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ABSTRACT

Nowadays, brain computer interface (BCI) systems, which are based on electroencephalo-

gram (EEG) signals, are becoming more accessible and convenient, and allows to control ”by

thoughts”, for example, wheelchair, robotic prosthesis or even a car. Since wireless BCI sys-

tems use batteries, efficient energy management is crucial for increased operation time. One part

of this system is analog-to-digital converter (ADC), where energy consumption can be signifi-

cantly reduced. Even further, by using appropriate ADC it is also possible to reduce the amount

of information to be transmitted, thus greatly reducing the energy consumption of a transmitter.

In order to choose the most appropriate ADC, first a literature review on EEG signals and

BCI systems is carried out, to define requirements for selection of ADC. Then, based on these

requirements, an in depth analysis of synchronous and asynchronous ADCs is performed, in

order to identify their advantages and disadvantaged as well as suitability for BCI applications.

Asynchronous Sigma-Delta modulator (ASDM) ADC is selected for further in depth analy-

sis. It shows that for wide dynamic range signals (e.g. EEG), high switching activity of ASDM

circuit appears when the input signal amplitude is low, causing increased power consumption

of a wireless BCI.

To improve efficiency, a new method, called Amplitude Adaptive Asynchronous Sigma-

Delta modulator (AA-ASDM), is presented and described in detail, including description of

signal encoding and fast and real-time reconstruction. In order to verify and assess the proposed

method in practice, various simulations, modelings and physical implementations are carried

out, including development of one complete wireless BCI system. The experimental research

results show that by using AA-ASDM for asynchronous EEG signal acquisition, it is possible to

reduce the switching activity by up to 68.85% and thus proportionally the power consumption

of a wireless transmitter. Finally, at the end of this work, a summary and conclusion is given.

This thesis is the result of the research carried out at the Institute of Electronics and Computer

Science within the framework of the National Research Programme „Cyber-physical systems,

ontologies and biophotonics for safe&smart city and society” project No. 4.: “Development of

technologies for secure and reliable smart-city” and European Social Fund’s (ESF) supported

project “R&D Center for Smart Sensors and Networked Embedded Systems”.

The work consists of 174 pages, 72 figures, 183 sources of literature and 12 appendixes.
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ANOTĀCIJA

Mūsdienās, uz elektroencefalogrammas (EEG) signāliem balstītas domu jūtīga saskarnes

(BCI) kļūst arvien ērtākas un pieejamākās, ļaujot ar ”domu spēku” kontrolēt, piemēram, ratiņ-

krēslu, robotisku protēzi vai pat auto. Bezvadu BCI par enerģijas avotu parasti tiek izmantotas

baterijas, tāpēc, lai paildzinātu sistēmas darbības laiku, ir būtiski veidot sistēmu no tādām kom-

ponentēm, kas patērē maz enerģiju. Viena no komponentēm, kur enerģijas patēriņu var būtiski

samazināt, ir analogais-ciparu pārveidotājs (ADC). Vēl vairāk, lietojot atbiltošu ADC, ir iespē-

jams arī samazināt pārraidāmo datu apjomu, tādā veidā samazinot arī raidītāja enerģijas patēriņu.

Lai izvēlētos visatbiltošāko ADC, vispirms, darbā tiek veikta literatūras analīze par EEG

signāliem un BCI kopumā, lai nodefinētu prasības ADC izvēlei. Balstoties uz šīm prasībām,

tālāk darbā tiek veikta sinhrono un asinhrono ADC analīze, ar mērķi identificēt to priekšrocības

un trūkumus, kā arī to piemērotību BCI pielietojumiem.

Asinhronais Sigma-Delta modulators (ASDM) tiek izvēlēts kā atbilstošākais ADC priekš

BCI, tāpēc par to tiek veikta padziļinātāka analīze. Šī analīze parāda, ka priekš plaša dinamiskā

diapazona signāliem (piem., EEG), ASDM ķēdes slēgšanās aktivitāte pie zemām ieejas signāla

apmlitūdām ir liela, tādā veidā radot paaugstinātu BCI sistēmas enerģijas patēriņu.

Lai uzlabotu ASDM effektivitāti, darbā tiek piedāvāts jauns risinājums - Amplitūdas Adap-

tīvs Asinhronais Sigma-Delta modulators (AA-ASDM), kurš darbā tiek detalizēti aprakstīts gan

no teorētiskās puses, gan prakstiskās. Lai praksē pārbaudītu un novērtētu piedāvāto AA-ASDM,

darbā tiek veikta virkne simulāciju un modelēšana, kā arī ir izstrādāta fiziska iekārta kā daļa no

darbā radītās bezvaduBCI sistēmas. Eksperimentālie rezultāti parāda, ka izmantojot AA-ASDM

priekš EEG signālu kodēšanas, ir iespējams iegūt par 68.85%mazāku ķēdes aktivitāti, kā lietojot

standarta ASDM. Tas rezultējas arī ar proporcionālu energījas patēriņa samazinājumu raidītājā.

Darba beigās tiek dots īss paveiktā kopsavilkums, kā arī izdarīti secinājumi.

Promocijas darbs ir izstrādāts Elektronikas un datorzinātņu institūtā Valsts pētījumu pro-

grammas ”Kiberfizikālās sistēmas, ontoloģijas un biofotonika drošai&viedai pilsētai un sabie-

drībai” projekta Nr.4. „Tehnoloģijas drošai un uzticamai gudrajai pilsētai” un ESF projekta

Nr.2009/0219/1 DP/1.1.1.2.0/09/APIA/VIAA/020 “Viedo sensoru un tīklotu iegulto sistēmu

pētījumu un attīstības centrs” ietvaros.

Darbā ir 174.lpp., 72 attēli, 183 izmantotie literatūras avoti un 12 pielikumi.
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A-2 Matrix Ĝk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

APPENDIX B FUNCTIONS FOR SIGNAL ENCODING/DECODING WITH ASDM . . 139

B-1 Matlab Function for Signal Encoding with ASDM. . . . . . . . . . . . . . 139

B-2 Matlab Function (1): Signal Decoding from ASDM Output Switching Instants . . 140

B-3 Matlab Function (2): Signal Decoding from ASDM Output Switching Instants . . 141

B-4 Matlab Function for Real-Time Signal Decoding from ASDM Output . . . . . . 142

APPENDIX C FUNCT. FOR SIGNAL ENCODING/DECODING WITH AA-ASDM1. . 144

C-1 Matlab Function for Signal Encoding with AA-ASDM . . . . . . . . . . . . 144

8



APPENDIX D FUNCT. FOR SIGNAL ENCODING/DECODING WITH AA-ASDM2. . 146

D-1 Matlab Function for Signal Encoding with AA-ASDM . . . . . . . . . . . . 146

D-2 Matlab Function (1): Signal Decoding from AA-ASDM Output Switching Instants. 149

D-3 Matlab Function (2): Signal Decoding from AA-ASDM Output Switching Instants. 151

APPENDIX E PHYSICAL AA-ASDM2 BASED EEG DATA ACQUISTION SYSTEM . 153

E-1 Matlab program for AA-ASDM calibration . . . . . . . . . . . . . . . . 153

E-2 Matlab Function for signal decoding from real AA-ASDM based system . . . . . 155

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9



List of figures

1.1 Structure of a nerve cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 The phases of an action potential . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 3D representation of Brodmann areas . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Brain Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Electroencephalogram (EEG) signal . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Block diagram of generalized EEG measurement and recording system . . . . . 30

1.7 Calculating ADC resolution depending on the signal dynamic range; 2A -

maximum peak to peak amplitude, 2a - minimum peak to peak amplitude,M -

quantization levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 The international 10-20 system of electrode placement . . . . . . . . . . . . . 33

1.9 EEG signal affected by biological artifacts . . . . . . . . . . . . . . . . . . . . 34

1.10 Flash ADC: a) block diagram; b) analog input signal (red color) and digital

output signal (blue color) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.11 Pipeline ADC: a) block diagram; b) analog input signal (red color) and digital

output data (blue color) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.12 Digital Ramp ADC: a) block diagram; b) analog input (red color), DAC output

(green color); and c) digital output (blue color) . . . . . . . . . . . . . . . . . 41

1.13 Tracking ADC: a) block diagram; b) analog input (red color) and digital output

(blue color) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.14 Successive Approximation Register ADC: a) block diagram; b) analog input

(red color), DAC output (green color); and c) digital output (blue color) . . . . 44

1.15 Sigma Delta ADC: a) block diagram; b) analog input (red color), integrator

output (green color) and digital output (blue color) . . . . . . . . . . . . . . . 46

1.16 Zero-Crossing ADC a) block diagram; b) analog input (red color), zero voltage

reference (green color) and digital output (blue color) . . . . . . . . . . . . . . 48

1.17 Sine Wave Crossing ADC a) block diagram; b) analog input (red color), sine

wave reference signal (green color) and digital output (blue color) . . . . . . . 49

1.18 Level Crossing ADC a) block diagram; b) analog input (red color), quantization

levels (gray color) and digital output (blue color) . . . . . . . . . . . . . . . . 50

10



1.19 Asynchronous Sigma-Delta modulator a) block diagram; b) analog input (red

color), integrator output (green color) and digital output (blue color) . . . . . . 52

1.20 Peak Sampling ADC a) block diagram; b) analog input (red color) and digital

output (blue color) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.1 a) Time Encoding Machine (TEM) block diagram b) TEM input signal - x(t),

known function - f(t) and comparator output - z(t) . . . . . . . . . . . . . . . 59

2.2 Asynchronous sigma-delta modulator (ASDM) block diagram . . . . . . . . . 60

2.3 The output of ASDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Operation of ASDM. EEG signal (red line) and corresponding ASDM integrator

output y(t) (green line) and ASDM trigger output z(t) (blue line) . . . . . . . . 62

2.5 Visualization of signal recovery. Coefficients a (black bars), sinc functions

g(t− τn) (blue lines), reconstructed EEG signal (red line) . . . . . . . . . . . . 64
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NOMENCLATURE
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aT - transposed vector

b - ASDM/AA-ASDM trigger parameter

C, c - maximum value of the modulus of a signal

c(t), õ(t) - signal time-varying envelope function
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g(t) - signal reconstruction base function
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z(t) - ASDM/AA-ASDM output trigger signal
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∆ - quantization step
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INTRODUCTION

Almost everything we encounter in our daily lives - sound, light, temperature, pressure,

smell, flavor, etc. are in analog form. On the other hand, nowadays, almost all information is

stored and processed in digital form. In order to fill this gap between the real world and the

digital world, various analog to digital converters (ADCs) are used.

