
Applied Computer Systems doi: 10.1515/acss-2015-0018

___ 2015/18

43

Obtaining and Visualization of the Topological

Functioning Model from the UML Model

Viktoria Ovchinnikova

Riga Technical University, Latvia

Abstract – A domain model can provide compact information

about its corresponding software system for business people. If

the software system exists without its domain model and

documentation it is time-consuming to understand its behavior

and structure only from the code. Reverse Engineering (RE) tools

can be used for obtaining behavior and structure of the software

system from source code. After that the domain model can be

created. A short overview and an example of obtaining the

domain model, Topological Functioning Model (TFM), from

source code are provided in the paper. Positive and negative

effects of the process of TFM backward derivation are also

discussed.

Keywords – Domain model, model-driven architecture, reverse

engineering, topological functioning model, UML diagrams.

I. INTRODUCTION

It is difficult to know the software system by its source code

without any system skeleton (model) and documentation,

because each developer has his own style of and guidelines for

programming. Therefore, development and maintenance of

such software systems is a time-consuming and costly process.

The backward obtaining of the domain model can be used

in such situations, e.g., when migrating to a new technology

platform or integrating a new software system. It is used when

the information about the software system behavior and

structure is absent. . As well as when there is a deficiency of

resources can also be used for ordering the effective and

qualitative development of software system. Legacy software

system architecture is more understandable when it is

visualized as a graphical model.

The software system can be displayed graphically at the

high level of abstraction as Topological Functioning Model

(TFM) [9], Business Process Model and Notation (BPMN)

[21], i star (i*) [22], e3 value [23], ArchiMate [24], Event-

driven Process Chain (EPC) [25] and others. This paper

focuses mainly on TFM. It is the main domain model (formal

and mathematical) in the software development method

Topological Functioning Modeling for Model-Driven

Architecture (TFM4MDA) [10]. The system will be displayed

as an oriented graph, wherein vertices with names (denote

functioning) and relationships between them exist. The system

is fully overviewed (all functional characteristics of the system

are provided and all of them are connected) by the TFM.

Functioning of real-world system is continuous and TFM

provides this continuity by the main cycle. Various input and

output signals are necessary for real-world system to function

and can affect its core functionality ‒ TFM provides these

inputs and outputs.

Obtainment of the domain model from the source code is

not a fully automated process. MDRE (Model-driven Reverse

Engineering) approach provides obtainment of models

(Unified Modeling Language (UML) diagrams) from legacy

source code. The author of [26] considers that all necessary

information of legacy software system can be taken from the

source code. The model derived from the source code can be

expressed by using Object Constraint Language (OCL) and

UML [26], [27]. ADMTF (Architecture Driven Modernization

Task Force) uses model transformation for taking the legacy

software system more agile [28]. The ADMTF main standard

is Knowledge Discovery Meta-model (KDM). The authors of

[29] consider that ADMTF processes are transformation

between models in such a way from legacy source code to

KDM to BPMN and Semantic of Business Vocabulary and

Rules (SBVR) to upgraded BPMN and SBVR to UML

diagrams to generated source code. In our case both

approaches are appropriate, but in this paper we focus only on

TFM and UML diagrams, because many different tools exist

for UML derivation from the legacy source code. The

obtainment of UML diagrams from the TFM is considered in

[4], [5], [11]. Some rules mentioned there can be used as

backward obtainment of TFM from the UML diagrams.

Reverse Engineering (RE) is necessary for examination and

analysis of legacy software system to provide behavior and

structure of the system in our research. The TFM “as is” can

be obtained from the UML model and TFM “to be” can be

supplemented during the analysis of TFM “as is” and new

requirements for the system. As the result the “target” system

can be obtained. The transformation algorithm was

theoretically developed in [1] and [2] by the mappings

between TFM and UML model elements was provided in [18].

It is necessary to implement this algorithm, validate and check

it by practical experiment with already developed legacy

system, because some information can be lost during

transformations (e.g. relationships between elements). The

connectedness of all elements needs to be checked in the

obtained TFM. The main problem can be unclear names

provided in the source code.

