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Abstract – Building an ontology is a difficult and time-

consuming task. In order to make this task easier and faster, 

some automatic methods can be employed. This paper examines 

the feasibility of using rules and concepts discovered during the 

classification tree building process in the C4.5 algorithm, in a 

completely automated way, for the purposes of building an 

ontology from data. By building the ontology directly from 

continuous data, concepts and relations can be discovered 

without specific knowledge about the domain. This paper also 

examines how this method reproduces the classification 

capabilities of the classification three within an ontology using 

concepts and class expression axioms.  
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I. INTRODUCTION

Ontological descriptions can help in understanding large 

and complex domains, by explaining their concepts. This is 

useful for communication between different agents and users 

using the same set of concepts in a given domain. Ontological 

descriptions for all possible domains do not exist yet. Since 

building any ontology is a difficult task, the desire to automate 

this process has existed for some time [1], [2]. In order to 

build an ontology, one needs to list any seemingly important 

concepts and relations between concepts. This is often 

insufficient because the ontology designer may forget some 

important concept or add a concept, which holds important 

meaning for the designer but later turns out not to be important 

for the description of the domain. Once the list of concepts is 

created, the next step is to find possible descriptions for the 

concepts. One concept can be the result of a combination of 

other concepts, or the equivalent of any combination of 

relationships among concepts. Once the designer of the 

ontology started to think of definitions, he must add 

relationships to the ontology in order to use them for the 

description of the concepts. Other tools are available for the 

description of concepts, those are, for example, data 

properties. Data properties allow the ontology designer to use 

data attributes, which an individual of a concept might hold, 

for the purposes of classification with a related concept. It is 

this ability of using data for the description of concepts that 

enables translation of classification models into ontological 

descriptions. This paper presents one possible approach aimed 

at translating a classification tree obtained from the C4.5 

algorithm into an ontology, while maintaining its classification 

abilities. 

The data used for building the classification tree was 

obtained from medical statistics of gastric cancer patients and 

patients of other gastric ailments [3], and the purpose of the 

classification tree was to classify data into possible patients of 

gastric cancer.  

Since one of the purposes of an ontology is to classify 

individuals and connect them to concepts, it seemed logical to 

try to translate the findings of the classification tree into an 

ontological description. 

II. DIFFERENCE FROM EXISTING APPROACHES

There are many similar methods and approaches to 

automatic or semi-automatic ontology building. Most of them 

follow the same basic principle of using rules as equality 

statements for concepts. One such approach is described in the 

paper “New Algorithm for Building Ontology from Existing 

Rules: A Case Study” [4]. Translation from a rule-based 

model is achieved by assigning names to discrete attribute 

values, such as “High”, “Mid” and “Low”; numeric rules can 

then be translated into human readable descriptions. By 

combining the concepts of the rules with the generated 

descriptions of attribute values, using equality expressions, 

automatic classification of individuals can also be achieved. 

This approach is very user-friendly, but requires that new data 

are described using the established descriptions, and it loses 

some accuracy because of the possibly broad meanings of the 

descriptions. 

Another approach to creating ontology descriptions 

specifically from classification trees is described in “Applying 

Data Mining for Ontology Building” [5], where concept 

creation is based directly on the tree nodes. This approach also 

mostly ignores numeric values and uses named individuals 

instead. Rule representation is given on an instance level, 

while the concept layer is reserved for the description of the 

elements used to create the rules. 

The proposed method should not be confused with similarly 

sounding but very different approaches to classifying data 

using ontology-aware or ontology-based methods. There are 

many ontology-based classification methods, which are used 

to improve classification by using domain knowledge [6]–[9]. 

There are methods designed for the medical domain [10], [11], 

chemistry [12] and others. These methods use already existing 

knowledge described in an ontology language. Improvement 

of the ontology is only optional in these methods. 