One very rapidly growing sector, which demands good quality ADCs is neuroscience. Hu-

man brain has more than 100 billion neurons which conduct electrical impulses (signals) and are

the core components of the nervous system. The nervous system, which includes the brain and

spinal cord, which together comprise the central nervous system (CNS) and the ganglia of the

peripheral nervous system (PNS) is responsible for sending, receiving, and processing nerve im-

pulses throughout the body. All the organs and muscles inside your body rely upon these nerve

impulses to function. Basically, the nervous system controls everything that human do, see,

hear, smell, feel, think, remember, dream, etc. by conducting electrical impulses. In fact, brain

neuronal activity generates electrical currents, which in turn generate electrical field potentials

which can be measured by using special electrodes, located on the scalp in certain places. [1]

The measured signals, called electroencephalogram (EEG) signals, are in analog form and must

be digitized (by ADC) to enable easier and much faster signal storage, analysis, processing and

research. Since EEG signals contain information about the brain neuronal functions and neu-

rophysiological properties, nowadays, by using advanced signal processing techniques [2], it is

possible to understand different processes in the human body. Even further, by using advanced

signal processing techniques in modern Brain Computer Interface (BCI) systems [3], [4], [5], it

is possible to control ”by thoughts”, for example, wheelchair, robotic prosthesis, computer, or

even a car [6], [7], [8], therefore it is reasonable to believe that BCI is a future technology and

it is very important to develop such a field.

In general, BCI is a communication pathway between the brain and an external device. Typ-

ical BCI system consists of four main parts: electrodes, differential amplifiers, ADC(s) and data

processing / visualization device (i.e. PC). But, nowadays, in order to make it more accessible

and convenient to use, a modern BCI systems also include wireless data transmission [9], [10],

[11] and a battery as a power source. Despite the fact that development of such systems very

increasingly becomes the subject of research [12], [13], [14], still there exist various problems,
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weaknesses and limitations.

In order to prolong the life of battery and thus operation time of wireless BCI system, man-

agement of energy consumption is a crucial factor. As mentioned before, one very important

part of BCI system is ADC, where energy consumption can be significantly reduced. Even fur-

ther, by using appropriate ADC it is also possible to reduce the amount of information to be

transmitted, thus greatly reducing the energy consumption of a transmitter as well. But, exclud-

ing low energy consumption, ADC must also ensure proper sampling rate and resolution for

good signal quality as well as small physical size for convenient and lightweight on-head device

implementations.

Two types of ADCs can be differentiated: a) synchronous ADCs, for example, Flash ADC,

Digital Ramp ADC, Successive Approximation ADC, Tracking ADC, Sigma-Delta ADC and

Slope (integrating) ADC [15], [16], [17]; and b) asynchronous ADCs, for example, Zero Cross-

ing ADC, SineWave Crossing ADC, Level Crossing ADC, Send-on-Delta ADC, Peak Sampling

ADC and Asynchronous Sigma-Delta Modulator [18], [19], [20]. Each of these topologies have

its own advantages and disadvantages depending on the end-use application.

For BCI application, it is shown that asynchronous designs, instead of synchronous (which

are used in almost all available BCI systems), in ADCs, exhibit better properties such as lower

energy consumption, immunity to metastable behavior, modular design, low complicity, exclu-

sion of electromagnetic interference (EMI) and absence of clock jitter [21], [22].

Since EEG signals can be classified as a wide dynamic range signals, non-uniform sampling

method called Asynchronous Sigma-Delta Modulator (ASDM) has a great potential to improve

energy efficiency in BCI system [23], while maintaining other quality requirements. ASDM

is a Time Encoding Machine (TEM) which transforms the amplitude information of the sig-

nal into time information or time codes without the amplitude quantization error that exists in

the clocked converters. The method replaces high precision analog amplitude quantizer with

1bit comparator. This reduces the analog circuit complexity. The number of transitions can be

controlled by adjusting step size that is hysteresis of the comparator. This in turn reduces the

switching activity and the dynamic power consumption. [24] Latest implementations show that

it is possible to create standard ASDM with power consumption not exceeding 7.5nW [25].

However, due to wide dynamic range that EEG signals have, a high switching activity of

ASDM circuit appears when the input signal amplitude is low, causing increased power con-
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sumption of a wireless BCI system. Considering the above-mentioned, the main aim of this

thesis is to develop an improved method for signal encoding based on ASDM, which allows to

reduce the power consumption of the wireless BCI system, while maintaining the desired signal

quality. In order to reach the aim, following tasks have been defined:

• to carry out literature review and analysis on EEG signals, including neural activities,

action potentials, brain rhythms, EEG signal properties and measurement techniques;

• based on EEG signal and BCI system properties, to define requirements for ADCs;

• based on defined requirements, to carry out literature review and analysis on synchronous

and asynchronous ADCs and select the most appropriate ADC;

• to carry out an in depth analysis and research on ASDM, and identify the points of im-

provement;

• to carry out an in depth research on these improvements;

• to develop, test and assess the proposed methods.

Accordingly, the author has defined three theses:

1. In comparison to ASDM, the decrease of the number of switchings per second of the

Amplitude Adaptive Asynchronous Sigma-Delta modulator (AA-ASDM) output trigger

is determined by the mean value and the maximum value of the modulus of the signal and

the mean value of its estimated envelope function.

2. For electroencephalogram (EEG) signals, the AA-ASDM with the proposed envelope

function has up to 68.85% less average switchings per second of the output trigger, com-

pared to ASDM, while maintaining a 22-bit resolution of AA-ASDM conversion.

3. In comparison to ASDM, by using AA-ASDM it is possible to reduce energy consumption

of an event-driven data transmitter by 50% depending on the circuit parameters.

Based on the defined thesis and set tasks, the Doctoral thesis is divided into five sections. In

Section 1, a literature review on neural activities, action potentials, brain rhythms, EEG signal

properties and measurement techniques is carried out. Also, in this section, an in depth analysis

of synchronous and asynchronous analog-to-digital converters is performed, in order to iden-

tify their advantages and disadvantaged as well as suitability for BCI applications. Based on

this analysis, one the most suitable ADC for BCI is selected for in depth analysis in Section 2.
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This section is dedicated to research on ASDM, particularly on signal encoding and decoding

fundamental principles. Also, the main advantages and disadvantages are identified and ana-

lyzed. Knowing the main drawbacks of ASDM, in Section 3 the proposed new method, called

AA-ASDM is presented. This section describes the main theoretical principles of AA-ASDM

signal encoding and reconstruction, as well as fast and real-time reconstruction. In order to ver-

ify and assess this theory in practice, in Section 4 various simulations, modeling and physical

implementations are carried out for both ASDM (as a reference design) and AA-ASDM. Fi-

nally, at the end of this work, in Section 5, conclusion with suggestions for future research is

given. In appendices several mathematical derivations andMatlab codes related to ASDM and

AA-ASDM are given.

This Doctoral thesis is based on the papers [26], [27], [28] [29] by the author of this Thesis

and paper co-authors Rolands Shavelis and Modris Greitans. Here and further in the text, the

references with authors own contribution are highlighted in bold un underlined.
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1. BACKGROUND AND RELATEDWORK

The main purpose of this section is to describe previous research in the field of analog-to-

digital converts (ADC) and choose one the most appropriate for electroencephalogram (EEG)

encoding and brain computer interface (BCI) application as whole. In order to achieve this aim,

first of all it is necessary to understand the nature of EEG signals. For example, is it random? Is

it linear? Is it stationary? What are typical amplitudes and frequencies? etc. For this reason, the

Section 1.1 is dedicated to understanding how our brain works, what are the properties of EEG

signals, how these signals can be measured and how BCI systems work. Based on the results

achieved in Section 1.1, the most suitable for EEG signal encoding, synchronous (Section 1.2.1)

and asynchronous (Section 1.2.2) ADC’s will be chosen and analyzed against criteria set out in

the Section 1.2. After the analysis, performed in Section 1.2.1 and Section 1.2.2, the most

appropriate/promising ADC for brain computer interface (BCI) application will be selected for

further in-depth analysis in Section 2. At the end of this section a summary and conclusions are

given.