In our case the obtainment of the domain model from the

source code can be divided into two parts. First, structure and

behavior of the software system can be automatically

generated as a model from the source code using RE tools.

After that the TFM can be obtained from the generated model

using the partially implemented transformation

algorithm [1], [2].

DE GRUYTER

OPEN

Applied Computer Systems

 ___ 2015/18

44

The goal of this paper is to discuss the results of obtaining

the TFM from the source code using RE and Model-Driven

Architecture (MDA) principles. Discussion of the positive and

negative effects of the transformation is also provided.

The paper is structured as follows: Section II shortly

describes TFM4MDA and RE; Section III discusses the

transformation algorithm in brief; Section IV illustrates the

example and results of using the transformation algorithm;

Section V contains information about the positive and

negative effects of the transformation process; Section VI

contains conclusions and future work.

II. TOPOLOGICAL FUNCTIONING MODELING FOR MODEL-

DRIVEN ARCHITECTURE

There are two domain models – problem (the system “as

is”) and solution (the system “to be”) domains, which are

overviewed during software system modeling. The problem

domain is a description of existing software system, but the

solution domain – its description with included improvements.

The necessary system can be obtained from the solution

domain that should be involved in the problem domain. More

information about domain modeling and bridging the problem

and the solution domain is provided in [3], [4], [5] and [6].

MDA models show the software system at various abstract

levels [7] – Computation Independent Model (CIM), Platform

Independent Model (PIM), Platform Specific Model (PSM)

and Implementation Specific Model (ISM). In the context of

MDA the transformation between models is executed from

CIM to PIM, from PIM to PSM and from PSM to ISM.

In the case of TFM4MDA, CIM is represented as TFM [8],

PIM/PSM – as structure and behavior of the software system,

represented by UML diagrams and ISM – as the source code.

In this research, the transformation between models is

backward (ISM – PIM/PSM - CIM) as it is illustrated in Fig.

1. RE techniques can be used for this transformation.

ISM (legacy software code)

PIM/PSM (UML diagrams)

Structure of the system

(UML class diagram)

Behavior of the system

(UML sequence diagram)

CIM (TFM of legacy system)

Fig. 1. RE within TFM4MDA.

III. THE TRANSFORMATION ALGORITHM IN BRIEF

Functioning and topological properties [9] characterize the

TFM. They provide modeling of functional characteristics of

the business system. The functioning properties are cause-and-

effect relations, cycle structure, inputs and outputs. And

topological properties are closure, connectedness,

neighborhoods and continuous mapping. Functional feature is

represented as a unique structure <Id (identifier), A (object’s

action), R (result of the object’s action), O (object), PrCond

(preconditions), PostCond (post-conditions), Pr (providers),

Ex (executers), Req (requirements), Cl (class), Op

(operation)> [10], [11].

RE provides availability to analyze and to research the

behavior and structure of the existing software system,

represented at the high level of abstraction. UML diagrams

can be obtained from the source code using RE techniques and

tools. In our case the tool “Visual Paradigm for UML” is

chosen from 13 considered tools (Imagix 4D, ArgoUML,

AmaterasUML, jGRASP, Visual Paradigm for UML, Fujaba,

EclipseUML, MoDisco, Apollo for Eclipse,

AgileStructureViews, Diver, ObjectAid and ModelGoon) to

generate UML diagrams from the source code [2], [12].

UML class diagram can represent the structure of the

software system, and UML sequence diagrams – the behavior.

After that these diagrams can be transformed to the TFM,

using the transformation algorithm, as it is shown in Fig. 2.

The obtained TFM can be represented visually. Necessary

changes and supplements can be added to it by using the

Integrated Domain Modeling (IDM) tool [13], [14], [15].

Fig. 2. The process of obtaining the TFM.

Topological UML (TopUML) modeling is the extension of

UML that helps to follow cause-and-effect relations that come

from the problem domain and are in the solution domain.

Mappings between TFM and TopUML elements are described

and examples are provided in [11], [16], [17]. Similarities and

relationships between UML sequence diagrams and the TFM

elements are provided in [2], [18]. From them four mapping

rules are defined [2]:

The first rule: The name of TFM functional feature is

similar to the name of the message from UML sequence

diagrams, which can be manually defined after transformation.

