Synthesis, structure and impedance spectroscopy of NaCsZn_{0.5}Mn_{0.5}P₂O₇ pyrophosphate ceramics

A.F. Orliukas¹, V. Venckutė¹, S. Daugėla¹, A. Kežionis¹, A. Dindune², D. Valdniece²,

J. Ronis², M. Lelis³, M. Mosiałek⁴, T. Šalkus¹

¹Faculty of Physics, Vilnius University, Lithuania
²Institute of Inorganic Chemistry, Riga Technical University, Latvia
³Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Kaunas, Lithuania
⁴Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Poland

Saulėtekio al. 9/3 LT-10222, Vilnius, Lithuania Tel.: +370-5-2366064 antanas.orliukas@ff.vu.lt

Abstract

It is known that numerous compounds in the pyrophosphate family are attractive materials for applications in the sodium ion batteries [1, 2]. The evolution of Na⁺ ion batteries stimulates search for new materials for such energy storage devices. In the present work new $NaCsZn_0 SMn_0 SP_2O_7$ pyrophosphate was synthesized by solid state reaction and it was studied by X-ray diffraction (XRD) from the powder in the temperature range from room (RT) to 700 K. Rietveld analysis of XRD patterns showed that NaCsZn_{0.5}Mn_{0.5}P₂O₇ is a mix of three phases: (I) orthorhombic (s.g. Cmc2₁ [3]) NaCsMnP₂O₇, (II) monoclinic (s.g. P2₁/n) NaCsZnP₂O₇ and (III) monoclinic (s.g. $P2_1/n$ [4]) Cs₂MnP₄O₁₂. In the temperature ranges (380 – 460) K and (500 - 600) K the anomalies of lattice parameters for the (I) and (III) phases respectively were found. The anomalous behaviour of differential scanning colorimetry (DSC) in the temperature range (500 -600) K was indicated. These anomalies can be caused by structural phase transitions in (I) and (III) phases. For the measurements of electrical properties, the ceramic samples have been sintered at 953 K temperature for 2 h in air. Electrical properties of the ceramics were investigated in the temperature interval from RT to 700 K and in the frequency range 10 - 3.10⁹ Hz. The anomalies of electrical conductivity, dielectric permittivity and dielectric losses in the temperature ranges (380 - 460) K and (500-600) K were found in these ceramics. This phenomenon can be associated with phase transitions in the (I) and (III) phases.

Acknowledgement. The research leading to these results has received funding from Lithuanian-Swiss cooperation programme to reduce economic and social disparities within the enlarged European Union under project agreement n° CH-3-ŠMM-02/06.

References

[1] P. Barpanda, et all., Solid State Ionics, 268 (2014) 305.

- [2] John M. Clark et all., J. Mater. Chem. A, 2 (2014) 11807.
- [3] Quan Huang, Shiou-Jyn Hwu, Inorg. Chem. 37 (1998) 5869.

[4] B. Klinkert, M. J. Jansen, Z. anorg. allg. Chem. 570 (1989) 102.

Notes: