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Abstract − In this paper the method of penalized high order 
Legendre polynomials and specific designs of experiments for 
model building on the basis of numerical or physical experiments 
is proposed. The generalized thin-plate energy functional is used 
for penalization of the least square functional. The optimal choice 
of smoothing parameter (penalization coefficient) is implemented 
using the cross-validation method. Special axial-symmetrical and 
90 degree rotational symmetrical D-optimal experimental designs 
are obtained using the direct constrained optimization method. 
The method was tested for known optimization test problems with 
2–5 variables and showed prediction accuracy comparable with 
kriging. 
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 I. INTRODUCTION

Metamodeling, also known as surrogate modeling, is 
becoming more and more frequently used for multidisciplinary 
optimization. Many commercial CAE software packages 
include metamodeling tools. The metamodels are built on the 
basis of numerical and physical experiments. For the design of 
numerical experiments different Latin hypercube experimental 
designs are mostly used. The quality of metamodels is measured 
with prediction accuracy – the possibility of accurate prediction 
of response values at input value sets not used by model 
building. The best prediction accuracy today is obtained by 
nonparametric approximation methods: kriging, radial basis 
functions, locally weighted polynomials, polynomial neural 
networks, multivariate adaptive regression splines. But all these 
methods often have unsatisfactory reliability – sometimes they 
may give very accurate models and sometimes worse models. 
Therefore the traditional response surface method, based on 
second order polynomial approximations, has not lost its 
popularity for more than 50 years after its first application. 
Global polynomial approximations have a significant 
advantage – they may be used in any universal mathematical 
software, created for special aims and not containing a 
metamodel building subsystem like fast simulation software 
tools [1]−[3]. This paper is an extended and corrected version 
of paper [4] presented at the 11th World Congress on 
Computational Mechanics (WCCM XI), Barcelona, Spain, 
2014. 

II. MULTIVARIATE POLYNOMIALS AND PENALIZED 
LEAST SQUARES 

A. Multivariate Polynomials and Orthogonality
Here we will build approximations in m-dimensional

rectangular domains. Without loss of generality the so called 
coded domain – a unit cube [−1, 1]m can be used, because 
simple linear transformation transforms any rectangular domain 
into a unit hypercube [5], [6]. The full single argument 
polynomial of degree d contains d + 1 terms. The number of 
terms L in full multivariate degree d polynomial is 𝐿𝐿 =
(𝑑𝑑 + 𝑚𝑚)! 𝑑𝑑!/𝑚𝑚!⁄  

Two types of orthogonality properties are applied to both 
single argument functions and multivariate functions. In 
mathematics, two functions f and g are called orthogonal if their 
inner product is zero. The first type of inner product is integral 
over the domain Ω: 

〈𝑓𝑓,𝑔𝑔〉 = ∫ 𝑤𝑤(𝑥𝑥) ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑔𝑔(𝑥𝑥) 
𝐷𝐷 , (1) 

where w(x) is the weight function. We will call two functions f 
and g integrally orthogonal over domain Ω, with respect to 
weight function w(x) if − 

∫ 𝑤𝑤(𝑥𝑥) ∙ 𝑓𝑓(𝑥𝑥) ∙ 𝑔𝑔(𝑥𝑥) 
Ω  = 0. (2) 

If we have a set of values of scalar or m-dimensional input 
variables D = {x1, x2,…, xn}, then the inner product can be 
realized in the form of a sum over the set: 

〈𝑓𝑓,𝑔𝑔〉 = ∑ 𝑤𝑤(𝒙𝒙𝑖𝑖) ∙ 𝑓𝑓(𝒙𝒙𝑖𝑖) ∙ 𝑔𝑔(𝒙𝒙𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (3) 

and two functions f and g will be orthogonal over the set D with 
respect to weight function w(x) if  

∑ 𝑤𝑤(𝒙𝒙𝑖𝑖) ∙ 𝑓𝑓(𝒙𝒙𝑖𝑖) ∙ 𝑔𝑔(𝒙𝒙𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 0. (4) 

It should be mentioned that, if functions are integrally 
orthogonal with respect to the constant weighting function, then 
the inner product over uniformly distributed points divided by 
number of points converges to zero when the number of points 
is increased.  

