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Abstract— In this paper predictions of the normalized difference 

vegetation index (NDVI) are discussed. Time series of Earth 

observation based estimates of vegetation inform about changes 

in vegetation. NDVI is an important parameter for vegetation 

forecasting and management of various problems, such as 

climate change monitoring, energy usage monitoring, managing 

the consumption of natural resources, agricultural productivity 

monitoring, drought monitoring and forest fire detection. 

Artificial Neural Networks (ANN's) are computational models 

and universal approximators, which are widely used for 

nonlinear, non-stationary and dynamical process modeling and 

forecasting. A layer recurrent neural network (LRN) is used in 

this paper to make one-step-ahead prediction of the NDVI time 

series. 

Keywords- layer recurrent neural networks, normalized 

difference vegetation index, time series forecasting 

I. INTRODUCTION 

Human activities reflect on ecosystems, including the 
natural vegetation cover. Vegetation cover change is important 
factor that reflect on ecosystem condition and function. A 
change of vegetation cover may have long-term influence on 
sustainable food production, freshwater and forest resources, 
the climate and human welfare. Monitoring and forecasting 
changes occurring in vegetation cover at periodic intervals is 
very important to providing information about the stability of 
vegetation. 

The use of satellite-based remote sensing data as a cost-
effective technique has been widely applied to develop land 
cover coverages over large geographic regions. Vegetation 
cover is an important part of land cover. Change detection has 
become an outspread application of remotely sensed data 
because of repetitive wide coverage, short revisit intervals and 
good image quality. Change detection is the process of 
identifying differences in the state of an object or phenomenon 
by observing it at different times. The main precondition in 
using remote sensing data for vegetation change detection is 
that changes in land cover result in changes in radiance values 
and changes in radiance due to land cover change are large 
with respect to radiance change caused by others factors such 
as differences in atmospheric conditions, differences in soil 
moisture and differences in sun angles [1]. 

Vegetation indices calculated from satellite images can be 
used for monitoring temporal changes related to vegetation. 

Vegetation indices (VI's) are combinations of surface 
reflectance intended to take out a specific property of 
vegetation. Each of the VI's is designed to accent a specific 
vegetation property. Analyzing vegetation using remotely 
sensed data requires knowledge of the structure and function of 
vegetation and its reflectance properties. This knowledge 
enables linking together vegetative structures and their 
condition to their reflectance behavior in an ecological system 
of interest [2]. The normalized difference vegetation index 
(NDVI) is designed for estimating vegetation cover from the 
reflective bands of satellite data. The NDVI is an indicator, 
which numerically determines the amount of green vegetation. 
Past studies have demonstrated the potential of using NDVI to 
study vegetation dynamics. The NDVI index is defined as: 

 )/()( RNIRRNIRNDVI  ,  (1) 

where NIR represents the spectral reflectance in near infrared 
band and R represents red band in satellite images. Greener 
and dense vegetation has low red light reflectance and high 
near infrared reflectance, and therefore high NDVI values. 
The NDVI values are normalized between -1 and +1, where 
increasing positive values indicate increasing green 
vegetation, but low positive values and negative values 
indicate non-vegetated surface features such as water, barren 
land, rock, ice, snow, clouds or artificial materials [3]. The 
NDVI also has the ability to reduce external noise factors such 
as topographical effects and sun-angle variations. 

Time series analysis of remotely sensed data has gained 
wide usability supported by availability of wide-coverage, high 
temporal satellite data. Univariate autoregressive integrated 
moving average (ARIMA) models are widely used for a 
univariate time series forecasting, also for the NDVI time 
series [4]. However, these models are parametric and are based 
on the assumption that the time series been forecasted are 
linear and stationary. The difficulty of forecasting arises from 
the imprescriptible non-linearity and non-stationarity in the 
NDVI time series. Many previous studies propose that non-
linear machine learning approaches such as artificial neural 
network (ANN) models perform better than traditional time 
series linear models with minimum initial assumptions and 
high forecasting accuracy. In addition, ANN has also been 
shown to be effective in modeling and forecasting nonlinear 
time series with noise. Therefore, neural networks are used as 
an alternative to traditional statistical forecasting methods. 