1.1 Electroencephalogram Signals

A brain-computer interface (BCI), sometimes called a mind-machine interface (MMI), direct

neural interface (DNI), or brain–machine interface (BMI), is a direct communication pathway

between the brain and an external device [30]. In order to establish this communication, first

it is necessary to measure brain neural activity. The brain neural activity can be measured by

the electroencephalogram (EEG) and the measured signals are called EEG signals. In order

to understand main properties of EEG signals, which further will be used to choose the most

appropriate ADC, in this section a brief overview on neural activities, action potentials, EEG

generation, brain rhythms, EEG measurement techniques and description of typical BCI will be

given.
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1.1.1 Neural Activities and Action Potentials

Human brain has more than 100 billion neurons (or nerve cells) which conduct electrical

impulses (signals) and are the core components of the nervous system [1]. The nervous system,

which includes the brain and spinal cord, which together comprise the central nervous system

(CNS) and the ganglia of the peripheral nervous system (PNS) is responsible for sending, re-

ceiving, and processing nerve impulses throughout the body [1]. In general, the CNS consists

of two types of cells: glial and nerve cells, which are located between neurons. As it is shown in

Fig. 1.1, each nerve cell consists of cell body (with nucleus), axons and dendrites. Nerve cells

sense changes in the environment, transmit information to other neurons (via axon terminal) and

respond to sensations. A nerve cell body has a single nucleus and contains most of the nerve

cell metabolism [2]. The axon, which can be several meters long, is specialized in information

(electrical impulses) transfer in the nervous system. In order to transmit the information faster,

axons are insulated by Schwann cells. [1] [2] [31]

Figure 1.1: Structure of a nerve cell [32]

Dendrites are connected to either the axons or dendrites of other cells and receive electrical

impulses from other nerves or relay the signals to other nerves [2]. In the human brain, through

dendrite connections, each nerve is connected to approximately 10,000 other nerves [2].

Generally, most of the activities in CNS are related to the synaptic currents, which are trans-

mitted between the synapses of axons and dendrites in order to pass the information. The in-

formation transmitted by a nerve over distances in the nervous system is called an action poten-

tial (AP). Action potentials can be initiated by different types of stimuli, for example, sensory

nerves respond to stimuli such as sound, light, pressure, electricity, touch, smell, etc. On the

other hand, the CNS nerves are stimulated mostly by chemical activity at synapses. All the

organs and muscles inside humans’ body rely upon these stimuli currents (nerve impulses) to
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function. Basically, the nervous system controls everything a human do, see, hear, smell, feel,

think, remember, dream, etc. by conducting electrical impulses. [1] [2] [31]

Action potentials are caused by an exchange of Na+ (sodium) andK+ (potassium) ions across

the neuron membrane and can only occur when opposite charges exist on two sides of a cell

membrane (intra- and extracellular space). In short, AP is simply an electric current, which is

created by sudden reversal in charge, that travels down an axon of a nerve cell. [2] [31]

As it is shown in Fig.1.2, when a nerve cell is resting (not transmitting impulses) the mem-

brane potential is −60mV . At this state Na+ and K+ ions move their concentration gradients

through their membrane channels to opposite sides of membrane, thereby ensuring that the num-

ber of positive charges on the outside is higher than on the inside. When nerve cell is sending

a signal (impulse), the membrane potential depolarizes (becomes more positive (rising phase)),

producing a spike. At this phase, additional Na+ channels open and the Na+ influx drives the

interior of the cell membrane up to approximately +25mV . After the peak of the spike, Na+

channels close and the K+ channels open therefore membrane potential re-polarizes and be-

comes more negative than the resting potential. After hyper-polarization phase, which prevents

the neuron from receiving another stimulus and thus ensuring that the signal is proceeding in

one direction, membrane potential returns to normal - resting level. Usually, for human, the AP

of most nerves last between 1 and 10 milliseconds and amplitude ranges between −60mV and

25mV . [2] [31] [33] [34]

Figure 1.2: The phases of an action potential [33]

An inflow of anions into the nerve cell and overflow of cations from the nerve cell causes a

potential change along the nerve cell membrane. Primary trans-membranous currents generate
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secondary ional currents along the cell membranes in the intra- and extracellular space. The

portion of these currents that flow through the extracellular space is directly responsible for

the generation of field potentials. These field potentials, which are usually with less than 100

Hz frequency, are called EEGs and can be measured also by non-invasive methods from scalp.

Basically, an EEG signal measurement is a measurement of currents that flow during synaptic

excitations of the dendrites of neurons in the cerebral cortex. The measured signal is a sum of

the large number of nerve cells (neurons) potentials, since only large number of neurons can

generate enough potential to be recorded from the scalp electrodes. [1], [2] [35]

1.1.2 Brain Rhythms

According to [36] the cerebral cortex can be divided into 52 Brodmann’s ”areas” (Fig. 1.3)

which designate functional regions in the cortex. For example, there is an area for the ”motor”

cortex, which control our muscles, an area for ”visual” cortex, which we see with, areas for

somatosensory cortex, and so on. [36]

Figure 1.3: 3D representation of Brodmann areas [37]

By taking into account Brodmann’s areas, when measuring and analysing neural activities in

the brain, it is possible to understand different processes in our body. Even further, it’s possible

to diagnose many neurological disorders and other abnormalities in the human body, such as,

epilepsy, seizures, sleep disorders, physiology, and many more. [2]

In order to be able to analyze EEG signals, it’s necessary to understand main EEG signal

properties. Our brain primarily operates in five brainwave states or brain rhythms, which can

be divided into bands by frequency. Brain rhythms range from being wide awake and active,

the beta brainwave state, to the calm, focused alpha state, and the creative, deeply meditative
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theta state, down to low wave, deep, dreamless, restorative sleep referred to as the delta brain-

wave state. Figure 1.4 shows the typical brain rhythms with their typical frequency ranges and

amplitude levels. [38] [39] [40]

Figure 1.4: Brain Rhythms (adopted from [39])

Delta waves. The typical frequency range is from 0.2 – 3.9 Hz, while typical amplitudes,

measured from the scalp, are from 100 - 200µV . Delta is the slowest band of brainwaves with the

highest amplitude and are primarily associated with deep, dreamless sleep and may be present

in the waking state. It is easy to confuse delta waves with artifact signals from neck and jaw

muscles. Nevertheless, by using simple signal processing methods it is easy to distinguish delta

waves from responses caused by excessive movement. [41] [42] [43]

Theta waves. The typical frequency range is from 4 – 7.9 Hz, while typical amplitudes

are from 5 - 10µV . Theta waves are associated with light sleep, creative inspiration, extreme

relaxation, deep meditation or even hypnotherapy and self-hypnosis. High theta wave activity

in an awake adult are abnormal and are caused by various pathological problems. [41] [43] [44]

Alphawaves. The typical frequency range is from 8 – 12.9 Hz, while typical amplitudes are

from 20 - 80µV . Alpha waves are associated with tranquility, light meditation and relaxation

without any attention or concentration. Alpha activity has also been associated to the ability to

recall memories, reductions in stress and anxiety and lessened discomfort and pain. Most of the

subjects produce more alpha waves when their eyes are closed. Usually, alpha waves appears
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as a sinusoidal or round shaped signal. A peak of alpha waves can regularly be seen in the beta

waves in frequencies up to 20 Hz. Also, quite often an alpha wave response is seen at 75 Hz.

[41] [43] [45]

Beta waves. The typical frequency range is from 13 – 40 Hz, while typical amplitudes are

from 1 - 5µV . Beta waves are the usual waking rhythm associated with mental activity, active

thinking, active attention, concentration, solving concrete problems, etc. High-level beta waves

may occur when a human is in a state pf panic. A central beta rhythm can be blocked by tactile

stimulation or motor activity. Many people lack sufficient beta activity, which can cause mental

or emotional disorders such as depression or insomnia. By stimulating beta activity it is possible

to improve emotional stability, attentiveness and concentration [46]. [41] [43]

Gamma waves. The typical frequency range is from 40 - 100 Hz, while typical ampli-

tudes are from 0.5 - 2µV . Gamma waves are associated with language and memory processing,

formation of ideas and various types of learning [47]. Gamma waves are thought to represent

binding of different populations of neurons together into a network for the purpose of carrying

out a certain cognitive or motor function [48]. [43]

Besides primary brain waves delta, theta, alpha, beta and gamma, there are other brain wave-

forms, like rho, mu, phi, kappa, tau, chi and lambda. [41]

All these brain rhythms together are forming the electroencephalogram signal (Fig. 1.5).

Figure 1.5: Electroencephalogram (EEG) signal

In general, EEG signals are the projection of neural activities that are attenuated by lep-

tomeninges, cerebrospinal fluid, dura matter, bone, galea, and the scalp. Cartographic dis-

charges show amplitudes of 0.5–1.5 mV and up to several millivolts for spikes. However, on

the scalp the amplitudes commonly lie within range of 0.5–200 µV . [41]

29



1.1.3 EEG Measurement

In neuroscience, electroencephalography is a very often used measurement technique for

brain electrical potential measurement. Using special electrodes, located on the scalp in certain

places, it is possible to get information about the brain neuronal functions and neurophysiolog-

ical properties.

EEG measurement and recording systems

Usually multi-channel electroencephalography systems consist of four main parts: elec-

trodes, differential amplifiers (one for each channel), analog-to-digital converter (ADC) and

data processing / visualization device (i.e. PC). But, nowadays, a modern multi-channel BCI

systems also include wireless data transmission (see Fig. 1.6) [9], [10], [11]. Depending on

the design, some systems are supplemented by other parts, for example, hardware filters, pre-

processing units, etc.

Figure 1.6: Block diagram of generalized EEG measurement and recording system

The EEG recording electrodes are crucial for high quality data acquisition. Currently, for

EEG recording systems, different types of electrodes are used, such as, disposable, reusable

silver/gold disc electrodes, headbands and electrode caps, saline-based electrodes, needle elec-

trodes, etc. Non-invasive scalp electrodes usually are divided into two groups: wet and dry

electrodes, where due to better contact with the skin, wet electrodes present higher signal qual-

ity. For multi-channel EEG systems with a large number of electrodes, one of the most popular

scalp electrodes are AgCl disks. Since high impedance (more than 5kΩ) between the cortex and

the electrodes can lead to distortions, modern EEG recording systems are often equipped with

impedance measurement sensors. [2] [49]

Since the amplitude of the EEG signal, measured from scalp, are only few µV , amplifiers are

an important part of the modern EEG measurement systems. In order to avoid distortions, these

amplifiers must meet certain requirements. First of all, they must have high input impedance

(at least 10MΩ), so they provide minimal loading of the signal being measured. Besides that,
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the input circuit must provide protection, since any current appearing across the amplifier input

terminals produced by the amplifier is capable of affecting the signal being measured. Also, the

amplifiers should have isolation and protection circuitry, so the current through the electrode

circuit can be kept at safe level and any artifact generated by such current can be minimized.