The classic Legendre polynomials Pi(x) are orthogonal in the 
interval [−1, 1] with respect to the constant weight function 
w(x) ≡ 1 [7]. The first and second kind Chebyshev polynomials are 
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often used in the approximation practice [8], but they have 
weighting functions 𝑤𝑤(𝑥𝑥) = 1

√1 − 𝑥𝑥2�  and   𝑤𝑤(𝑥𝑥) =

√1 − 𝑥𝑥2, respectively. This means that the border regions are 
classified as more important for the first kind and the central 
region as more important for the second kind of Chebyshev 
polynomials.  

Discrete Legendre polynomials [1],[9],[10] are orthogonal 
on the set of n equidistant points for single variable polynomials 
of degree d ≤ n − 1, but the number of points in the set grows 
exponentially with the number of variables and the use of 
discrete orthogonal polynomials for m > 4 and d > 3 seems 
unpractical. 

The property of orthogonality gives the possibility of optimal 
selection of significant terms in the approximation polynomial 
function. If all terms of regression function are orthogonal on 
the set of experimental points, then the least-squares method 
(LSM) gives the diagonal moment matrix and the coefficient 
for each term can be calculated independently from others (see 
[11]). Unlike the singe variable case, the use of multivariate 
orthogonal polynomials is far less frequent since the number of 
terms in multivariate high order polynomials increases very 
rapidly, which makes their application difficult with a degree 
greater than 3 [8]. 

The first single variable Legendre polynomials are: 

𝑃𝑃0(𝑥𝑥) = 1, 𝑃𝑃1(𝑥𝑥) = 𝑥𝑥, 𝑃𝑃2(𝑥𝑥) = 1
2

(3𝑥𝑥2 − 1), 

𝑃𝑃3(𝑥𝑥) = 1
2

(5𝑥𝑥3 − 3𝑥𝑥), 𝑃𝑃4(𝑥𝑥) = 1
8

(35𝑥𝑥4 − 30𝑥𝑥2 + 3). 

The Euclid norms of Legendre polynomials are: 

 ‖𝑃𝑃𝑖𝑖(𝑥𝑥)‖ = �∫ 𝑃𝑃𝑖𝑖2(𝑥𝑥)d𝑥𝑥1
−1 = � 2

2𝑖𝑖+1
. (5) 

We will introduce the following notation for terms of 
multivariate Legendre polynomials. The simple multivariate 
polynomial notation uses coefficients βi for i-th term and a 
matrix of integer numbers ei,j – (i =1,..., L,  j =1,…, m) – 
exponents for each variable in the i-th term. Here m – number 
of arguments (factors) or dimension of argument 𝒙𝒙 ∈ ℝ𝑚𝑚 and 
L – the total number of terms in the polynomial. The 
multivariate Legendre polynomials will be in the form: 

 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) = ∑ 𝛽𝛽𝑘𝑘 ∏ 𝑃𝑃𝑒𝑒𝑘𝑘𝑘𝑘(𝑥𝑥𝑙𝑙)
𝑚𝑚
𝑙𝑙=1

𝐿𝐿
𝑘𝑘=1 . (6) 

Thus each term of multivariate Legendre polynomial is a 
product of m single variable Legendre polynomials from 
particular components. The degree of a term is equal to the sum 
of the exponents of the variables that appear in it. The degree of 
polynomial d is equal to the maximum value of polynomial 
terms. Different terms are integrally orthogonal in the unit 
hypercube [−1, 1]m. 

Here, unlike with the reduction approach [8], [12], we will 
use mainly full polynomials. The matrices of exponents for 
different m and d can be generated with a simple computer 
program. For example, the transpose exponent matrix for two-
variable second order polynomial is: 

 𝐸𝐸𝑇𝑇 = �0 0 1
0 1 0    1 0 2

1 2 0�. (7) 

The exponential growth of number of full polynomial terms 
L along with the number of model parameters (coefficients β) 
quickly exceeds the number of data samples, making the 
estimation of model parameters with the conventional least 
squares method impossible.  

Conventional multivariate polynomial approximation needs 
more sample points than the number of polynomial terms [13]. 
For example, a 15-th degree polynomial of three variables has 
816 terms, which is much more than the number of 
experimental runs used in metamodel building practice. One 
approach for overcoming this problem is the reduction of the 
number of polynomial terms using different criteria for their 
adding and elimination [12]. 

 B. Energy Functional and Penalized Least Squares 
Instead of reduction of polynomials we will use the penalized 

least squares approach, which is often used in nonparametric 
spline and radial basis function methods [14], [15]. For 
uniformity and simplicity we will always use the unit cube 
[−1, 1]𝑚𝑚 ∈ ℝ𝑚𝑚 as experimental region Ω of independent 
variables (factors). 