Applied Computer Systems

 ___ 2015/18

45

TFM functional feature elements defined from the UML

sequence diagrams are:

 Identifier (Id) is a unique string and can consist of

message’s identifier;

 Object’s action (A) is the message’s name till the

opening bracket (without parameters, types and return

types);

 Class operation (Op) is the message’s name;

 Both object (O) and class (Cl) are lifelines type (class)

names, to which the current message is sent;

 Preconditions (PrCond) and post-conditions (PostCond)

are the frame’s definition, if conditions exist within the

frame;

 Executer (Ex) is defined by the type of the message, i.e.,

if the type of the message is an event, which is raised by

a user, the executer is this user, otherwise it is the

system.

The second rule: The frame definition or condition can

affect the cause-and-effect relation of the TFM. The

information of including data to the functional feature and of

relationships of two functional features, which depends on the

frame, is overviewed and provided in [2]. Elements of cause-

and-effect relation are the following:

 Identifier consists of two functional feature identifiers,

which are separated with semicolon;

 The cause of functional feature is the identifier of cause;

 The effect of functional feature is the identifier of effect.

The third rule: The count of TFM cycles is unlimited. It can

be represented automatically after relationships of functional

features have been defined. The main cycle need to be defined

by the IDM user.

The fourth rule: Inputs and outputs of the TFM are

messages, which go to/from an outside actor from the UML

sequence diagram. They also can be defined manually after

obtaining of TFM model.

The functioning properties and some functional feature

elements of the TFM are considered in rules. Other functional

features of the TFM cannot be defined, because it is

impossible to get this information from the UML sequence

diagrams. This information can be manually added during the

analysis of the obtained TFM and the software system. The

transformation algorithm is provided in the chart diagrams in

[1] and is implemented in pseudo code in [2].

The automated part of the transformation algorithm written

in QVT (Query/View/Transformation) operational language

with the source code description is created following these

rules and source code is shown in the next page. In this part of

the transformation algorithm only functional features are

obtained from the UML class diagram. This part of automated

algorithm helps to ignore unnecessary operations from

extended external classes, which do not provide the main logic

of this legacy software system. Interfaces from the source

code are not considered in this transformation algorithm,

because all their operations need to be realized in the classes,

which implement this interface. The TFM functional features

without any relationships with its elements can be generated

using this part of algorithm and the UML and the TFM meta-

models. The TFM meta-model is taken from the IDM tool [15]

and the UML meta-model is available on the Eclipse platform

after installing UML2. These meta-models are necessary for

transformation from the UML model to the TFM model.

IV. RESULTS OF APPLYING THE ALGORITHM

It is necessary to generate the UML model from the source

code for applying the transformation algorithm. The game

“Reversi” is taken as an example of the software system. The

logic of this game is described in [19]. The source code of this

system is provided in [20].

The trial version of tool “Visual Paradigm for UML” is

used in order to obtain the UML diagrams. Visualizations of

the UML class and sequence diagrams are discussed in [2]. It

helps in understanding the source code, check correctness of it

and compare necessary parts of diagrams with the source

code. The results of visualization of the UML class diagrams

show that there are some classes which are not related, but the

exchange of message between them exists. If an object of the

class is represented as a global variable of the other class, then

these both classes are related. If an object of the class is

represented as an internal variable in an operation of the other

class, then these classes are not related. But it is not important

in this research, because all relations between objects of

classes are planned to be taken from the UML sequence

diagrams. It is needed mainly to see the structure of the

software system with included classes, their attributes and list

of operations.

XML (Extensible Markup Language) metadata interchange

(XMI) version 2.1 has been used to create a file with

information about the UML class and sequence diagram and

export it from the tool. The exported UML model, after some

changes, that do not affect the logic of the software system,

was used in transformation from the UML model to the TFM

model. The information about access to elements and their

meanings in the UML model is provided in [2].

Fig. 3 represents the information of all obtained functional

features after automatic transformation from the UML model

to the TFM. There are following columns in the obtained TFM

model:

 id – identifier;

 Description – name of the functional feature;

 Action – full name of the operation of the UML model;

 Result – return type of the operation of the UML model;

 Object – class name from the UML model;

 Entity – executer identifier. Meta-data consists of an

executer list, and entity is the identifier of the executer.