Furthermore, the output impedance of the amplifier must be low with respect to lead impedance

and it must operate in particular frequency range, thus ensuring optimal signal to noise ratio

(SNR).Modern EEG systems use differential amplifiers, where signals are obtained from bipolar

electrodes. In this case, the differential amplifier must have high common-mode-rejection ratio

(CMRR) (at least 120dB), in order to minimize interference due to the common-mode signal.

[49], [50]

In order to make EEG signal processing and analysis more effective, different ADCs are

used to digitize analog EEG signal. Since EEG signals can be classified as High Dynamic Range

(HDR) signals (see Section 1.4), ADC must have appropriate resolution not to lose important

components of the signal. By knowing typical amplitudes of the measured EEG signal from

previous section (0.5–200 µV ), it is possible to calculate desired resolution of the ADC.

In the case shown in Figure 1.7, the maximum peak to peak amplitude of the EEG signal is

2A, but minimum peak to peak amplitude: 2a.

Figure 1.7: Calculating ADC resolution depending on the signal dynamic range; 2A - maxi-
mum peak to peak amplitude, 2a - minimum peak to peak amplitude,M - quantization levels

By assuming that it is necessary to have M quantization levels between a and −a we can

write a following expression:

∆2 =
2a

M
, (1.1)

where a > 0 and ∆2 is the quantization step.
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In order to determine the desired resolution, i.e. how many bits (N ) are necessary for ADC

to encode EEG signal without loosing important components, we can write an equation forN -bit

ADC, where dynamic range is 2A:

∆1 =
2A

2N
, (1.2)

where ∆1 is the quantization step.

In this case, it is necessary to ensure following inequality:

∆1 ≤ ∆2 (1.3)

From (1.3) it follows:
2A

2N
≤ 2a

M
−→ N =

lnM · A
a

ln2
(1.4)

By knowing typical EEG signal amplitudes and assuming thatM = 10 is a sufficient condi-

tion, it is possible to calculate minimum number of bits, which are necessary to encode the EEG

signal:

N =
ln10 · 400

1

ln2
= 11.9658 ≈ 12 bits. (1.5)

Since EEG signal bandwidth in most cases is limited to approximately 200 Hz (see Section

1.4), there is no need to have ADCs with high sampling rate capabilities.

When EEG signal is digitized by ADC, it must be transmitted to signal reconstruction and

processing unit, which usually is some kind of embedded system or PC. Usually bluetooth or

wi-fi communication is used for wireless data transmission.

Currently, in modern BCI systems, one of the biggest challenges is to reduce the power

consumption in data acquisition part, i.e., to develop ultra low power amplifiers, ADCs and

transmitters, in order to prolong the life of the battery and thus operation time of a wireless BCI

system. State of the art low power, low noise amplifiers or their cascade with at least 80dB gain,

which is necessary for EEG signal amplification, consume starting from 1,37nW [51], [52], [53],

[54]. But low power ADCs, which can ensure 12-bit resolution, consume starting from 40nW

[55], [56], [57]. As expected, the most power consuming part of the data acquisition system

is transmitter. The power consumption of conventional transmitters varies between 3mW and

60mW [58], [59], [60] [61], but ongoing research shows, that it is possible to create a transmitter

which consumes few hundreds of nW [62], [63] or even hundreds of pW if an Ultra Wide Band

(UWB) technologies are used to transmit 100 events per second [64], [64], [65]. Although power
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consumption of UWB based transmitters is extremely low, the reception and reconstruction of

the signal is very complex and usually inaccurate. Also, the generation of different shape UWB

pulses is very complicated, thus limiting the number of channels which can be used for BCI

system.

Electrode Positioning

The International Federation of Societies for Electroencephalography and Clinical Neuro-

physiology has recommended the 10-20 system, which is the most commonly used method for

electrode placement on scalp for EEG tests and experiments (see Fig. 1.8). [41]

Figure 1.8: The international 10-20 system of electrode placement [66]

The 10-20 system, is based on the ratio (in%) between electrode location and underlying area

of cerebral cortex, where 10% and 20% refer to the actual distances between adjacent electrodes

of the total skull’s front–back or right–left distance (see Figure 1.8). In order to identify the

lobe and the hemisphere location, each of these positions has a designation, which consists of

a letter and a number. In this case, the letter F stands for frontal lobe, T - temporal lobe, C -

central lobe, P - parietal lobe, and O - occipital lobe. The numbers show in which hemisphere

particular electrode is located, if even number - on the right hemisphere, if odd number - on

the left hemisphere. In addition, also earlobe reference electrodes with expressions A1 and A2

are used in 10-20 system. Even though the original 10-20 system contains only 21 electrode,

modern systems, for example ”10–5 system”, use up to 256 electrodes. [67]
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EEG Signals and their Artifacts

EEG is complicated, continuous, non-stationary, non-linear and noisy signal, which is also

affected by different artifacts. [41] [68] The main artifacts can be divided into biological and

environmental/system artifacts.

The biological or internal artifacts include eye-induced artifacts or EOG (i.e. eye blinks,

eye movements, extra-ocular muscle activity), body movement-related artifacts, EMG (muscle

activation) induced artifacts, ECG (cardiac) and pulsation artifacts, glossokinetic artifacts and

others. [41] [48] An example of EEG signals, which are affected by biological artifacts is shown

in Figure 1.9. In order to remove biological artifacts different methods, such as independent

Figure 1.9: EEG signal affected by biological artifacts

component analysis (ICA) or blind source separation (BSS), are used. [69] [70] [71] The basic

idea behind such methods is to ”remix” only those components that would result in ”clean” EEG

signal by zeroing the weight of unwanted components. [48]

The environmental/system artifacts may result from 50/60 Hz power supply interference, an

electrode pops from patient movement, impedance fluctuation, electrical noise from the elec-

tronic components, cable defects, unbalanced impedance of the electrodes, etc. [41] [48] In

order to remove environmental/system artifacts and exclude any distortion of the EEG signals,

different filters are designed. Highpass filters (cut-off frequency less than 0.5 Hz) are used to

remove the low frequency components, for example, breathing. On the other hand, lowpass fil-

ters (cut-off frequency≈50–70 Hz) are used to mitigate high-frequency noise. In addition, also

notch filters with a null frequency of 50 Hz are used, in order to mitigate noise, coming from

the strong 50 Hz power supply. [41]
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1.2 Analogue-to-Digital Converters

Despite the fact that development of Brain Computer Interfaces (BCI) has increasingly be-

come the subject of research [12], [13], [14], still there exist various problems, weaknesses and

limitations. Since the recent trend is developing such systems more convenient in use [72], [73],

most of them are equipped with wireless data transmission and accordingly with a battery as a

power source. In order to prolong the life of the battery and thus operation time of wireless

system, management of energy consumption is a crucial factor. One very important part of all

BCI systems is analog-to-digital converter (ADC) (see Section 1.1.3), where energy consump-

tion can be significantly reduced. In addition, by choosing appropriate ADC, it is also possible

to reduce the power consumption of the transmitter, by reducing the amount of data to be trans-

mitted. Therefore the main aim of this section is to choose and analyse both synchronous and

asynchronous ADC’s against requirements/criteria, which are set out based on the EEG signal

properties (see Section 1.1) and BCI system as whole.

In order to be able to choose and analyse different ADCs, first of all the requirements/criteria,

against which all ADCs will be examined, must be set out. Based on EEG signal properties and

the current situation in the field of BCI’s (see Section 1.1), four main criteria have been set out:

Energy Efficiency. In modern wireless BCI systems, energy efficiency is a crucial parameter,

since lifetime of the battery is strongly related to the whole system’s power consumption. The

less power BCI system consumes, the longer it will operate. In this case, the most energy effi-

cient ADCs will have a greater advantage to be selected.

Encoding Complexity. In order to develop a miniature and convenient BCI system, it is im-

portant to reduce both, size and weight. This can be achieved by reducing complexity of the

overall BCI system. Since ADC is part of the whole system, it is also important to reduce its

complexity (and therefore costs as well). This can be achieved by using fewer elements at the

encoding side. ADC occupying the smallest area on the silicon die will have greater advantage

to be selected. In this case, all ADCs are compared evenly by finding the smallest, most energy

efficient ADC, which is implemented by using 180nm CMOS process technology and fits to

the Resolution and Sampling Rate requirements (see below).

Resolution. In general, the resolution defines the smallest analog input signal voltage change

that can be measured by the ADC. In practice, the resolution of the ADC is limited by the signal-
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to-noise ratio (SNR). If there is too much noise present in the analog input, it will not be possible

to reconstruct accurately the signal beyond a certain number of bits of resolution, the Effective

Number Of Bits (ENOB). ENOB defines ADC’s dynamic performance at the specific input fre-

quency and sampling rate. An error of an ideal ADC consists only of quantization noise. As

the frequency of the input signal increases, the overall noise also increases, thereby reducing the

ENOB. [74] In this case, the ENOB can be calculated as [74]:

ENOB =
SNR− 1.76

6.02
(1.6)

Since EEG signals can be classified as a high dynamic range (HDR) signals it is important

to have such ADC, which supports conversion of HDR signals. In this case, as shown in Section

1.1.3, ADC must ensure at least ENOB ≥ 12 bit resolution.