 

Figure 1.  Location of the Ventspils Municipality. 

 

Figure 2.  Test site in Ventspils Municipality. 

 

Figure 3. Smoothed NDVI time series from 18.02.2000 to 27.07.2015. 

II. STUDY AREA AND CHARACTER OF THE DATA 

A. Study Area 

Ventspils Municipality is located in the western part of 
Courland, Latvia with total area of 2472 km

2
 (Fig. 1). 

Area by size 250 meters x 250 meters from Ventspils 
Municipality was selected as test site (Fig. 2). 

Approximately half of the test area is covered by forests; 
the other half is covered by agricultural lands. 

B. The NDVI Data Set 

Multi-temporal NDVI composite data obtained from 
MODIS Terra (NASA research satellite) with spatial resolution 
250 m and produced on 7-day intervals were used in this study. 
Data are obtained from data service platform for MODIS 
Vegetation Indices time series processing [5]. Used data are 
smoothed and gap-filled using the Whittaker smoothing 
algorithm with smoothing parameter λ=15 and two filtering 
iterations [6]. Iterative filtering was used, because undetected 
clouds and poor atmospheric conditions decrease the observed 
NDVI values. 

The NDVI data set consists of 814 smoothed NDVI images 
that obtained every 7 days over 15 years. NDVI values of these 
images were obtained for corresponding test site and used as 
NDVI time series (Fig. 3). 

 

The NDVI time series data provide a seasonal trajectory – 
time series show obvious seasonal oscillations, which 
correspond to the vegetation phenological cycles where 
maximum NDVI values are observed between May and 
August. Variations in the NDVI values are seen to be -0.0050 
to 0.9109 units. NDVI trends are not always monotonic but can 
change. A positive trend can change for example into a 
negative one and reversely. 

III. ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANN's) are a form of artificial 
intelligence, which are trying mimic the function of real 
neurons found in the human brain [7]. ANN's are one of the 
most accurate and widely used forecasting models that have 
used in forecasting social, economic, business, engineering, 
foreign exchange, stock problems and other. Structure of 
artificial neural networks make them valuable for a forecasting 
task with good accuracy. 

As opposed to the traditional model-based empirical and 
statistical methods such as regression and Box-Jenkins 
approaches, which need prior knowledge about the nature of 
the relationships between the data, artificial neural networks 
are self-adaptive methods that learn from data and there about 
the problem only few a priori assumptions are needed [8]. 

Neural networks learn from examples and can find 
functional relationships among the data even if relationships 
are unknown or the physical meaning is the difficult [7]. 
Therefore, ANN's are well suited for problems whose solutions 
require knowledge that is difficult to specify but for which 
there are enough data or observations. 

Artificial neural networks can generalize. After learning the 
input data (a sample or pattern), ANN's can often correctly 
processing the early unseen sample even if the sample data are 
noisy. Neural networks are less sensitive to error term 
assumptions and they can tolerate noise and chaotic 
components better than most other methods. Artificial neural 
networks also are universal function approximators. It was 
proved that a neural network can approximate any continuous 
function with any accuracy [8]. 



For a time series forecasting problem, a training patterns 
consists of a history data with fixed number of observations. If 
time series contains N observations y1, y2, …, yN, then using an 
ANN with n input nodes, we have N-n training patterns than 
can be used for short-term forecasting – one value ahead. The 
first training pattern will be contain y1, y2, …, yn as inputs and 
yn+1 as the output. The second training pattern will contain y2, 
y3, …, yn+1 as inputs and yn+2 as the output. The last training 
pattern will be contain yN-n, yN-n+1, …, yN-1 inputs and yN as the 
output. Then pattern yN-n+1, yN-n+2, …, yN will be used to get 
forecasting value yN+1. The ANN performs the following 
unknown function mapping: 

  ptttt yyyfy   ,...,, 11 ,  (2) ,   

where yt is the observation at time t [8]. 

ANN's structure include input data and artificial neurons 
that are known as „units‟. The multilayer perceptron include an 
input layer, an output layer and one or more intermediate layers 
called hidden layers. The size and nature of the data set affect 
the number of hidden layers and neurons within each layer. 
Usually ANN's with one or two hidden layers perform better 
than neural networks with the large number of hidden layers. 

The scalar weights along with the network architecture 
store the knowledge of a trained network and determine the 
strength of the connections between interconnected neurons. If 
weight value is zero then there is no connection between two 
neurons and if weight value is negative then relationship 
between two neurons is a prohibitive. An individual processing 
element receives weighted inputs from previous layers, which 
are summed in each node using a combination function, and a 
bias neuron, which is connected to every hidden or output unit, 
is added. 

The result of this combined summation is passed through a 
transfer function to produce the nodal output of the processing 
element, which is weighted and passed to processing element 
in the next layer [7]. The combination function and transfer 
function together constitute the activation function. In the 
majority of cases input layer neurons do not have an activation 
function, as their role is to transfer the inputs to the hidden 
layer. The most widely used activation function for the output 
layer is the linear function as non-linear activation function 
may introduce distortion to the predicated output. The sigmoid 
(logistic), exponential (hyperbolic) tangent, quadratic or linear 
functions are often used as the hidden layer transfer function. 
The relationship between the output – predicted value (yt) and 
the inputs – past observations of the time series (yt-1, …, yt-p) is 
given by: 
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where wj are weights between hidden and output layer, wi,j are 
weights between input and hidden layer, f is an activation 
function, q is the number of hidden nodes, p is the number of 
input nodes, ɛt is random error at time t. 

A. A Layer Recurrent Neural Network 

A recurrent neural network (RNN) is a class of artificial 
neural networks where connections between units form a 
directed cycle. This creates an internal state of the network, 
which allows it to exhibit dynamic temporal behavior [9]. 
Recurrent neural networks can use their internal memory to 
process arbitrary sequences of inputs. Therefore, recurrent 
neural networks are powerful sequence learners. 

The layer recurrent network (LRN) is a dynamic recurrent 
neural network that was developed using earlier introduced 
neural network by Elman [10]. The layer recurrent neural 
network has feedback loops at every layer, except the output 
layer. Feedback connection in the layer recurrent neural 
network is connection from the outputs of neurons in the 
hidden layer to neurons in the context layer that store the 
delayed hidden layer outputs. The most important advantage of 
the LRN is a robust feature extraction ability cause context 
layer store useful information about data points in past. 

The LRN generalizes the Elman network to have an 
arbitrary number of layers and to have arbitrary transfer 
functions in each layer. The LRN can be trained using exact 
versions of standard backpropagation algorithm [11]. The 
original Elman network was trained using an approximation to 
the backpropagation algorithm. 

B. Levenberg-Marqardt Backpropogation Algorithm with 

Bayesian Regularization 

A neural network is trained with patterns that consists of 
input and target pairs. The process of training a neural network 
includes tuning the values of the weights and biases of the 
network to optimize network performance, as defined by the 
network performance function. The problem of neural network 
learning can be seen as a function optimization problem, where 
the best network parameters (weights and biases) need to be 
obtained in order to minimize the network’s global error. 
Traditionally gradient descent backpropogation algorithm is 
used for neural network training. Gradient descent 
backpropagation algorithm updates weights and biases in the 
direction of the negative gradient of the performance function. 
There are some major disadvantages of gradient descent 
approach, one of them is stucking into local minima, and 
another problem is very slow convergence of the learning 
algorithm. Regarding to this issues, there are some more 
methods available to use in aid of standard back-propagation 
learning, such as the Levenberg-Marqardt backpropagation 
algorithm with Bayesian regularization. 

The Levenberg-Marqardt backpropagation algorithm with 
Bayesian regularization is a neural network training function 
that updates the weight and bias values according to 
Levenberg-Marquardt optimization [12]. It minimizes a 
combination of squared errors and weights, and then 
determines the correct combination to produce a network that 
generalizes well. The process is called Bayesian regularization. 