All approximation methods for the model on the basis of 
sample data obtained by physical or numerical experiments are, 
in a way, a compromise between the capacity of the model to 
precisely approximate the given data (mean square error) and 
the simplicity of the model. The simplicity of the model may be 
variously measured, for example, as the number of fitting 
parameters in regression function or number of terms in finite 
Taylor or Fourier series. In statistics the measure of simplicity 
of the model is often associated with smoothness of the obtained 
approximate model function 𝑦𝑦�(𝒙𝒙). One popular smoothness 
measurement is the generalization of thin-plate deformation 
potential energy [14], [16]. 

The approximation 𝑦𝑦�(𝑥𝑥) according to the penalized least 
squares method can be obtained by minimizing total potential 
energy in the class Φ of applicable functions. The total potential 
energy can be obtained by adding the thin-plate potential energy 
multiplied by positive constant factor λ to the usual sum of 
squared residuals: 

 𝑦𝑦�(𝑥𝑥) = argmin
𝑦𝑦∈𝛷𝛷

∑ (𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2 + 𝜆𝜆 ∫ �∂
2𝑦𝑦
∂𝑥𝑥2

� 𝑑𝑑𝑑𝑑1
−1

𝑛𝑛
𝑖𝑖=1 . (8) 

Similarly, for two variable cases the well-known thin-plate 
smoothing approximation is obtained by using strain energy of 
plate from isotropic and homogeneous material: 

𝑈𝑈defl = 𝐷𝐷
2 ∬ ��∂

2𝑤𝑤
∂𝑥𝑥12

+ ∂2𝑤𝑤
∂𝑥𝑥22

�
2
− 2(1 − 𝜐𝜐) �∂

2𝑤𝑤
∂𝑥𝑥12

∙ ∂
2𝑤𝑤
∂𝑥𝑥22

− 
𝛺𝛺 

                                −� ∂2𝑤𝑤
∂𝑥𝑥1 ∂𝑥𝑥2

�
2
�� 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2,                              (9) 

where 𝑤𝑤(𝑥𝑥1, 𝑥𝑥2) – lateral deflection of plate middle plane at the 
point 𝑤𝑤(𝑥𝑥1, 𝑥𝑥2), D – flexural rigidity of plate which depends on 
plate thickness and modulus of elasticity in tension and 
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compression, here a constant value D = 2 will be used, and 𝜈𝜈 – 
Poisson's ratio. 

In the thin-plate energy functional for data smoothing a zero 
value is always used for the Poisson's ratio, so the energy 
functional for two variables becomes [17]: 

𝑈𝑈defl = 𝐷𝐷
2 ∬ ��∂

2𝑤𝑤
∂𝑥𝑥12

�
2

+ �∂
2𝑤𝑤
∂𝑥𝑥22

�
2

+ 2 � ∂2𝑤𝑤
∂𝑥𝑥1 ∂𝑥𝑥2

�
2
� 

𝛺𝛺 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2. (10) 

For the generalization of the thin-plate energy functional to 
the m-dimensional case the integral of highest derivative 
squares is proposed, but in actual nonparametric multivariate 
spline approximation of the approximation function is obtained 
by minimization of functional with second order partial 
derivatives. Thus, for a given smoothing parameter λ, the 
generalized thin-plate energy penalized least square method is 
a solution of the minimization problem [14], [16], [18]: 

𝑦𝑦�(𝑥𝑥) = argmin
𝑦𝑦∈𝛷𝛷

�(𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

+ 

 +𝜆𝜆 ∫ ∑ ∑ � ∂2𝑦𝑦
∂𝑥𝑥𝑖𝑖 ∂𝑥𝑥𝑗𝑗

�
2

𝑚𝑚
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2 …𝑑𝑑𝑥𝑥𝑚𝑚

 
𝛺𝛺

. (11) 

III. PENALIZED LEAST SQUARES METHOD FOR HIGH ORDER 
MULTIVARIATE LEGENDRE POLYNOMIALS 

Using the class of multivariate Legendre polynomials (6) we 
must find the column vector 𝜷𝜷�, which minimizes the penalized 
least squares functional: 

𝛽̂𝛽 = argmin
𝛽𝛽∈ℝ𝐿𝐿

����𝛽𝛽l� 𝑃𝑃𝑒𝑒𝑙𝑙,𝑗𝑗�𝑤𝑤𝑖𝑖𝑖𝑖�
𝑚𝑚

𝑗𝑗=1

𝐿𝐿

𝑙𝑙=1

− 𝑦𝑦𝑖𝑖�

2

+
𝑛𝑛

𝑖𝑖=1

 