Two executers exist in this system – system (//@actors.0)

and user (//@actors.1);

 executerIsSystem – condition if the executer is in the

system.

Applied Computer Systems

 ___ 2015/18

46

// obtaining of TFM from UML model by mappings rules

mapping UML::Model::UML2TFM() : TFM::TFM {

var user : String := "User"; // role of user outside of system

var system : String := "System"; //role of system

var actorValue : String; // name of actor

var resultValue : String; // return type of operation

var counter : Integer := 0; // identifier of functional feature

var fullOperation : String; // full operation signature

actors += map createActor(user); // add actor to actor list

actors += map createActor(system); // add actor to actor list

// each UML element of type PackagedElement is examined

self.packagedElement->forEach(a) {

// if it is element of type Package, then operations from class is examined and

// added to TFM

 IF (a.oclIsTypeOf(Package)) THEN {

 a.allSubobjectsOfKind(Operation)[UML::Operation]->forEach(b) {

 IF (b._class <> null and b._class.name <> '') THEN {

 fullOperation := b.name + "(";

 counter := counter + 1;

 actorValue := system;

 b.allSubobjectsOfType(Parameter)[UML::Parameter]->forEach(c) {

 IF (c.direction.toString().equalsIgnoreCase('return') and c.type <> null)

 THEN {

 resultValue := c.type.name;} ENDIF;

 IF (c.direction.toString().equalsIgnoreCase('return') and c.type = null)

 THEN {

 resultValue := c.operation.name; } ENDIF;

 IF (c.direction.toString().equalsIgnoreCase('in') and c.type <> null) THEN {

 fullOperation := fullOperation + "," + c.type.name;

 IF (c.type.name.endsWith("Event") = true) THEN {actorValue := user;} ENDIF;

 } ENDIF;

 };

 IF (fullOperation.find(",") <> 0) THEN { fullOperation :=

fullOperation.substringBefore(",") + fullOperation.substringAfter(","); } ENDIF;

 fullOperation := fullOperation + ")";

 IF (resultValue.toString().equalsIgnoreCase("void") = false) THEN {

 fullOperation := fullOperation + ":" + resultValue;

 } ELSE { resultValue := null; } ENDIF;

 functionalFeatures += b.map operation2FunctFeat (actors,counter,null,

 actorValue,resultValue,fullOperation);

 fullOperation := null; } ENDIF;

 };

 } ENDIF;

};

actors := actors->sortedBy(description); // sorting of actors by names

}

mapping createActor(name : String):TFM::Actor{description := name;}// create TFM actor

mapping UML::Operation::operation2FunctFeat(actors : Set(TFM::Actor), counter :

Integer, cond : String, aName : String, rName : String, fullOperation : String) :

TFM::FunctionalFeature { // create TFM functional feature

 id := counter.toString(); // identifier of functional feature

 description := self.name; // name of functional feature

 // actor of functional feature

 entity := actors->selectOne(actor | actor.description = aName);

 action := fullOperation; // action of functional feature

 _object := self._class.name; // object of functional feature

 executorIsSystem := true; // mark – if actor is executor of functional feature

 // result of functional feature

 IF (rName <> null) THEN { result._result := rName; } ENDIF;

 // precondition of functional feature

 IF (cond <> null) THEN { precond := cond; } ENDIF;}

Applied Computer Systems

 ___ 2015/18

47

Fig. 3. The obtained functional features.

Applied Computer Systems

 ___ 2015/18

48

Fig. 4 illustrates one of the obtained UML sequence

diagrams by using tool “Visual Paradigm for UML”. In Fig. 3

the first message (findMove) is represented as functional

feature 5 and the second message (abNegascoutDecision) as

functional feature 39. Relationship between them (from 39 to

5) is provided in the Fig. 5.

It is possible to use a TFM editor in the IDM tool, where the

TFM functional features can be visualized. In the next figures

all functional features from Fig. 3 are represented with

supplementations. Relationships between functional features

can be manually added, using the logic of the transformation

algorithm as it is shown in Fig. 5. Changes and supplements

can be added to the TFM. The TFM graph and TFM model are

synchronized – if some changes are made in the graph, after

that these changes will be implemented in the model. The

example of adding process of relationships between functional

features step by step is provided in [2].