The main difference of the approach described in this paper 

from similar methods is the importance, which is assigned to 

the attribute value spans found by the C4.5 algorithm. Instead 

of using whole nodes or only the division point in intervals, 

we find and use value spans as the basis for concepts, which 

might hold possibly important ideas. The classification tree 
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determined important split points for every attribute in the 

tree. These splitting points emerge in different nodes. 

However, if one looks at the final leaves of the classification 

tree, he realises that every leaf operates with intervals or spans 

of values. We propose that since these spans were of 

importance to the tree, they might indicate important domain 

concepts. These values can indicate concepts as simple as 

“high” or “low”. However, since they are generated 

automatically, other values might have to be considered, for 

example: “very high”, “low average”, “in-between” and 

others. 

The concepts obtained by this approach are named by a 

generator, and an expert is still needed in order to provide 

human readable and sensible names to the concepts and 

relations. 

III. THE TRANSLATION ALGORITHM 

The translation algorithm uses the finished classification 

tree and translates its data, first into rules, later into ontology 

description. First, a list of all the leaf nodes from the 

classification tree is obtained. For each leaf, a list of minimal 

criteria of the leaf is generated. Minimum criteria are obtained 

by traversing all tree nodes leading to the leaf and noting the 

minimum and maximum values for every attribute based on 

the direction of the condition. For example, while traversing 

the branch (chain of inner nodes) of the classification tree, 

leading to the leaf, the attribute “A1” is compared multiple 

times. The first time it is tested for the condition “A1 ≤ 10”, 

later it is tested again for “A1 ≤ 8”, and again for “A1 ≤ 5”.  

Only the very last condition will be used for the minimum 

criteria, since less or equal to five is both a necessary 

condition and fulfils all other conditions. For every attribute 

this must be done twice, once for “less or equal to”, and 

another time for “more than”. Ignoring some splitting points 

does not mean the values are lost; they will be used in other 

branches, for other leaf nodes. The minimal criteria are then 

translated into minimum or necessary spans for every 

attribute. There can be two types of spans – spans containing 

positive or negative infinity and finite spans. If the branch 

leading to the leaf compared an attribute only from one side, 

for example “A1 ≤ 5”, the resulting span would be infinitely 

long and could be described as “−∞ ≤ A1 ≤ 5”. A finite span 

results from the branch restricting the attribute from both ends. 

Having obtained the set of necessary spans for the leaf, a rule 

is created. It is a simple If/Then type rule. The condition part 

of the rule is a set of necessary spans as conditions for the leaf, 

separated by the keyword “and”. The statement part of the rule 

references to the class chosen by the classification leaf. 

Heaving performed this for every leaf, we can now operate 

with the set of rules describing the classification tree, instead 

of the tree itself. At this point, it is possible to begin the 

ontology building by declaring a concept named “Attribute”. 

This will be the most general concept of all attribute span 

concepts to follow. It is only a subconcept of the “thing” 

concept. It is also possible to create a general concept, which 

will encompass all rule classes obtained from leaves. In the 

example, the concept name “Risk” was chosen based on the 

purpose of the classification tree. The subclasses of these two 

main concepts were assigned by creating a list of unique 

attributes and classes from the classification tree. The tree 

used 9 attribute values (“G17”, “GPA_UNITS”, “IF_Units”, 

“IgG”, “Pg1”, “Pg2”, “Pg1/2”, “Svars” and “Vecums”) to 

determine two risk classes (“IVR” and “Vesels”); the resulting 

hierarchy is shown in Fig. 1. 