    +𝜆𝜆 ∫ ∑ ∑ � ∂2

∂𝑥𝑥𝑖𝑖 ∂𝑥𝑥𝑗𝑗
�∑ 𝛽𝛽𝑙𝑙 ∏ 𝑃𝑃𝑒𝑒𝑙𝑙,𝑗𝑗

𝑚𝑚
𝑗𝑗=1 �𝑥𝑥𝑗𝑗�𝐿𝐿

𝑙𝑙=1 ��
2

𝑚𝑚
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1 d𝑥𝑥1d𝑥𝑥2 … d𝑥𝑥𝑚𝑚

 
𝛺𝛺 �,       (12) 

where wi – column vector of points of experimental design 
(sample points in the experimental area) and yi – measured or 
calculated response function values at the i-th sample point, i = 
1, 2,…, n. The first part of the functional is the conventional 
sum of squares of LSM; the second part is the smoothness 
penalization term. 

The thin-plate energy functional is a nonnegative definite 
quadratic form from an L-dimensional column vector of 
coefficients β with a symmetrical constant L × L matrix Q. 

We will denote the L-dimensional regression vector function, 
consisting from all terms of polynomial function from input 
factors – m-dimensional vector x as: 

 𝑧𝑧𝑇𝑇(𝑥𝑥) = [𝑓𝑓1(𝒙𝒙), 𝑓𝑓2(𝒙𝒙), … , 𝑓𝑓l(𝒙𝒙) ] (13) 

and the matrix of regressors X is the n × L matrix of polynomial 
terms at sample points: 

 𝑋𝑋𝑖𝑖,𝑙𝑙 = ∏ 𝑃𝑃𝑒𝑒𝑙𝑙,𝑗𝑗�𝑤𝑤𝑖𝑖,𝑗𝑗�
𝑚𝑚
𝑗𝑗=1 , (i = 1, 2,…, n, l=1, 2,…, L). (14) 

Therefore the penalized least squares functional in matrix 
form is: 

 𝒚𝒚T𝒚𝒚 − 𝒚𝒚T𝑿𝑿𝑿𝑿 − 𝜷𝜷T𝑿𝑿T𝒚𝒚 + 𝜷𝜷T𝑿𝑿T𝑿𝑿𝑿𝑿 + 𝝀𝝀𝜷𝜷T𝑸𝑸𝑸𝑸, (15) 

where the elements of matrix Q are the second order derivatives 
of energy function: 

 𝑄𝑄𝑖𝑖𝑖𝑖 = ∂2

∂𝛽𝛽𝑖𝑖 ∂𝛽𝛽𝑗𝑗
�∫ ∑ ∑ � ∂2𝐹𝐹

∂𝑥𝑥𝑖𝑖 ∂𝑥𝑥𝑗𝑗
�
2

𝑚𝑚
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2 …𝑑𝑑𝑥𝑥𝑚𝑚

 
𝐷𝐷 �.(16) 

Using (6, 16) we obtain expressions for calculating the thin 
plate energy matrix elements: 

𝑄𝑄𝑟𝑟𝑟𝑟 = ��� 𝑃𝑃𝑒𝑒𝑞𝑞𝑞𝑞
′′ (𝑥𝑥𝑖𝑖)𝑃𝑃𝑒𝑒𝑟𝑟𝑟𝑟

′′ (𝑥𝑥𝑖𝑖)𝑑𝑑𝑥𝑥𝑖𝑖
1

−1
× �� 𝑃𝑃𝑒𝑒𝑞𝑞𝑞𝑞(𝑥𝑥𝑙𝑙)𝑃𝑃𝑒𝑒𝑟𝑟𝑟𝑟(𝑥𝑥𝑙𝑙)𝑑𝑑𝑥𝑥𝑙𝑙

1

−1

𝑚𝑚

𝑙𝑙=1
𝑙𝑙≠𝑖𝑖

� +
𝑚𝑚

𝑖𝑖=1

 