Sampling Rate. As shown in Section 1.1.2 and Section 1.1.3, EEG signal maximum frequency

does not exceed 200 Hz. Therefore, the parameter of sampling rate is not very demanding for

ADC and can be ensured by almost all ADCs. In this case, ADC must ensure at least 400 S/s

sampling rate.

Based on these requirements, in the next two sub-sections (Section 1.2.1 and Section 1.2.2),

both synchronous and asynchronous ADC techniques will be analysed with the associated trade

offs of each topology. After the analysis the most appropriate/promising ADC for BCI applica-

tion will be chosen for further in depth analysis and research.

1.2.1 Synchronous Analogue-to-Digital Conversion

Currently, the most popular architectures of analogue-to-digital converters (ADCs) are Flash

ADC (direct conversion), Pipeline ADC, Digital Ramp ADC, Tracking ADC, Successive Ap-

proximation (SAR) ADC and Sigma-Delta (Σ∆) ADC. Since all of these ADCs are driven by a

global clock, where ADC states are changed only on rising or falling edges of the clock pulses,

such ADCs are called synchronous ADCs. In this section, an overview of mentioned ADCs

as well as analysis in relation to set out requirements (energy efficiency, encoding complexity,

resolution and sampling frequency) is given.
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1.2.1.1 Flash Analogue-to-Digital Converter

Flash ADC, also called parallel ADC, is the fastest type of ADCs. [75] Figure 1.10 shows

the block diagram of Flash ADC. A N -bit Flash ADC consists of 2N resistors and 2N − 1

Figure 1.10: Flash ADC: a) block diagram; b) analog input signal (red color) and digital out-
put signal (blue color)

comparators, each one comparing the input signal to reference voltage. When analog input signal

voltage exceeds the reference voltage (+VREF ) at each comparator, the comparator outputs will

sequentially saturate to a high state. It means that for a given input voltage, all the comparators

below a certain point will have their input voltage larger than their reference voltage and a ”1”

logic output, and all the comparators above that point will have input voltage lower than the

reference voltage and a ”0” logic output. Since the input signal is applied to all the comparators

at once, the output is delayed by one comparator delay from the input, and the encoder N -bit

output by a few gate delays, so the conversion process is very fast. The outputs of comparators

are connected to the priority encoder circuit, which produces an N -bit binary output, based on

the highest-order active input, ignoring all other active inputs. [75] [76]

EnergyEfficiency. Energy consumption is always a big consideration in flashADCs, especially

at resolutions above 8-bits. The latest research results show, that it is possible to create Flash

ADC with power consumption 127 µW (180 nm technology) [77] or even 72 µW (45 nm

technology) [78], however, resolution will be no more than 4-bits. If resolution is increased to
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8-bits or more, the energy consumption will increase either, as it is shown in [79], where 8-bit

Flash ADC consumes 690 µW (130 nm technology).

Encoding Complexity. As shown in Figure 1.10, Flash ADC architecture uses large numbers

of resistors (2N ) and comparators (2N − 1). It means, if there is a need for 8-bit (N = 8) Flash

ADC, it will consist of 28 = 256 resistors and 28 − 1 = 255 comparators. Thereby there is a

high energy dissipation due to large number of comparators and therefore relatively large (and

therefore expensive) chip sizes, thus making Flash ADC encoding complex. [75] The most

suitable Flash ADC, with 90,8mW power consumption, 8-bit resolution and 2 GS/s sampling

rate will occupy 0.253mm2 of a silicon die. [80]

Resolution. In practice, relatively high complexity hybrid Flash ADCs (e.g. Flash + SARADC)

are available with up to 14 bits of resolution [81], [82], but standard Flash ADCs usually have

only 3-8 bits. [75]

Sampling Rate. The maximum sampling rate is the main strength of Flash ADCs. It can be

as high as 20 GS/s for low resolution (4-bit), high power consumption (15.5mW ) Flash ADCs

[83] and 1.42 GS/s for 8-bit, 0.54mW Flash ADC [84].

1.2.1.2 Pipeline Analogue-to-Digital Converter

Figure 1.11 shows the block diagram of Pipeline ADC, also called multi-step ADC. Pipeline

Figure 1.11: Pipeline ADC: a) block diagram; b) analog input signal (red color) and digital
output data (blue color)
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ADC’s operation is very similar to Two-Step Flash ADC [85]. First, the analog input signal

value is captured and held steady (”S&H” block), while the flash ADC in ”Stage 1” quantizes

it to 3 bits (see Figure 1.11).

The 3-bit Flash ADC output is then fed to a 3-bit digital-to-analogue converter (DAC) (ac-

curate to 12 bits), and the analog output is subtracted from the analog input. The output of

adder (residue) is then gained up by a factor of 4 and fed to subsequent stages. As soon as

any of stages has performed its task, it can quantize the next input sample without waiting for

the residue of a specific sample to reach the end of the pipeline, to complete its quantization.

Therefore, the throughput of the pipeline ADC is similar to Flash ADC, but its latency is higher.

The more stages there are, the higher the latency will be. Since the bits from each of the stages

are determined at different time instants, they are time-aligned with shift registers before being

fed to the digital-error-correction logic, where by estimating and correcting inter stage gain it is

possible to enhance the resolution.[85] [86]

The main advantage of Pipeline ADC is high sampling rate (from 1MS/s for high resolution

16-bit ADCs up to 100+ MS/s for lower resolution 8-bit ADCs) with high bandwidth, therefore

Pipeline ADC covers a wide range of applications. On the other hand, parallelism increases not

only throughput, but also power consumption and latency. [87]

Energy Efficiency. Pipeline ADC architecture offers one of the best performances in terms of

speed and power. In such an architecture, the main power dissipation components in each of the

Pipeline stages are operational amplifiers in Flash ADC and DAC (see Figure 1.11), which are

consuming 65-80% of the total power. The power consumption from other components, such as

clock generators, biasing circuits and digital circuitry, usually is much smaller and almost inde-

pendent from the number of bits/stage. [88] There is a trade-off between the speed, resolution

and power. The latest low power implementations show that it is possible to create a Pipeline

ADC with power consumption as low as 1-10mW [89], [90], [91], [92] with 50-200 MS/s and

10-bit resolution. But for preferred 12-bit resolution, low power Pipeline ADCs will consume

20-60mW [93], [94], [95]

Encoding Complexity. As shown in Figure 1.11, Pipeline ADC has very complex architecture

due to multiple ”stages”, where each ”stage” consists of several elements, such as comparators,

amplifiers, etc. If the number of stages is reduced, there will be more bits per stage and thereby

more comparators, which increase the overall power consumption as well as occupied silicon
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die area. On the other hand, if the amount of amplifiers is lower (saves energy), accuracy is

higher and latency smaller. But, if there is a large number of stages and thereby fewer bits per

stage, there is a higher amount of amplifiers (which increase the overall power consumption),

lower accuracy and makes larger latency. On the other hand, fewer comparators allow to reduce

power consumption and complexity of the circuit significantly. Due to this trade-off, the least

complex designs usually involve 3-4 bits per stage. [96] The most suitable Pipeline ADC, with

30mW power consumption, 12-bit resolution and 25 MS/s sampling rate will occupy 0.86mm2

of a silicon die. [97]

Resolution. In order to simplify the Pipeline ADC’s layout and implementation, usually all

”stages” are designed with the same resolution, thereby it is possible to use the same reference

voltage for all quantizers and DACs. Still, different design trade-offs may use different resolu-

tions for each stage. Then, normally, the first stage is with a higher resolution. For high speed

designs, usually lower per-stage resolution is used, but for low-power designs higher per-stage

resolutions are used. [85] In practice, Pipeline ADCs have higher resolution then Flash ADC,

which is up to 16-bits [98], while maintaining high sampling frequency.

Sampling Rate. In Comparison to Flash ADCs, Pipeline ADCs are almost as fast as Flash

ADCs, but with much higher resolution. It can be as high as 5 GS/s for 8-bit, 150mW Pipeline

ADC [99] and 200 MS/s for 12-bit, 11.5mW Pipeline ADC [93], [94].

1.2.1.3 Digital Ramp Analogue-to-Digital Converter

Digital RampADC, also called as a stairstep-rampADC, has one of the simplest architectures

of all ADCs. Figure 1.12 shows the block diagram of Digital Ramp ADC. In Digital Ramp

ADC, the output of a free-running binary counter (CTR) is connected to the input of a Digital

to Analogue Converter (DAC). At the beginning of the conversion, the CTR is set to zero and

comparator’s output is ”high”. Then, with each clock pulse, the CTR incrementally counts up

until the output voltage of the DAC is higher than the analogue input voltage. At this moment

of time, the comparator’s output will switch to ”low” state and CTR will stop counting and reset

to zero on the next clock pulse (see Fig. 1.12 b)). Also, at this moment, the shift register (SRG)

will “load” the binary output of CTR, thus updating the circuit’s digital output (see Fig. 1.12

c). As it can be seen in Fig. 1.12 b) and c), due to time which is necessary for ramp to rise, for
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Figure 1.12: Digital Ramp ADC: a) block diagram; b) analog input (red color), DAC output
(green color); and c) digital output (blue color)

higher input voltages it takes longer time to convert, therefore sampling rate is not fixed, which

is unacceptable in many applications. [100]

Energy Efficiency. Even though Digital Ramp ADC has a simple architecture and thereby a

potential to be very energy efficient, due to variations in sampling frequency and thereby low

application range, there are very few research groups working in this field. As a result, the

achieved performance isn’t as high as it could be. Although Digital Ramp ADC requires only

one comparison per clock cycle, the latest research results show that 12-bit Digital Ramp ADC

will consume up to 3mW at average sampling rate of ≈1,28 MS/s [101], [102]. For lower

resolution, it is possible to achieve power consumption of µW [103].