All the UML sequence diagrams have been overviewed in

order to manually obtain cause-and-effect relations. Lifeline

objects of primitive types have been ignored and have not

been used during manual execution of the transformation

algorithm. Lifeline objects from an external library have also

been ignored. It is necessary in order to exclude platform

specific information from the model.

Fig. 5 displays the TFM graph with manually obtained

relationships between functional features. Some of the cycles

formed by them in the TFM model are the following:

 41-52-18-33-41 – a process of creation of a new game is

shown in this cycle. The new game can be started when

human player chooses to start it. It can be done at any

moment during the game;

 41-52-18-33-31-2-24-39-9-41 – the main cycle, a

process of the game with assignment of turns between

players and making a move is defined in this cycle;

 24-31-2-24 – a process of assignment turns between

players is represented in this cycle;

 45-31-2-24-39-9-45 – a process of finding the effective

turn (that leads to victory) for computer player is shown

in this cycle;

 41-28-9-41 – a process of making the effective turn (that

leads to victory) by computer player is represented in this

cycle;

 26-32-23-17-26 – cycle defines the process of drawing a

visual representation of board and figures of the game,

suggested (possible moves for the human player) as well

as selected field (selected move by human player) on the

game board.

The obtained TFM cannot be considered as the final

version, because it is necessary to define all names in human

understandable language in the model. It is necessary to delete

those cause-and-effect relations which do not correspond to

the necessary MDA view, of course if this does not destroy the

logic of software system and does not delete important

relationships between functional features.

Fig. 6 illustrates the isolated sets of functional features. The

TFM does not have to contain these isolated sets of vertices.

Fig. 7 represents isolated functional features. The first

column with functional features is the performance of events

that depend on the user. They can be defined as overridden

operations with or without the body in the source code and the

UML sequence diagram uses these operations for

visualization. The second column with functional features is

the checking of conditions, which are used as conditions in

frames from the UML sequence diagram. This operation

returns the variable of type “Boolean” or mark for recognizing

some activity. The last column of functional features is

isolated, because some of them belong to classes, which are

the interfaces (in terms of the Object-Oriented programming

(OOP)). The interfaces are not considered in this

transformation, because the class needs to contain all

realizations of operations of interfaces.

Fig. 4. The example of UML sequence diagram.

Applied Computer Systems

 ___ 2015/18

49

Fig. 5. Manually obtained cause-and-effect relations between functional features.

Fig. 6. Isolated set of functional features.

Fig. 7. The isolated functional features.

Applied Computer Systems

 ___ 2015/18

50

V. DISCUSSION

The tool “Visual Paradigm for UML” can be used as a

standalone tool or as a tool integrated into the Eclipse

platform. The usage of the standalone version of the tool

provides more functions and the user interface is more

understandable. The UML class diagram can be generated

directly from the source code, it is not necessary to transfer

classes to the main window from the existing source code.

Each UML sequence diagram represents an inside action of

the operation and the obtainment of one unit of the UML

sequence diagram can be received at once (it is impossible to

create all UML sequence diagrams at once in this tool).

Problems can appear if many classes and operations exist in

the source code, but it is good for events when it is necessary

to see how to work only some operations.

The information of class and sequence diagrams is provided

separately in the exported UML model. Therefore messages

from the sequence diagrams not always match the operations

from the class diagram and their identifiers also are different.

Identifiers of them are related in situations when operation

realizes the message and these relations are given in the UML

model.

We were unable to access the attribute “xmi:id” which

identifies elements of the model during our experiments with

the QVTo and by looking for information about it in the

documentation. Therefore the identifiers of some necessary

elements cannot be known and used. It is a disadvantage,

because in case of a message from the UML sequence diagram

it is necessary to know the related operation from the UML

class diagram for supplementing the TFM functional feature

with the information from this operation.