 +2∑ ∑ �∫ 𝑃𝑃𝑒𝑒𝑞𝑞𝑞𝑞
′ (𝑥𝑥𝑖𝑖)𝑃𝑃𝑒𝑒𝑟𝑟𝑟𝑟

′ (𝑥𝑥𝑖𝑖)𝑑𝑑𝑥𝑥𝑖𝑖 ×1
−1

𝑚𝑚
𝑗𝑗=𝑖𝑖+1

𝑚𝑚−1
𝑖𝑖=1

 ∫ 𝑃𝑃𝑒𝑒𝑟𝑟𝑟𝑟
′ �𝑥𝑥𝑗𝑗�𝑃𝑃𝑒𝑒𝑞𝑞𝑞𝑞

′ �𝑥𝑥𝑗𝑗�𝑑𝑑𝑥𝑥𝑗𝑗 ×    ∏ ∫ 𝑃𝑃𝑒𝑒𝑞𝑞𝑞𝑞(𝑥𝑥𝑙𝑙)𝑃𝑃𝑒𝑒𝑟𝑟𝑟𝑟(𝑥𝑥𝑙𝑙)𝑑𝑑𝑥𝑥𝑙𝑙
1
−1

𝑚𝑚
𝑙𝑙=1

𝑙𝑙≠𝑖𝑖, 𝑙𝑙≠𝑗𝑗

1
−1 �. (17) 

The direct expressions for elements of matrix Q are quite 
awkward for analytical integration, because the number of 
terms in them is proportional to the number of combination 
pairs of variables, i.e. m(m − 1)/2. But the definite integrals of 
products with first and second derivatives can be calculated 
precisely using Gauss-Legendre quadrature. The matrices for 
any number of dimensions m and polynomial degree can be 
calculated and saved for use in approximations. 

These matrices are relatively sparse, because the Qi, j is 
always zero if any sum of exponents pi, k + pj, k is an odd number. 
The matrices are definitely nonnegative, because the potential 
energy of deformation cannot be negative physically. Matrices 
have zeroes in the rows and columns corresponding to the 
constant and linear terms of the polynomial. 

After the derivation of the LSM functional we obtain the 
system of linear algebraic equations for finding the fitting 
coefficients β: 

 (𝑿𝑿T𝑿𝑿 + 𝝀𝝀𝝀𝝀)𝜷𝜷 − 𝑿𝑿T𝒚𝒚 = 0. (18) 

The matrix of the system is symmetrical and positive-definite 
(if the submatrix of linear terms of XTX is a full range matrix), 
therefore the system can be solved using Cholesky 
decomposition or any iterative methods [19]. For high order 
polynomials (d > 10) and number of variables m > 5, the size of 
the matrix will be very large and solving the system will be 
time-consuming. 

 A. The Optimal Choice of Smoothing Parameter λ 
We use the conventional leave-one out or k-fold cross 

validation for choosing the optimal value of the smoothing 
parameter. In tests with known analytical response functions 
this method gave satisfactory but not excellent results. In most 
cases the result was slightly under-smoothed (λ value less than 
optimal). 
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 B. The Optimal Selection of Significant Terms 
First it should be noted that the use of orthogonal 

polynomials instead of conventional multivariate polynomials 
is advisable only when insignificant terms are eliminated. Full 
Legendre or Chebyshev polynomials (with all possible terms up 
to degree d included) give exactly the same approximation as 
conventional polynomials. Here we propose the use of cross-
validation criterion for the decision to eliminate or keep the 
term with small Euclid norm. Some authors [8] use the F 
criterion and confidence interval calculations, but this approach 
is not fully correct for determined computer experiments. 

IV. DESIGNS OF EXPERIMENTS 
When using classical response surface methodology with 

second order polynomial approximations the central composite 
designs (CCD) are most frequently used [5], [6]. The space 
filling designs (first introduced in [20] and later named Latin 
hypercubes (LH) [21]) can be used as well and allow the 
possibility to use other approximation methods, including 
nonparametric. 

CCDs have a relatively small number of points (experimental 
runs) and good prediction accuracy with minimal prediction 
variance. With special choice of star point distance CCDs have 
the rotatability property [5], [6], [23], which means that the 
prediction variance is equal for all points at equal distance from 
the center point in coded space [−1, 1]m.  

Unfortunately, all these good properties are valid only with 
fundamental assumptions about the physical model. First – the 
true response must be exactly second order polynomial 
function. Second – the variance of the measured response is 
constant and does not depend on input variables. Third – the 
rotatability property requires implementing experiments 
outside the experimental domain of interest, which may be 
impossible physically. If the true responses are not a 
polynomial, they often can be approximated with acceptable 
accuracy in the domain of interest. For example, the sin(3x) 
function can be approximated with a third order polynomial in 
the interval [−1, 1], but by adding two points outside the interval 
(x = −1.41 and x = 1.41) the error of approximation becomes 
inacceptable. 