Encoding Complexity. Since Digital Ramp ADC usually does not need any calibration circuit

and regardless of the resolution it has only one comparator, the Digital Ramp ADC architecture

can be considered as a low complexity or even very low in most simple cases. [104] The most

suitable Digital RampADC, with 3.8mW power consumption, 12-bit resolution and 0.746MS/s

sampling rate will occupy ≈0.017mm2 of a silicon die. [102]

Resolution. Current state-of-the-art Digital Ramp ADCs achieve up to 12 bit resolution and

sampling rate up to 2,5 MS/s. [101], [102] The accuracy of the Digital Ramp ADC depends on

the ramp generator (or the DAC) as well as the oscillator. [75]

Sampling Rate. Since Digital Ramp ADC’s circuit needs to count from zero level all the way

from the beginning of each count cycle, the sampling rate is not only relatively slow, but also

depends on how high the input signal voltage is, i.e., for low input voltages, the sampling rate is
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higher, but for higher input voltages, it takes longer time to convert, which means sampling rate

isnt’t fixed. [100] For low resolution applications (4-6 bits), Digital Ramp ADC can achieve

up to 250 MS/s with power consumtion of 1mW [104], but for desired 12 bits, up to 2,5 MS/s

(24mW ) [105].

It is possible to avoid using a DAC by replacing it with an analog ramping circuit (integrator).

Such ADC is called Slope, or integrating ADC. In this case, the reference voltage for comparator

is a smooth sawtooth waveform rather than a “stairstep”. Nevertheless, Slope ADC has all the

disadvantages of the digital ramp ADC, with the added drawback of calibration drift. The only

advantage of this circuit is that it avoids the use of a DAC, which reduces circuit complexity.

There are also dual-slope, triple-slope and even quad-slope ADCs which allow to increase the

resolution and sampling rate at the cost of added complexity. [75], [100]

1.2.1.4 Tracking Analogue-to-Digital Converter

Tracking ADC is another variation of the counter-DAC-based converter (see Section 1.2.1.3

and Section 1.2.1.5). As shown in Fig. 1.13, instead of using regular ”up” counter, Tracking

Figure 1.13: Tracking ADC: a) block diagram; b) analog input (red color) and digital output
(blue color)

ADC uses an ”up/down” counter in order to drive the DAC. The ”up/down” counter is driven

by the output of the comparator. When analog input signal exceeds the DAC output, the counter

counts up, on the other hand, when the DAC output exceeds the analog input, the counter counts

down, thus tracking the analog input signal value (see Fig. 1.13 b)). Since the counter never has

to reset, the conversion speed is higher then in other ”counting” ADCs. Also, there is no need
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for a shift register and the binary output is updated with every clock. Tracking ADCs are not

very common, but their advantages are valuable in synchro/resolver to digital converters, where

Tracking ADCs are most often used. [75], [76], [100]

Energy Efficiency. Similarly to Digital Ramp ADC, Tracking ADC has a small application

range and therefore there are very few research groups working in this field. Research results

shows that it is possible to achieve 84µW power consumption for 6-bit, 50MS/s Tracking ADC

and 0.49mW for 6-bit, 130MS/s Tracking ADCs [106], [107]. For higher resolution applica-

tions, the power consumption of Tracking ADC is also higher, for example, 12-bit ADC will

consume from 50mW [108].

Encoding Complexity. In the most simple case, the complexity of Tracking ADC is low, how-

ever the binary output is never stable. The stability issue can be solved by a using specific

shift register which increases the overall circuit complexity. Also, if the resolution is increased,

the complexity will increase as well [107], [109]. Therefore, the Tracking ADC can be char-

acterized as medium complexity. [100] The most suitable Tracking ADC, with 50mW power

consumption, 12-bit resolution and 500 S/s sampling rate will occupy ≈0.35mm2 of a silicon

die. [109], [108]

Resolution. Currently Tracking ADCs can achieve up to 12 bits of resolution, with sampling

rate up to 0.5 kS/s [108]. The resolution of Tracking ADCs is relatively low and does not exceed

12-bits. [75]

Sampling Rate. From Fig. 1.13 b), it can be seen that if the analog input signal changes slowly,

the counter will be able to track it, but if there will be a sudden change in the signal, it will

take thousands of clock cycles before the output is correct again. Therefore, Tracking ADCs

can respond quickly to slowly changing signals, but slowly to rapidly changing signals. [75]

Current research results show that for low resolution applications (up to 6-bits) it is possible to

achieve up to 130 MS/s, but for desired 12-bits, only 0.5 kS/S, which is enough for EEG signal

sampling. [108]

By replacing the ”up/down” counter with SAR logic, we obtain a Successive Approximation

ADC (see next Section 1.2.1.5).
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1.2.1.5 Successive Approximation Register Analogue-to-Digital Converter

Successive Approximation Register (SAR) ADC architecture is very similar to Digital Ramp

ADC (see Fig. 1.12) and Tracking ADC (see Fig. 1.13), the only difference is a counter circuit

(Successive Approximations Register), which allows to address the main disadvantages of Digi-

tal Ramp ADC (see Fig. 1.14). Figure 1.14 shows the block diagram of SAR ADC. In this case,

Figure 1.14: Successive Approximation Register ADC: a) block diagram; b) analog input (red
color), DAC output (green color); and c) digital output (blue color)

instead of incrementally counting up in binary sequence, SAR counts by trying all values of

bits starting with the most-significant bit (MSB) and finishing at the least significant bit (LSB).

During the count process, when the input voltage is compared against the output of an N-bit

DAC, the output of the comparator (high or low) is monitored by a register to see if the binary

count is greater than or less than the analog signal input, and adjusts the bit values accordingly

(see Fig. 1.14 b)). As each bit is determined, the output of the SAR corresponds to the value of

analog input signal and form the basis of the SAR ADC serial output. It should also be noted

that the overall SAR ADC accuracy and linearity is determined primarily by the internal DAC.

[76] [75]

SAR ADC is usually used for low power, medium to high resolution applications with sam-

ple rates up to 200 MS/s. The main advantages of SAR ADC are low latency, high accuracy,

low power and simple architecture. Compared to Digital Ramp ADC, SAR ADC converges on

the input signal much faster and it has a fixed sampling rate. Due to all mentioned SARADC ad-

vantages, it is one of the most popular ADCs used for bio-potential measurements. SAR ADCs
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are available in a wide variety of power consumptions, sampling rates, resolutions, input and

output options, costs and package styles. [75]

Energy Efficiency. SAR ADCs are one of the least power consuming ADCs from all ADCs,

especially, when resolution is between 4 and 10 bits, but sampling rate a few KS/s. The lat-

est research results show that it is possible to create a SAR ADC with power consumption of

impressive 717pW for 8-bits and 1 KS/s [110] and 3nW for 10-bits, 1 KS/s [111]. For higher

resolution application the power consumption is also much higher, but still relatively low. For

example, desired 12-bit SAR ADC will consume starting from 100nW (1 KS/s) [55], but 18-bit

SAR ADC will consume already 30.52mW (5MS/s) [112].

Encoding Complexity. Although the SAR ADCs consist of one SAR, one DAC, one compara-

tor and a logic control unit, their analog design is relatively intensive and more complex than

Digital Ramp ADC, therefore it can be characterized as a medium complexity. [113] The most

suitable SAR ADC, with 100nW power consumption, 12-bit resolution and 20 KS/s sampling

rate will occupy 0.3mm2 of a silicon die. [55]

Resolution. Recent technological developments allow to extend the resolution of SAR ADCs

up to 24 bits [114], [115], but usually SAR ADCs are in the range of 8-18 bits [116]-[117].

Sampling Rate. Recent SAR ADC design improvements have extended the sampling rate to

GS/s region, but this is valid only for low resolution SAR ADCs. The most extreme case is 36

GS/s, 6-bit, 110mW SAR ADC [118], but for desired 12-bit resolution, the sampling rate is up

to 36 MS/s, with power consumption of nW [55].

1.2.1.6 Sigma-Delta Analogue-to-Digital Converter

As shown in Fig. 1.15 a), in Sigma-Delta ADC, also called an oversampling converter,

the analog input signal summed with the output of DAC is fed into an integrator, producing

a slope, which corresponds to input magnitude. Then, in the N-bit ADC, the output of the

integrator is compared to ground potential, producing high or low output, depending on whether

the integrator output is positive or negative. Afterwards, the output of comparator is latched

through a D-type flip-flop, which is clocked at high frequency, and the output of latch, through

DAC and subtraction from the input, is fed back to the integrator, to drive it in the direction of a

0 volt output. At the end, the digital filter removes the noise, but decimator reduces the output
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Figure 1.15: Sigma Delta ADC: a) block diagram; b) analog input (red color), integrator out-
put (green color) and digital output (blue color)

data rate back to the Nyquist rate. The digital output of Sigma-Delta ADC is a serial bit stream.

[75] [100]

Sigma-Delta ADCs are usually used for low speed, high resolution applications. Due to their

advantages - high resolution and stability, low noise, power consumption and cost, Sigma Delta

ADCs just as SAR ADCs are one of the most popular ADCs used for bio-potential measurement

applications.

Energy Efficiency. Sigma-Delta ADCs can be considered very energy efficient, especially,

when sampling rate is few KS/s or less. The latest research results show that it is possible to

create a Sigma-Delta ADC with power consumption of 125nW for 8-bits and 64 S/s [119], but

for higher resolution application the power consumption is also higher. For example, for desired

12-bits, Sigma-Delta ADC will consume starting from 600nW (0.5 KS/s) [120], but practical

implementations show 150µW and more [121].