Before the creation of concepts describing the necessary 

spans of every rule, the internal hierarchy of the spans is 

found. The basis for the hierarchy of spans is a simple 

geometric one. If one span contains another, it is to be of a 

higher concept than the one it contains. Algorithmically, this is 

realised by comparing every span to every other span and 

determining if it is contained in the other. It is contained if all 

its values are inside the second span. For every Si in all spans 

and for every Sj in all spans, if Si is not the same as Sj and Sj 

contains Si, then Si is a subspan of Sj. However, we are 

interested only in the abridged hierarchy, so the redundant 

subspans can be removed. This is done by again poling every 

span Si in all spans. If Si has a subspan Sk and another subspan 

Sl, and Sl or any one of its sub-spans also contains Sk, Si may 

remove Sk as a direct subspan. By doing this for every span, 

only direct subspan relationships remain, and the minimum 

direct hierarchy is obtained. 

The last step for the spans is to create named concepts for 

Fig. 2. Generated concept names. 

Fig. 1. Base concept ontology. 
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them in the ontology. Names are generated from the span 

values and directions. For example, the concept name 

“G17_LOE_6_52082” indicates that the concept belongs to 

the attribute “G17” and has a value of “less or equal” (LOE) to 

“6.52082”. The letter combination MT indicates the value is 

“more than”. Concepts containing both abbreviations indicate 

a finite span, which has an indicated beginning and end.  Some 

of the generated names are shown in Fig. 2.  

Apart from the name and its place in the hierarchy of 

attributes, every attribute concept is also given an equality 

expression. The most abstract concept “G17” has the equality 

expression “has_G17 some double”. This means that any 

individual in the ontology that has a data relationship of the 

name “has_G17” with some value of the “double” kind can be 

classified as being an individual of the abstract concept 

“G17”. This is equivalent to defining a span from negative to 

positive infinity. All other value spans are contained within it. 

The concept “G17_MT_25_67255_LOE_39_8164” has the 

following equality expression “has_G17 some double[> 

"25.67255"^^double , <= "39.8164"^^double]”. This has the 

meaning that any individual with the specified data property of 

a value between these given values will automatically be 

classified as an individual of this concept. 

The last step of this ontology-building algorithm is to add 

the classification concepts contained in the “Then” part of the 

generated rules. The generated name for every class begins 

with the number of the rule, from which it was originally 

obtained. In our case, it is “R01” to “R25”, since there were 25 

rules obtained from 25 classification-tree leaves. This is done 

to mitigate confusion during ontology reasoning, since there 

may be many ways to obtain the same classification. After the 

number of the rule, the name of the assigned class is added. 

Since many leaves in this particular tree were ambiguous and 

contained examples of both classes, we added the percentage 

of the most common class of the leaf to the name of the 

concept. The generated names of this example can be seen in 

Fig. 3. 

Each of these concepts represents the expression part of the 

rule it was generated from, and they are also given an equality 

expression. The equality expression is a simple union of the 

generated span concepts. For example, the concept 

“R06_Vesels100” has the following equality expression: 

“G17_LOE_6_52082 and IgG_MT_81_03753 and 

Pg1_MT_38_9425 and Pg2_MT_14_68767 and 

Svars_MT_69_5”. This means that if an individual was 

classified to belong to all these concepts at the same time, it 

would also be an individual of the concept “R06_Vesels100”. 

IV. RESULTS 

The concepts found and defined by the algorithm are fully 

usable for the classification of data. During the translation 

from classification tree to the set of rules, the tree data were 

lost. Tree data are used for finding solutions faster. By only 

comparing values provided by tree nodes and choosing a 

single next node, the classification algorithm has to traverse 

only one branch. This ability is lost in the ontology. However, 

no loss of information occurred during the process of 

translating from the classification rules to ontology. This 

means that the obtained ontology should have the same 

abilities to classify data as a ruleset. Fig. 4 shows one 

example, where a data point, which was added to the ontology 

as a new individual and described using the data property 

names obtained during translation, was correctly classified as 

belonging to the concept “R00_IVR68” based on the original 

rule: 

IF has_G17 some double[<= 6.52082] and 

has_Pg1 some double[<= 38.9425] and 

has_GPA Units some double[<= 0.85] THEN 

R00_IVR68 
Fig. 3. Generated rule concept names. 

