūves objektu problēmas.

PATEICĪBA

Šis darbs izstrādāts ar Eiropas Sociālā fonda atbalstu projekta Nr. 2013/0025/1DP/1.1.1.2.0/13/APIA/VIAA/019 "Jaunie "gudrie" nano-kompozītie materiāli ceļiem, tiltiem, būvēm un transporta mašīnām" ietvaros.

LITERATŪRAS SARAKSTS

- Bendsoe, M. P., Sigmund, O. Topology Optimization, chapter 6 in Book *Optimization of Structural and Mechanical Systems*. Ed. J. S. Arora. World Scientific Publishing, 2007, pp. 161–194.
- 2. Janushevskis, A., Janusevskis, J., Melnikovs, A. and Gerina-Ancane, A. *Shape optimization technique of thin-wall composite constructions.* (in Latvian), in this book.
- Janushevskis A., Auzins, J., Janushevskis, J. and Viba, J. Optimization of subsonic aerodynamic shape by using metamodeling approach. *In: 5th Int. DAAAM Baltic Conference*, Tallinn, Estonia, Ed. R. Kyttner, 2006, pp. 41–46.

- Lee, T. H., Jung, J. J. Metamodel-based shape optimization of connecting 4. rod considering fatigue life. Key Engineering Materials, vol. 306/308, 2006, pp. 211-216.
- Janushevskis, A., Auzins, J., Melnikovs, A. and Gerina-Ancane, A. Shape 5 optimization of mechanical components of measurement systems, chapter 12. In: Advanced Topics in Measurements. Ed. Z. Haq, 2012, pp. 243-262. [E-book] Available: In Tech - Open Access Publisher.
- 6 Janushevskis, A. and Melnikovs, A. Shape optimization of block. (in Latvian), Sci. J. of RTU: Transport and Engineering. Mechanics, ser. 6, vol. 33, Riga, 2010, pp. 89-97.
- Janushevskis, A., Melnikovs, A. and Boyko, A. Shape optimization of 7. mounting disk of railway vehicle measurement system. J. of Vibroengineering, vol. 12, iss. 4, Dec. 2010, pp. 436-443.
- Boyko, A. Influence of barrel damages on life time of tank wagon. In: 8. 8th Int. DAAAM Baltic Conference, April 19-21, 2012, Tallinn, Estonia, 2012.
- Bityutskiy, N. The analysis of operational dependability of specialized 9. tank cars to transport condensed hydrocarbon gases. (in Russian), Transport of Ural, vol. 4 (27), pp. 57-71, 2010.
- 10. Codes of design of railway wagons with gauge 1520 mm (non-selfdriven). 1st and 2nd Revising and Supplements (in Russian), Moscow, 1996

- 11. Auzins, J., and Janushevskis, A. New experimental designs for metamodel building. Sci. J. of RTU, Transport and Engineering. Mechanics, ser. 6, vol. 24, Riga, 2007, pp. 56-64.
- Auzins, J. and Janushevskis, A. Design of Experiments and Analysis. 12 Riga, 2007.

Alexander Janushevskis, Dr. sc. ing., Professor, Head of the Research Laboratory for Machine and Mechanism Dynamics, Riga Technical University. Address: 6k Ezermalas iela, Riga, LV-1006, Latvia. Phone: +371 67089396; Fax: +371 67089746;

E-mail: janush@latnet.lv

Anatolijs Melnikovs, Dr. sc. ing., Researcher, Institute of Mechanics, Riga Technical University.

Address: 6k Ezermalas iela, Riga, LV-1006, Latvia. Phone: +371 67089396; Fax: +371 67089746:

E-mail: Anatolijs.Melnikovs@rtu.lv

Alexander Boyko, Dr. sc. ing., Researcher, Institute of Mechanics, Riga Technical University.

Address: 6k Ezermalas iela, Riga, LV-1006, Latvia. Phone: +371 67089396; Fax: +371 67089746

E-mail: Aleksandrs.Boiko@rtu.lv

Alexander Janushevskis, Anatolijs Melnikovs, Alexander Boyko. Shape optimization of shaped pads of barrel support of tank wagon

In this work, the authors' proposed technique for shape optimization of real industrial objects is illustrated by an example of obtaining the shape of the pads that support the barrel of a tank wagon. As a result, the concentration of stresses is significantly reduced in the barrel support areas. According to statistical data, the appearance of the cracks in these areas often causes damages of the barrels. The optimization technique is based on using software of CAD/CAE, design of experiment, approximation, and optimization. The shape of the pads is defined by the non-uniform rational B-spline polygon points that further serve as the variables of optimization. To reduce the necessary computational resources, the finite element models of the tank wagon are replaced with the high-quality metamodels that are based on the local polynomial approximation. For creation of the metamodels, the space-filling Latin hypercube experimental designs based on the minimal Mean Squared Distance criteria are employed. In accordance with this design, the responses are calculated for the full finite element model of the tank wagon. Then, the obtained responses are used for creation of the metamodels. The metamodels, in their turn, are used in optimization procedures. This ensures a resourcesaving approach for shape optimization of the objects. Specific recommendations for the shape of the pads of the barrel support of the tank wagon are given in this work.