Encoding Complexity. As shown in Fig. 1.15, in the most simple case, Sigma-Delta ADC in-

cludes integrator, comparator, 1-bit DAC, which is in a feedback and a clock unit that provides

proper timing for the modulator and digital filter. In this case, the complexity can be charac-

terized as low, but, since multi-bit quantizers are usually used to increase the resolution, it also

greatly increases the overall complexity and size of the circuit. Therefore, the complexity of

Sigma-Delta ADC can be characterized as medium/high. [113] The most suitable Sigma-Delta

ADC, with 13.3µW power consumption, 12-bit resolution and 512 S/s sampling rate will oc-

cupy 0.51mm2 of a silicon die. [57]

Resolution. Current state-of-the-art Sigma-Delta ADCs achieve up to impressive 32 bit reso-

46



lution with sampling rate up to 38 KS/s [122], [123], but in this case, the ADC will consume

from 20-100mW . However, there are also available Sigma-Delta ADCs with lower resolution,

sampling rate and power consumption [120], [121].

Sampling Rate. The high resolution of the Sigma-Delta ADC comes at the expense of sampling

rate. The fastest Sigma-Delta ADCs can achieve up to 640 MS/s [124], but energy consumption

will be ≈500mW . Since EEG encoding demands only 200 Hz sampling frequency, there are

various Sigma-Delta modulators which offer very low sampling rates (125-500 S/s) and low

power consumption [121], [125], [126].

1.2.2 Asynchronous Analogue-to-Digital Conversion

Although some of synchronous ADC architectures (see Section 1.2.1) fit the defined require-

ments and could be used for EEG and BCI applications, most of them exhibit poor properties

in terms of electromagnetic interference (EMI), complexity of circuit, sensitivity against power

supply voltage, temperature and development process parameter variations, delays, etc. [21],

[22].

An alternative to synchronous ADCs is asynchronous ADCs, which due to its great prop-

erties often are used for encoding of non-stationary signals. [14], [23] Since EEG signals can

be classified as a wide dynamic range signals, non-uniform sampling methods have a great po-

tential to improve energy efficiency, reduce complexity of the encoding and avoid unnecessary

EMI in brain computer interfaces (BCI) [23].

The most popular non-uniform sampling methods found in literature are Zero crossing ADC,

Sine-wave crossing ADC, Level crossing ADC, Send-on-Delta ADC, Asynchronous Sigma-

Delta modulator and Peak Sampling ADC.

Therefore, in this section, an overview of mentioned ADCs as well as analysis in relation

to set out requirements (energy efficiency, encoding complexity, resolution and sampling fre-

quency) is given.

47



1.2.2.1 Zero Crossing Analogue-to-Digital Converter

Reference crossing techniques are one type of asynchronous encoding, where Zero Crossing

ADC is the simplest of all. Figure 1.16 shows the block diagram of Zero Crossing ADC. In

Figure 1.16: Zero-Crossing ADC a) block diagram; b) analog input (red color), zero voltage
reference (green color) and digital output (blue color)

general, it detects the transition of an analog input signal waveform from positive to negative and

negative to positive. When such transition occurs, there is a change in the output of comparator

that coincides with the zero voltage condition. The output is a square wave. [127]

Although Zero Crossing ADC’s block diagram appears to be very simple, in fact it is quite a

challenge to create a Zero Crossing ADC for high frequency applications. For instance, if high

accuracy is needed, already 1 kHz signal starts to present a real challenge for the comparator.

Essentially, the comparator must have low input offset, high slew rate and speed. In practice,

most of the comparators do not switch at exactly 0 V, and usually have asymmetrical dead band.

Only with several modifications it is possible to obtain true 0V detection, which increase the

complexity of the circuit. Also, supply voltage is quite critical factor for the comparator, the

higher it is, the further the output voltage has to swing. In addition, high speed comparators will

consume more power. [127], [128]

Even though Zero Crossing ADC has very low complexity and thus the energy consump-

tion, it can’t be used for EEG signal encoding, since one level crossings are not enough to ensure

Nyquist step, i.e., the distance between two consecutive level crossings (time instants) will ex-

ceed the Nyquist step and thus the signal will not be recoverable. [129] Therefore Zero Crossing

ADC will not be analyzed with regards to Energy Efficiency, Encoding Complexity, Resolution

and Sampling Rate requirements.
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1.2.2.2 Sine Wave Crossing Analogue-to-Digital Converter

Since it is not possible to reconstruct EEG signal from zero crossings (see Section 1.2.2.1),

choosing an appropriate reference signal(s) (function(s)) is vital for effective implementation of

ADC. One such reference signal is sinusoidal function, which can be easily generated, stabilized

and used for input signal reconstruction. [19]

As shown in Fig. 1.17, in the most simple case, Sine Wave Crossing (SWC) ADC consist

of a sine wave generator and a comparator, where analog input signal is compared with a sine

wave reference signal. Digital output is ”1”, when the analog input signal exceeds the reference

Figure 1.17: Sine Wave Crossing ADC a) block diagram; b) analog input (red color), sine
wave reference signal (green color) and digital output (blue color)

signal and ”0” when it does not. It should be noted that sine-wave amplitude must be higher than

amplitude of the input signal. By knowing the reference signal and time instants of the digital

output rising and falling edges, it is possible to reconstruct the original input signal. Since the

comparator is a core element of the SWC ADC, it also determines performance of the SWC

ADC. Also, the quality of the generated sine wave can effect the SWC ADC performance [19],

[130]

Energy Efficiency. At the time of writing this thesis, exact calculations of SWC ADC energy

consumption are not found in the literature. Therefore, a rough estimation of power consumption

of a simple SWC ADC was performed, by analyzing SWC ADC’s circuit in Fig. 1.17 a).

Sine-wave signal can be generated by dynamic programming of DAC, Phase-Locked-Loop

(PLL)-based technique [131], Direct Digital Synthesis (DDS) chips [132] or by simple cir-

cuit comprising two operational amplifiers (e.g., dual OpAmp chip LPV542, which consumes

≈882nW ) and few passive elements. The comparator, according to [19] must ensure a response

time of at least 1µS, in order to ensure 12-bit resolution. The most energy efficient comparator,

which meets this requirement is TLV3201 [133], which consumes≈108µW . So, in the simplest
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case, with the mentioned components, it is assumed that SWC ADC would consume≈110 µW .

Encoding Complexity. As the SWC ADC consists of two operational amplifiers, one com-

parator and few passive elements, it can be characterized as very low complexity circuit, even

though physical implementation can not be found in the literature.

Resolution.The resolution mostly depends on the duration of the time slots, within which the

comparator compares the values of input signal and reference signal. As shown in [19], in order

to ensure necessary 12-bit, the comparator must ensure a response time of at least 1µS. [19]

Sampling Rate. The maximum sampling rate is highly dependent on sine-wave reference signal

frequency. In the available literature it can be found that with several modifications, the average

sampling rate can be achieved as high as 60 MS/s. [19]

1.2.2.3 Level Crossing Analogue-to-Digital Converter

As shown in Section 1.2.2.1, it is not possible to reconstruct EEG signal from zero reference

signal level crossings. In order to be able to reconstruct it, several threshold (quantization)

levels can be used. Figure 1.18 shows the block diagram of Level Crossing ADC. Such Level

Figure 1.18: Level Crossing ADC a) block diagram; b) analog input (red color), quantization
levels (gray color) and digital output (blue color)

Crossing (LC) ADC approach usually consists of a comparator, up/down counter, n-bit DAC

(which defines quantization levels), timer and control logic. In LC ADC, samples are generated

only when the analog input signal crosses the predefined quantization levels, while the time in
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between two consecutive samples is measured by a timer.The conversion results are composed

of digital codes for the voltage magnitude and the time intervals of the samples. [134]

The main advantages of LC ADC are: low sampling rate (in some cases even below Nyquist

[135]), especially for low frequency and low amplitude signals (i.e. EEG), and thus lower power

consumption; low quantization noise floor (signal to noise plus distortion ratio (SNDR) exceeds

the theoretical limit of conventional systems with the same resolution in amplitude); low EMI

emission (due to absence of clock); and other (see [134], [136]).

Energy Efficiency. In LC ADC, the DAC and the comparator consume most of the power. The

latest research results show that it is possible to create a LC ADC with power consumption of

582nW for 6-bits and 3.3kHz input bandwidth [134], 3µW for 8-bits and 20kHz input band-

width [137], but for desired 12-bits, LC ADC will consume starting from 1.7mW with 144kHz

input bandwidth [138], [139].

Encoding Complexity. As the LC ADC architecture is not driven by any global clock, but only

by the analog input itself, it allows to reduce not only power consumption, but also complex-

ity, die area, and electromagnetic emissions. [138] Therefore, the complexity of the LC ADC

circuit can be characterized as low/medium. The most suitable LC ADC, with 1.7mW power

consumption, 12-bit resolution and 144kHz (equivalent to≈288kS/s) input bandwidth sampling

rate will occupy ≈0.3mm2 of a silicon die. [138]

Resolution. The resolution in LC ADC mostly depends on the DAC and the comparator. Cur-

rent state-of-the-art low energy LC ADCs achieve up to 12-bits with 144kHz input bandwidth.

[138]

Sampling Rate. For 12-bits, the input bandwidth up to 10MHz (or ≈20 MS/s sampling rate, if

roughly converted) can be achieved [138], [139].