Although the terms of the regression function (multivariate 
Legendre polynomials) are integrally orthogonal, they are not 
orthogonal on any set of experimental design points, especially 
if the number of points is not much larger than total number of 
possible terms. In this case the optimal selection of significant 
terms may be a problem. Therefore a new class of experimental 
designs for use with orthogonal Legendre polynomials was 
created. 

The experimental designs for high order multivariate 
Legendre polynomial approximations (up to d = 7) were 
obtained using the direct optimization method [2]. The 
following constraints were used: 1) all experimental points are 
located in the unit cube [−1, 1]m, 2) designs have central 
symmetry, axial symmetry and 90° rotation symmetry 
properties, 3) designs are invariant to the permutation of input 
variables, 4) designs have given replications of canter point, 
5) designs are orthogonal – all non-diagonal elements of 

information matrix XTX are equal to zero, 5) designs are 
D-optimal – the determinant of matrix XTX must have 
maximum possible value in consideration of given constraints. 
The tables of optimized designs for m = 2, 3, 4, 5 and p = 2, 3, 
4, 5, 6, 7 are published in the home page of the Institute of 
Mechanics of RTU: http://www.mmd.rtu.lv/zpla.htm.  

The symmetry properties given above mean that all 
projections of new designs are equal, just as they are for CCDs. 
This was achieved by using special groups of symmetric points. 
For example, a four factor design consists of: 

1) nc center points (0, 0, 0, 0); 
2) n32 groups each containing 32 points of all permutations 

of type (0, ±a, ±a, ±a); 
3) n24 groups each containing 24 points of all permutations 

of type (0, 0, ±a, ±a); 
4) n16 groups each containing 16 points of all permutations 

of type (±a, ±a, ±a, ±a); 
5) n8 groups each containing 8 points of all permutations of 

type (±a, ±a, ±a, ±a). 
Using only one group type 4) with a = 1, one group type 

5) with a = 2 and 6 center points the classical rotatable 30-point 
CCD design will be obtained. But the orthogonality property for 
3rd or 4th degree polynomials requires more experimental points. 
Using the design optimization software, the 89-point four factor 
3rd order orthogonal design was obtained, see Fig. 1. This 
design consists of two groups of type 3), two groups of type 4), 
one group of type 5) and one center point. 

 

Fig. 1. 2D projections of 89 point 3th order four factor orthogonal design. 

 A. Testing standard error of predicted response and rotatability of 
new designs 
If the measured responses include some noise caused by 

errors of input factors by the physical characteristics of the 
experimental object or process or by registration of responses, 
then the estimated coefficients of approximate model have 
variance, even though the used regression function is adequate 
[5], [22]. The main approximation quality measure is the mean 
prediction error MSE: 

 MSE(𝑦𝑦�) = �1
𝐷𝐷 ∫ (𝑦𝑦�(𝒙𝒙) − 𝑦𝑦(𝒙𝒙))2𝑑𝑑𝑑𝑑 

𝐷𝐷
. (19) 
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This measure can be calculated only if the exact response 
function y(x) is known. In practice the prediction error is 
estimated using the root mean square error (RMSE) criterion, 
which is calculated in additional experimental points (test 
points) and is not used in the building of approximation, see 
(28). 

Instead of the expensive use of additional experimental runs, 
the cross-validation method is often used [2], [5]. 

Of course, one can expect that less variance of estimated 
approximation coefficients gives less prediction error of the 
approximate model. This principle is implemented by the 
criterion of D-optimality, which seeks to minimize the product 
of variance of all approximation coefficients by maximizing the 
determinant of the moment matrix [5], [6]. 

Under the usual assumptions about independent and 
identically distributed errors of registered responses, and, of 
course, with the assumption of constant error variance σ2 we 
have: 

 Var[𝑦𝑦�(𝒙𝒙)] = 𝒛𝒛T(𝒙𝒙)(𝑿𝑿T𝑿𝑿)−1𝒛𝒛(𝒙𝒙)σ2. (20) 

As a result, the estimated standard error of 𝑦𝑦�(𝒙𝒙) is given by: 

 STD(𝑦𝑦�(𝒙𝒙) = 𝑠𝑠�𝒛𝒛T(𝒙𝒙)(𝑿𝑿T𝑿𝑿)−1𝒛𝒛(𝒙𝒙), (21) 

where s is the estimate of σ – square root of the mean square 
error of the fitted response surface: 