Fig. 4. Reasoning result. 
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There were some errors for an earlier version of the method, 

in which rule names were not uniquely identified by the rule 

number. When there are multiple leaves in a classification tree 

with the same outcome (the same class or the same class and 

class percentage) and they are given the same concept name, 

they become a description of the same concept. Because of 

conflicting descriptions of the same concepts in the equality 

expression, an individual can become defined as having an 

attribute value both below and above a splitting point. By 

defining rules as distinct and separate concepts with different 

names, value crashes were avoided. 

The developed approach automatically creates a concept 

hierarchy for every attribute value span used in the original 

classification tree. Fig. 5 shows the visualisation of these 

spans and their hierarchy.  

Every value span is visualised by a grey line. The sizes of 

the lines are normalised and therefore are only usable for 

visualisation purposes. The black arrows indicate asserted sub 

concept relationships. The slightly darker lines indicate top-

level spans. Those spans are not sub concepts of other span 

concepts. The darkest edges left and right indicate infinities. If 

a line extends all the way left and crosses the dark area, it has 

no defined endpoint and extends infinitely long. 

As we can see from the figure, some attributes are far more 

complex than others. Attribute “Vecums” has only one 

splitting point and splits the value space into two distinct 

regions. An ontology engineer might choose to name these 

two regions “High” and “Low”, making them understandable 

to humans, while maintaining their classification ability. 

However, if one looks at the value spans described by most 

other attributes, mapping every span to a human language 

might be a far more complex task. One might call the top-level 

concepts of attribute Pg2 “High” and “Low”, while ignoring 

the overlapping part in the middle. One could do the same for 

attribute G17 and call the sub concepts of larger span 

“Low_High”, “Mid_High” and “Very_High”. The number of 

intervals and complexity of the ontology depend on the 

complexity of the dataset, from which the classification tree 

was created. A simpler dataset with less contradictory data and 

a clearer relation between data and the classes will result in a 

simple hierarchy of value spans.  

V. CONCLUSION 

This paper has presented a novel approach to ontology 

building from classification trees created by the C4.5 

algorithm. The main novelty of this approach is the creation of 

concepts, which reflect unique and important data value 

intervals or spans for every attribute used in the classification 

process. These unique intervals have been found during the 

creation of nodes in the C4.5 algorithm; however, they are not 

readily available without extraction tools. By analysing every 

leaf and finding the most necessary endpoint values for every 

interval, and by sorting the found intervals into a hierarchy, an 

ontology has been built. The built ontology if fully capable of 

using the data from the classification tree and is able to 

classify new data point individuals, as long as all necessary 

data properties are provided. However, during testing it has 

been found that the reasoning capabilities of the protégé 

software are very time-consuming. Having more than a dozen 

individuals describing data point, slows down reasoning to a 

crawl. Using this tool the ontology does have the capability to 

classify data, but it is not adequately usable for a large dataset. 

It can still be usable for a small number of individuals or using 

a different reasoning tool. 

The above ontology building approach might also have 

some drawbacks. The number of intervals found by the C4.5 

algorithms can be large and not intuitively understandable to a 

human user. The reasonability of the found value intervals can 

only be evaluated by a domain expert. Maybe the complexity 

of the span hierarchy is only a perceived one, maybe to an 

expert the value spans make sense and he will be able to give 

them appropriate names. One possible solution, which could 

make these concepts more understandable, is to add familiar 

concepts as super-concepts to the ontology. Using concepts 

like “High” and “Low”, and manually inserting them into the 

hierarchy, as the expert sees fit, would group complex 

concepts beneath simpler ones. Clearly high or low values can 

be subordinated as such, while others can simply be 

conceptualised as “ambiguous”, which is also a reasonable 

human concept. As a result, the interval concepts will maintain 

their complexity and functionality, while being subconcepts to 

familiar concepts and therefore understandable to humans. 
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