The limitations of the transformation are the following:

 The obtained information may be incomprehensible,

because the source code can be written in a bad manner,

for example, it could be impossible to understand the

operation role only by its name. In this case the

generated UML model from the source code will not be

comprehensible. Likewise the TFM model will not be

readable and full and more time will be necessary for

supplementation of the TFM. One of the possible

solutions is to refactor parts of the legacy source code or

rewrite the whole system – as a result a more readable

code should produce better results during the

transformation. The development of new software is

time-consuming and costly process, because it would be

necessary to pay for the entire development process, so it

is not always an acceptable solution;

 The system may contain legacy source code (such as

operations, classes and other parts) that is not used at all

during execution – it would appear in the TFM as

isolated vertices;

 The RE tool can acquire incomplete information of the

source code. Therefore some information of the software

system can be lost.

To summarize, some unclear operations in the legacy

software source code are transformed to the UML sequence

diagram as messages and additional analysis of source code is

necessary for understanding the logic of these operations.

Some relationships between functional features are absent,

because some operations from the UML class diagrams are

used as conditions (in frames) in the UML sequence diagrams.

These operations as conditions are not examined in the

transformation algorithm. Some operations consist of empty

field without any actions in it (e.g. events, mandatory

operations from the extended class).

VI. CONCLUSION

The legacy software system may exist without any

documentation. In this case RE could be used for obtaining the

visualization of its code in the form of diagrams or models. Of

course, it is a risk, because it is not known how precisely the

names of the class operations and other elements are defined.

It is a problem that has not yet been solved. In the successful

case, a domain model can be obtained from this model and

could be appropriate for the analysis of the software system.

The TFM backward derivation (transformation) process

from the source code is defined in this research. The tool

“Visual Paradigm for UML” is chosen and used for generating

UML diagrams and exporting UML models. The

transformation algorithm to the TFM from the UML model is

defined. The part of the transformation algorithm is automated

using the QVT operation language. Functional features are

obtained automatically from the UML model. After that cause-

and-effect relations are manually added, using the IDM tool

and following the transformation algorithm. The result is

visualized and supplemented using the IDM tool. Positive and

negative effects of the TFM backward derivation process are

discussed.

The future research direction is related to the improvement

and development of the transformation algorithm. The meta-

model of the TFM needs to be supplemented with logical

operations between the cause-and-effect relations and

elements, which are described in the mappings rules to the

TFM from the UML sequence diagram. It is necessary that the

definitions of names of the functional features are redefined

automatically. Parsing of the XMI file with information of the

generated UML model to the new structure of the UML model

for accessing and adding information needs also be considered

in the future.

REFERENCES

[1] V. Ovchinnikova and E. Asnina, “The Algorithm of Transformation

from UML Sequence Diagrams to the Topological Functioning Model,”

in Proceedings of 10th International Conference on Evaluaton of Novel
Approaches to Software Engineering, Barcelona, Spain, 29-30 April,

2015. Portugal: SciTePress, 2015, pp. 377–384. doi:

http://dx.doi.org/10.5220/0005476603770384
[2] V. Ovchinnikova, “Research on Backward Derivation of the Topological

Functioning Model from Source Code,” M.S. thesis, Riga Technical
University, Riga, Latvia, 2015.

[3] E. Asnina and J. Osis, “Topological Functioning Model as a CIM-

Business Model,” in Model-Driven Domain Analysis and Software
Development: Architectures and Functions. New York: IGI Global,

2011, pp. 40–64. doi: http://dx.doi.org/10.4018/978-1-61692-874-
2.ch003

[4] J. Osis, E. Asnina and A. Grave, “MDA Oriented Computation

Independent Modeling of the Problem Domain,” in Cesar Gonzalez-

http://dx.doi.org/10.5220/0005476603770384
http://dx.doi.org/10.4018/978-1-61692-874-2.ch003
http://dx.doi.org/10.4018/978-1-61692-874-2.ch003
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gonzalez=Perez:Cesar

Applied Computer Systems

 ___ 2015/18

51

Perez, Leszek A. Maciaszek (eds.) Proceedings of the 2nd International

Conference on Evaluation of Novel Approaches to Software Engineering

(ENASE 2007), Barcelona, Spain, July 23–25, 2007. Barcelona:
INSTICC Press, 2007, pp. 66–71.