The Levenberg-Marqardt backpropagation algorithm is 
quasi-Newton method that use an approximate Hessian matrix. 
The Hessian matrix is matrix that contains second-order partial 
derivatives of the neural network errors with respect to the 
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weights and biases [13]. The Levenberg–Marquardt algorithm 
introduces approximation to Hessian matrix H: 

 mIJJH T  ,  (4) 

where J is the Jacobian matrix, I is the identity matrix and m 
is combination coefficient, that is always positive. Jacobian 
matrix contains first-order partial derivatives of the neural 
network errors with respect to the weights and biases. It is N-
by-n matrix, where N is the number of the neural network 
training patterns and n is the number of weight and bias 
variables. The elements on the main diagonal of the 
approximated Hessian matrix always will be larger than zero. 
Therefore, with approximation (4) matrix H is always 
invertible. Gradient of the performance function with respect 
to the weights and biases can be computed: 

 eJg T  , (5) 

where e is a vector of the neural network errors. The length of 

the gradient vector is equal to the number of all weights and 

biases in the network. Error vector e of the length equal to the 

number of patterns can be computed: 

 ode  ,  (6) 

where d is the desired (observed) output vector and o is the 
actual (predicted) output vector. Levenberg-Marquardt back-
propagation is used to calculate changes in weight and bias 
variables:  

 gHdw 1 , (7) 

where dw is a vector of changes in weight and bias variables 
[12].    The Levenberg–Marquardt optimization technique is 
more powerful than the conventional gradient descent 
techniques. However, the Levenberg-Marquardt is very 
sensitive to the initial network weighs. In addition, it does not 
consider outliers in the data, what may lead to overfitting. 
Overfitting appear when a statistical model describes random 
error or noise instead of the true function. To avoid those 
situations, a regularization can be used. 

The objective of neural network training is to reduce the 
global error determined by performance function. The 
following performance (cost) function is used for Bayesian 
regularization [14]: 
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where γ is the performance ratio. Weight and bias variables w 
are updated with the following Newton-like update: 

 dwkwkw  )()1( , (9) 

where k is a training iteration (epoch) index. Minimizing 
performance function (8) will cause the network to have 

smaller weights and biases, and this will force the network 
response to be smoother and less likely to overfit, because the 
Bayesian regularized artificial neural networks calculates and 
trains on a number of effective network parameters or weights, 
effectively turning off those that are not relevant. This effective 
number is usually considerably smaller than the number of 
weights in a standard fully connected back-propagation neural 
net. With regularization, neural network should be able to 
sufficiently represent the true function. 

IV. EXPERIMENTAL PROCEDURE 

The aim of this experiment is to investigate the capability 
and accuracy of layer recurrent neural networks in the NDVI 
time series forecasting. 

The data set was divided into three sets, training, validation 
and testing data set by 70/15/15 principle, namely, 70% of the 
NDVI data (a total of 568 observations) were used as a training 
data set, 15% of the NDVI data (a total of 122 observations) 
were used as a validation data set and the remaining 15% of the 
NDVI data (a total of 122 observations) were used as a testing 
data set. 

LRN model used in this study was trained by Levenberg-
Marqardt backpropagation algorithm with the Bayesian 
regularization. Neural network’s weights and biases were 
initialized with random numbers in [-1,1]. The number of 
network’s hidden layers was one. The hyperbolic tangent 
function and a linear function are used as activation functions 
for the hidden and output layers, respectively. The number of 
epochs that are used to train was set to 1000. As the number of 
hidden neurons is an important factor that determining the 
forecasting accuracy, is required to find an optimal value, but 
there is currently no theory to determine how many nodes in 
the hidden layer are optimal. Alike optimal number of input 
values (e.g. past values of the NDVI time series) need to be 
found. The optimal complexity of LRN model, that is, the 
number of input values and the number of hidden nodes, was 
determined by a trial-and-error approach. In the present study, 
the number of input values was progressively increased from 1 
to 10 and the number of hidden nodes was progressively 
increased from 1 to 20. 