 𝑠𝑠 = �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2

𝑛𝑛−𝐿𝐿
𝑛𝑛
𝑖𝑖=1  (22) 

Some authors use the scaled prediction variance for 
comparing designs with different number of runs [5]: 

 𝑣𝑣(𝑥𝑥) = 𝑛𝑛Var[𝑦𝑦�(𝑥𝑥)]
σ2

= 𝒛𝒛T(𝒙𝒙)(𝑿𝑿T𝑿𝑿)−1𝒛𝒛(𝒙𝒙)𝑛𝑛. (23) 

The G-optimality criterion seeks to minimize the maximum 
value of v(x) in the domain of interest. Another criterion for 
measuring prediction accuracy is the mean prediction standard 
deviation, which can be calculated as integral of prediction 
variance divided by the volume of the domain. For the coded 
area unit cube 𝛺𝛺 = [−1, 1]𝑚𝑚 the mean variance of prediction 
will be: 

𝜎𝜎total2 = 2−𝑚𝑚 ∫ σerr2 𝑑𝑑𝒙𝒙 
𝛺𝛺 = 2−𝑚𝑚𝜎𝜎2 ∑ ∫ �∑ 𝑅𝑅𝑗𝑗𝑗𝑗𝑧𝑧𝑗𝑗(𝒙𝒙)𝑙𝑙

𝑗𝑗=1 �2𝑑𝑑𝒙𝒙 
𝛺𝛺

𝑛𝑛
𝑖𝑖=1 , (24) 

where: 
 𝑹𝑹 = (𝑿𝑿T𝑿𝑿)−1𝑿𝑿T. (25) 

This criterion can be calculated analytically for Legendre 
polynomials or with the Monte Carlo method for non-
orthogonal functions and non-orthogonal experimental designs. 

The Euclid norms of polynomial terms are products of single 
variable Legendre polynomial norms (5): 

 ‖𝑧𝑧𝑖𝑖‖ = ∏ �𝑃𝑃𝑒𝑒𝑖𝑖,𝑗𝑗� = ∏ 1
2𝑒𝑒𝑖𝑖,𝑗𝑗+1

𝑚𝑚
𝑗𝑗=1

𝑚𝑚
𝑗𝑗=1 , (26) 

and the mean variance of predicted response can be calculated 
simply: 

 𝜎𝜎total2 = 2−𝑚𝑚𝜎𝜎2 ∑ �𝑧𝑧𝑗𝑗�
2 ∑ 𝑅𝑅𝑗𝑗𝑗𝑗2𝑛𝑛

𝑖𝑖=1
𝐿𝐿
𝑗𝑗=1 . (27) 

The rotatability measure can be estimated visually, analyzing 
scatterplots of dependence of the response variance or standard 
deviation on the distance from the center of domain. 

Fig. 2 and Fig. 3 show the contour plots of scaled prediction 
variance v and the scatterplots of standard deviation for the 89 
point 3rd order orthogonal design. Fig. 4 and Fig. 5 show the 
same characteristics for the 89 point 3rd order design from [23]. 
The mean standard error of prediction for the first design is 
0.643, for the second design it is 1.463 

The new designs are not exactly rotatable, but the scatterplots 
of the prediction variance show good stability property. 

 
Fig. 2. Contour plot of scaled prediction variance for 89 point 4-factor 
orthogonal design, right – scatterplot of standard deviation of predicted 
response versus distance from the center. 

 
Fig. 3. Scatterplot of standard deviation of predicted response versus distance 
from the center for 89 point 4-factor orthogonal design. 

 
Fig. 4. Contour plot of scaled prediction variance for 89 point design [23]. 
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V. APPROXIMATION AND OPTIMIZATION TESTS 
A. Testing for Common Optimization Test Problems 
Analytical function tests included Rosenbrock’s valley, 

Griewangk’s function, Goldstein-Price’s function, six-hump 
camel back function, as well as three-argument Wendelberger 

 
Fig. 5. Scatterplot of standard deviation of predicted response versus distance 
from the center for 89 point 4-factor design [23]. 

function [24], 1-7 argument test function from [2]. To compare 
different test results all experimental areas were linearly scaled 
to the unit cube [−1, 1]m.  