[5] J. Osis and E. Asnina, “Derivation of Use Cases from the Topological
Computation Independent Business Model,” in Model-Driven Domain

Analysis and Software Development: Architectures and Functions. New

York: IGI Global, 2011, pp. 65–89. doi: http://dx.doi.org/10.4018/978-1-
61692-874-2.ch004

[6] E. Asnina and J. Osis, “Computation Independent Models: Bridging
Problem and Solution Domains,” in Proc. of the 2nd Int. Workshop on

Model-Driven Architecture and Modeling Theory-Driven Development

(MDA & MTDD 2010), in conjunction with ENASE 2010, Athens,
Greece, July 22–24, 2010. Lisbon: SciTePress, 2010, pp. 23–32.

[7] L. Favre. (2012, March). MDA-Based Reverse Engineering [Online].
Available: http://www.intechopen.com/books/reverse-engineering-

recent-advances-and-applications/mda-based-reverse-engineering

[Accessed: Oct. 7, 2015].
[8] J. Osis and E. Asnina, “A Business Model to Make Software

Development Less Intuitive,” in M. Mohammadian (ed.) Proceedings of
the 2008 International Conference on Innovation in Software

Engineering [ISE08], Vienna, Austria, December 10-12, 2008. Los

Alamitos: IEEE Computer Society CPS, 2008, pp. 1240-1245. doi:
http://dx.doi.org/10.1109/cimca.2008.52

[9] J. Osis and E. Asnina, “Is Modeling a Treatment for the Weakness of
Software Engineering?” in Model-Driven Domain Analysis and Software

Development: Architectures and Functions. New York: IGI Global,

2011, pp. 1–14. doi: http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
[10] J. Osis and E. Asnina, “Topological Modeling for Model-Driven

Domain Analysis and Software Development: Functions and
Architectures,” in Model-Driven Domain Analysis and Software

Development: Architectures and Functions. New York: IGI Global,

2011, pp. 15–39. doi: http://dx.doi.org/10.4018/978-1-61692-874-
2.ch002

[11] U. Donins, “Topological Unified Modeling Language: Development and
Application,” PhD thesis, Riga Technical University, Riga, Latvia, 2012.

Riga: RTU Press, 2012, 224 p.

[12] V. Ovchinnikova and E. Asnina, “Reverse Engineering Tools for
Getting a Domain Model within TFM4MDA,” in Proc. of the 11th Int.

Baltic Conf. on Databases and Information Systems Baltic DB&IS 2014
“Databases and Information systems”, Tallinn, Estonia, June 8–11,

2014. Tallinn: Tallinn University of Technology Press, 2014, pp. 417–

424.
[13] J. Osis and A. Slihte, “Transforming Textual Use Cases to a

Computation Independent Model,” in Model-Driven Architecture and
Modeling Theory-Driven Development: Proc. of the 2nd Int. Workshop

(MDA & MTDD 2010), Athens, Greece, July 22–24, 2010. Lisbon:

SciTePress, 2010, pp. 33–42.
[14] A. Slihte, J. Osis and U. Donins, “Knowledge Integration for Domain

Modeling,” in Proceedings of the 3rd International Workshop on Model-
Driven Architecture and Modeling-Driven Software Development (MDA

& MDSD 2011), Beijing, China, June 8–11, 2011. Lisbon: SciTePress,

2011, pp. 46–56.
[15] A. Slihte, “The Integrated Domain Modeling: an Approach & Toolset

for Acquiring a Topological Functioning Model,” PhD thesis, Riga
Technical University, Riga, Latvia, 2015. Riga: RTU Press, 2015. 224 p.