In order to improve neural netwok generalization ability 
early stopping technique was used. When the network begins to 
overfit the data, the global error on the validation set typically 
begins to rise. When the validation error increased for a 10 
epochs in a row, the training was stopped, and the weights and 
biases at the minimum of the validation error were used. It is 
often useful to examine the network response in more detail. A 
linear regression analysis between the network response and 
the corresponding targets was used in order to improve 
forecasting accuracy. This neural network’s configuration was 
determined experimentally as giving the best results. A 
program code was written in MATLAB enviroment. 

As performance criteria there were chosen the square root 
of the mean of the square of all of the errors (RMSE), mean 
absolute percentage error (MAPE), directional symmetry (DS) 
and the adjusted coefficient of multiple determination (Radj

2
). 



 

Figure 4. Optimal LRN topology. 

) 

 

 

Figure 5. LRN convergence. 
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The square root of the mean of the square of all of the 
errors (RMSE) is a measure of the differences between values 
predicted by a model and the values actually observed and is 
given by: 
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where, ŷi – forecasted value, yi – observed value, N – number 

of observations.  
The MAPE (mean absolute percentage error) measures the 

size of the error in percentage terms and is given by: 
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Directional symmetry (DS) is a statistical measure of a 
model's performance in forecasting the direction of change, 
positive or negative, of a time series from one period to the 
next and is given by: 
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Directional symmetry statistic gives the percentage of 
events in which the sign of the change in value from one period 
to the next is the same for both the actual and forecasted time 
series. 

The adjusted coefficient of multiple determination (Radj
2
) 

shows how well a regression model fits the data and it lying 
within a range from [0,1]. A perfect fit would result in an Radj

2 

value of one, a very good fit near one, and a very poor fit at 
zero. The formula used for Radj

2
 is given by: 
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where p is the number of input parameters and y is the mean 

of the observed values. 

 

V. RESULTS 

In the several experiments were found, that optimal number 
of input data is eight past values of the NDVI time series and 
optimal number of hidden nodes is two. Optimal LRN 
topology is shown in Fig. 4. 

LRN convergence for best model was obtained after 61 
epochs (Fig. 5). 

Tab. I shows the performance of the best LRN model on 
the NDVI data set. 

TABLE I.  FORECASTING PERFORMANCE 

Data set RMSE MAPE DS Radj
2 

Training 0.006305 0.021837% 95.559503% 0.999371 

Validation 0.013919 0.093256% 95.833333% 0.997181 

Testing 0.006088 0.011930% 93.333333% 0.999019 

 
The RMSE and MAPE errors were smallest on testing data 

set, directional symmetry was best on validation data set and 
the adjusted coefficient of multiple determination was best on 
training data set. These results showed a good performance of a 
regularized layer recurrent neural network because the train set 
errors, the validation set errors and the test set errors have 
similar characteristics, and it does not appear that any 
significance over fitting has occurred. Actual and predicted 
values of the NDVI time series on training data set is shown in 
Fig. 6. 



 

Figure 6. Forecasting performance on training data set. 

) 

 

 

Figure 7. Forecasting performance on validation data set. 

 

Figure 8. Forecasting performance on testing data set. 

Actual and predicted values of the NDVI time series on 
validation data is shown in Fig. 7. 

Actual and predicted values of the NDVI time series on testing 

data is shown in Fig. 8. 

 

From this figures, it can be observed that using the optimal 
LRN model there is a small deviation between the actual and 
predicted time series.

VI. SUMMARY AND CONCLUSIONS 

In this paper one-step-ahead predictions of the normalized 
difference vegetation index (NDVI) is obtained using a layer 
recurrent neural network (LRN). The presence of recurrent 
feedback in neural network is a positive factor in forecasting of 
NDVI time series. This is evidently because the recurrent 
neural network has a ''deeper memory'' than other classes of 
neural networks. The study concludes that the forecasting 
abilities of a regularized LRN provides a potentially very 
useful method for the NDVI time series forecasting. 
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