The accuracy of approximation for tests with known 
response functions ftest was measured with the relative average 
prediction error σtest in additional confirmation points not used 
in model building: 
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 mean square error100%
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=  , (28) 

where zi – confirmation points (i=1,…, N), 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑤𝑤𝑖𝑖) – 
approximated value of test function, testf – average value of test 
function in confirmation points. 100000 uniformly randomly 
selected confirmation points (Latin hypercube sample) in 
region of interest were used. 

B. Testing Results for Analytical Functions 
Some of the classic optimization test functions of 2-3 

variables are polynomials (Rosenbrocks function, Goldstein-
Price function, Himmelblau function) and it goes without 
saying that high order polynomial approximation for such 
functions has advantages over other methods. This fact was 
confirmed in tests. 

The summary of other tests is briefly described in the 
following text. The prediction accuracy of proposed high order 
polynomial approximation is comparable with the prediction 
accuracy of nonparametric kriging method and locally weighted 
polynomials for the case of determined responses without noise. 
In most cases kriging approximations are slightly better, but for 
a low number of sample points kriging sometimes can give 
unacceptable results, which hardly ever happens with 

parametric approximations. For middle-level Gaussian noise 
(5–10 % of standard deviation of response from its mean) 
penalized high order polynomials almost always have less 
prediction error than kriging and locally weighted polynomials. 

 C. Testing for Practical Optimization Test Problems 
The effectiveness of the penalized Legendre polynomial 

approximation method and newly created orthogonal high order 
designs was confirmed by solving several practical 
optimization problems. For lack of space, we will only mention 
one – identification of composite material elastic parameters 
using the vibration method [25]. The 89 point 4-factor 
orthogonal design gave significantly better approximations for 
the dependence of specimen eigenfrequencies on the elastic 
modulus than the previously used 100–200 point Latin 
hypercube designs. 

VI. CONCLUSION 
The new orthogonal high order experimental designs 

demonstrated good effectiveness for the use with the penalized 
Legendre polynomial approximation method. They allow 
simple elimination of insignificant terms and using a number of 
experimental runs less than the number of terms in full 
multivariate polynomials. 

By testing the proposed method on different common test 
problems and practical optimization problems for 2-5 input 
variables, a mean prediction error was obtained that is 
comparable with the approximation error of nonparametric 
kriging and second-third order locally weighted polynomials. In 
the case of responses with 5–10 % Gaussian noise (measured 
relative to the standard deviation of response from its mean) the 
proposed method showed noticeably better results than other 
methods. The cross-validation method for choosing the 
smoothing factor value has known issues and did not always 
give optimal λ values, similarly as with the choice of kriging 
hyperparameters. Due to rapidly rising workload, the method in 
its proposed form is not suited for models with number of input 
variables m > 10. The model building is the most difficult and 
time consuming process, but the use of the created parametric 
metamodels is very simple and they can be implemented in any 
optimization software. 
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Jānis Auziņš. Augstas kārtas ortogonālie eksperimentu plāni kompozītu materiālu īpašību metamodelēšanai, identifikācijai un optimizācijai. 
Rakstā tiek piedāvāta sodīto augstas kārtas Ležandra polinomu metode un speciāli eksperimentu plāni matemātisko modeļu veidošanai uz skaitlisko un naturālo 
eksperimentu bāzes. Daudzargumentu ortogonālo Ležandra polinomu pielietojums ļauj relatīvi vienkārši izslēgt maznozīmīgus polinomu locekļus no 
polinomiālajiem modeļiem. Vispārinātā plānas plates potenciālā enerģija tiek lietota kā soda sastāvdaļa mazāko kvadrātu funkcionālim. Izgludināšanas parametra 
(soda koeficienta) optimālā vērtība tiek iegūta ar krosvalidācijas metodi. Ar tiešās optimizācijas metodi iegūti D-optimāli, aksiāli un 90° rotācijas simetriski 
eksperimentu plāni. Piedāvātā metode realizēta datorprogrammā EDAOpt, kura tiek attīstīta un lietota Rīgas Tehniskajā universitātē jau vairāk nekā 15 gadus. 
Metode pārbaudīta vispārlietotajām optimizācijas testa funkcijām ar 2-5 mainīgajiem un praktiskiem kompozītmateriālu īpašību identifikācijas uzdevumiem. Ar 
piedāvāto metodi izveidotu modeļu prognozes precizitāte ir apmēram vienāda ar kriginga metodes precizitāti. Uzdevumiem ar nenoteiktību, kuri satur parametru 
izkliedes, metode dod augstāku prognozes precizitāti, kas ir ļoti būtiski jaunu kompozītmateriālu eksperimentālajos pētījumos. 
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