[16] U. Donins, J. Osis, A. Slihte, E. Asnina and B. Gulbis, “Towards the

Refinement of Topological Class Diagram as a Platform Independent

Model,” in Proc. of the 3rd Int Workshop on Model-Driven Architecture

and Modeling-Driven Software Development (MDA & MDSD 2011),

Beijing, China, June 8–11, 2011. Lisbon: SciTePress, 2011, pp.79-88.
[17] J. Osis and U. Donins, “Formalization of the UML Class Diagrams,”

in Evaluation of Novel Approaches to Software Engineering: 3rd and
4th International Conferences ENASE 2008/2009: Revised Selected

Papers, Milan, Italy, May 9–10, 2009. Berlin: Springer-Verlag, 2010,

pp. 180-192. doi: http://dx.doi.org/10.1007/978-3-642-14819-4_13
[18] V. Ovchinnikova, E. Asnina and V. Garcia-Diaz, “Relationships

between UML Sequence Diagrams and the Topological Functioning
Model for Backward Transformation,” Applied Computer Systems, vol.

16, 2014, pp. 43-52. doi: http://dx.doi.org/10.1515/acss-2014-0012

[19] Samsoft. (2011, April). Strategy Guide for Reversi & Reversed Reversi
[Online]. Available: http://www.samsoft.org.uk/reversi/strategy.htm

[Accessed: Oct. 7, 2015].
[20] Thuy Gia L. (2015, May). luugiathuy/ReversiGame [Online]. Available:

GitHub, https://github.com/luugiathuy/ReversiGame [Accessed: Oct. 7,

2015].
[21] OMG. (2015). Business Process Model and Notation [Online].

Available: http://www.bpmn.org/ [Accessed: Dec. 12, 2015].
[22] i* wiki. (2011, July). i* Wiki Home [Online]. Available: http://istar.rwth-

aachen.de/tiki-index.php?page=i%2A+Wiki+Home [Accessed: Dec. 12,

2015].
[23] e3 value. (2015). The r3 value methodology [Online]. Available:

http://e3value.few.vu.nl/e3family/e3value/ [Accessed: Dec. 12, 2015].
[24] The Open Group. (2015). ArchiMate [Online]. Available:

http://www.opengroup.org/subjectareas/enterprise/archimate [Accessed:

Dec. 12, 2015].
[25] ARIS Community. (2015). Event-driven process chain [Online].

Available: http://www.ariscommunity.com/event-driven-process-chain
[Accessed: Dec. 12, 2015].

[26] L. Favre, “Formalizing MDA-Based Reverse Engineering Processes,” in

Proceedings of the 2008 Sixth International Conference on Software
Engineering Research, Management and Applications (SERA '08).

Washington: IEEE Computer Society, 2008, pp. 153–160. doi:
http://dx.doi.org/10.1109/SERA.2008.21

[27] S. Rugaber and K. Stirewalt. (2004) Model-Driven Reverse Engineering

[Online]. Available: http://www.cc.gatech.edu/reverse/repository/model
Driven.pdf [Accessed: Dec. 12, 2015].

[28] OMG. (2005). Architecture-Driven Modernization workshop [Online].

Available: http://www.omg.org/news/meetings/workshops/adm-

2005.htm#tutorials [Accessed: Dec. 12, 2015].

[29] V. Khusidman. (2008). ADM Transformation [Online]. Available:
http://www.omg.org/adm/ADMTransformartionv4.pdf [Accessed: Dec.

12, 2015].

Viktoria Ovchinnikova received the Bachelor’s degree in Automation and

Computer Engineering in 2013 and Master’s degree in Computer Systems in
2015 from Riga Technical University.

Currently she is the first year doctoral student and a Researcher with the
Department of Applied Computer Science of Riga Technical University. She

is the author of four conference and one journal paper.

Her current research interests include reverse engineering and model-
driven software development.

Address: Department of Applied Computer Science, Riga Technical
University, Sētas iela 1, Rīga, LV-1048, Latvia;

E-mail: viktorija.ovcinnikova@rtu.lv

http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gonzalez=Perez:Cesar
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Maciaszek:Leszek_A=
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004
http://www.intechopen.com/books/reverse-engineering-recent-advances-and-applications/mda-based-reverse-engineering
http://www.intechopen.com/books/reverse-engineering-recent-advances-and-applications/mda-based-reverse-engineering
http://dx.doi.org/10.1109/cimca.2008.52
http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002
http://dx.doi.org/10.1007/978-3-642-14819-4_13
http://dx.doi.org/10.1515/acss-2014-0012
http://dx.doi.org/10.1109/SERA.2008.21