In order to increase the noise resistance and reduce the number of samples, it is possible

to use a LC ADC modification, called Send-on-Delta (SoD) ADC. In SoD ADC, the sampling

is triggered if the signal deviates by predefined step value ”delta” from the value referred to

the most recent sample. Thus, the sample is not triggered until the analog input signal remains

within a certain interval of delta. [140], [141], [142] On the other hand, fewer samples mean

more complicated signal reconstruction.
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1.2.2.4 Asynchronous Sigma-Delta Modulator

Asynchronous Sigma-Delta Modulator (ASDM) is a Time Encoding Machine (TEM) which

transforms the amplitude information of the signal into time information or time codes without

the quantization error that exists in the clocked converters. Figure 1.19 shows the block dia-

gram of ASDM. The ASDM consists of an integrator, a non-inverting Schmitt and a negative-

Figure 1.19: Asynchronous Sigma-Delta modulator a) block diagram; b) analog input (red
color), integrator output (green color) and digital output (blue color)

feedback, where κ, δ and b are circuit parameters. [143]

Energy Efficiency. ASDM is one of the less power consuming ADCs. The latest research

results show that it is possible to create an ASDM with power consumption of only 7.5nW

for 8-bits and 250Hz input signal bandwidth [25], [144]. Knowing that ASDM frequency dou-

bling increases the SNR by 1-bit (see (2.15) and (2.16)), in order to achieve desired 12-bits, it

is necessary to increase ASDM frequency 16 times. As shown in [145], if ASDM frequency is

increased 20 times, the overall ASDM power consumption will increase only by 25%, which

means in [25] case, the proposed circuit for 12-bits will consume not more than 9,375nW.

Encoding Complexity. In ASDM, the complexity of the system is moved from the encoding

part to the decoding part, therefore the modulator itself is very simple and can be implemented

with very few elements. Therefore its complexity can be characterized as very low. For exam-

ple, as shown in [146], ASDM circuit with 12-bit resolution can be implemented in 0.026mm2

area of a silicon die.

Resolution. ASDM usually is used for low resolution applications, but latest research results

show, that it is possible to achieve up to 13-bit resolution with 2MHz input bandwidth [146].

The resolution highly depends on precision of the trigger (jitter, slew rate) as well as on time-
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to-digital (TDC) converter.

Sampling Rate. The fastest ASDMs can encode signals up to 12MHz (equivalent to≈24MS/s)

[147], but then power consumption will be high. Since this requirement demands only 400 S/s

sampling rate, there are various ASDMs which offer very low sampling rates (60-500 S/s) with

lower power consumption [148], [25], [149].

1.2.2.5 Peak Sampling Analogue-to-Digital Converter

Peak Sampling ADC, also called Min-Max sampling ADC, captures a sample every time

an analog input signal reaches its local maximum or minimum value (see Fig. 1.20). The main

Figure 1.20: Peak Sampling ADC a) block diagram; b) analog input (red color) and digital
output (blue color)

Peak sampling ADC advantage is that sampling density depends only on the input signal (in

LC ADC case, it also depends on the placement of the levels). On the other hand, compared to

uniform sampling or LCADC, Peak Sampling ADC has lower signal to noise (SNR) ratio. Also,

both amplitude and time instants must be quantized, therefore the number of bits per sample is

larger. [150], [151], [152]

At the time of writing this thesis, only one physical implementation of Peak Sampling ADC

has been presented [152], therefore the estimation of Peak Sampling ADC is very limited.

Energy Efficiency. In Peak Sampling ADC, the power consumption highly depends on the

activity of input signal. For lower ratio of peaks, Peak Sampling ADC is more energy efficient.

As shown in [152], it is possible to reduce SAR ADC power consumption by up to 18%, if the

ratio of peaks does not exceed 10% or up to 9%, if ratio of peaks does not exceed 20%. Even

though particular implementation consumes≈15µW , it is clear, that for 7.5nW SAR ADC (see
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1.2.1.5) it would be also possible to reduce the energy consumption for ≈ 18%, resulting in

≈6nW power consumption. [152]

Encoding Complexity. Since the overall architecture includes Peak Sampling circuit as well as

SAR ADC circuit, based on previous consideration about SAR ADC, the overall circuit com-

plexity can be characterized asmedium/high. [152] Themost suitable Peak SamplingADC,with

15µW power consumption, 8-bit resolution and 1.25 MS/s sampling rate will occupy 0.23mm2

of a silicon die. [152]

Resolution. In [152] implementation, an 8-bit SAR ADC is used as a part of the system. But,

since the resolution depends on the selected SAR ADC, by choosing appropriate SAR ADC for

Peak Sampling ADC, theoretically up to 24-bit resolution can be ensured.

Sampling Rate. As shown in [152], the maximum conversion rate of Peak sampling ADC is

≈1.25MS/s, which is mainly limited by the internal DAC delay in the conversion circuitry. But,

if SAR ADC with higher sampling rate (e.g. 36 GS/s) is used (see 1.2.1.5), the proposed circuit

in [152], theoretically could ensure 10% of this sampling rate, i.e. ≈3.6 GS/s.

1.3 Summary and Conclusions

In Section 1.1, the origin, properties and measurement techniques of an electroencephalogram

(EEG) signals were described and analyzed. Human brain has more than 100 billion neurons

which conduct electrical impulses and are the core components of the nervous system. These

electrical activities can be measured by non-invasive methods from scalp by using electrodes,

and the measured signals are called EEG signals. Since human’s brains primarily operates in

five brain rhythms: Delta (0.2-3.9Hz), Theta (4-7.9Hz), Alpha (8-12.9Hz), Beta (13-40 Hz) and

Gamma (40+ Hz), all these components together are forming the EEG signal. Typically the

amplitude of the measured EEG signal from scalp is between 0.5 and 200µV .

By using EEG signals, it is possible to create so called Brain Computer Interface (BCI),

which can be used to control other electrical or electro-mechanical devices by ”thoughts”. If

simplified, usually modern BCI consists of an electrode (as a sensor), an amplifier, an analog-

to-digital converter (ADC), a transmitter, a receiver and a computer (for signal reconstruction

and processing).

Since a recent trend is to develop wireless BCI devices, management of energy consumption
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becomes a crucial factor. As shown before, one very important part of all BCI systems is ADC,

where power consumption can be significantly reduced.

In order to select the most suitable ADC for BCI, in Section 1.2, ten different synchronous

and asynchronous ADCs were described and analyzed against requirements/criteria, which were

set out based on the EEG signal properties and the current situation in the field of the BCI

systems. These four main criteria are: Energy Efficiency (the less consumption, the better),

Encoding Complexity (the smaller area of silicon die occupied, the better), Resolution (at least

12-bits) and Sampling Rate (at least 400 S/s).

The overall capabilities of all ADCs, whichwere analyzed against the criteria in Section 1.2.1

and Section 1.2.2, are summarized in Table 1.1, where for better visual comparison ”Max. Sam-

pling Rate” column for asynchronous ADCs is obtained by converting maximum input band-

width accordingly 1Hz≈2S/s. For example, for Flash ADC, the least power consuming Flash

Table 1.1: Overall capabilities of different ADCs

* - Theoretically calculated/assumed

ADC circuit found in the literature consumes 72µW , but then its resolution is only 4-bits, but

sampling rate 4.2 GS/s. Still, the table shows that it is possible to create Flash ADC with higher

resolution (e.g. 8-bits), but then other circuit parameters are affected, such as power consump-

tion and maximum sampling rate, and vice versa, if there is a Flash ADC circuit with very high

sampling rate (e.g. 20 GS/s), it will not be able to ensure 72µW power consumption as well as

8-bit resolution.
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As shown above, there are many trade-offs for each of the ADCs. In order to select the

most suitable ADC for EEG signal encoding and BCI as whole, from each of the analyzed ADC

types, the most suitable (against criteria) ADC was selected for further comparison. The final

comparison is shown in Table 1.2.

Table 1.2: Comparison of different types of ADCs, where in each type the most suitable ADC
for EEG/BCI application is selected, based on the set out criteria

* - Theoretically calculated/assumed

From analysis in Section 1.2, and overview in Table 1.2, it is possible to conclude that:

Flash ADC is not suitable for EEG signal encoding, since it does not meet the required resolu-

tion (12-bits). Also, the power consumption (98 000 µW ) as well as complexity of the circuit

(0.253mm2) is high. In some special cases, mentioned in Section 1.2.1.1, the resolution can

be increased, but then, the power consumption will be even higher. The complexity and power

consumption can be slightly reduced by using two-step Flash ADC, but then there is an increase

in latency. Flash ADC is designed for low resolution and high sampling rate applications, and

for BCI applications there is no need for GS/s sampling rate, since the maximum EEG signal

frequency is 200Hz;

Although Pipeline ADC meets the requirements of resolution and sampling rate, the power

consumption is high (30 000 µW ) and the complexity of the circuit is very high (0.860mm2).

Pipeline ADC could be used for EEG signal encoding, but it is clear that it is not the best option

for BCI, where energy efficiency and small size play crucial role;

Digital RampADC can be implemented in a very small dimensions on the silicon die (0.017mm2),
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which makes it very attractive for BCI applications. On the other hand, although it can ensure

the necessary resolution and sampling rate, the power consumption of the circuit is high (3 800

µW ), which makes it less attractive for BCI applications;

Tracking ADC is able to ensure the necessary resolution and sampling rate, but the power con-

sumption (50 000 µW ) as well as complexity of the circuit (0.350mm2) is too high for BCI

applications;

SAR ADC is one of the best choices for EEG signal encoding and BCI applications as whole,

since it can ensure not only the necessary resolution and sampling rate, but also very low

power consumption (0.100 µW ), despite the fact that complexity of the circuit is relatively

high (0.300mm2).

Sigma Delta ADC as SAR ADC is very attractive for EEG signal encoding and BCI applica-

tion as whole. It offers high resolution (up to 32-bits) and low power consumption (13.3 µW

for 12-bits) and proper sampling rate. The only disadvantage is the complexity of the circuit,

which occupies more space on silicon die (0.510mm2);

Zero ADC can not be used for EEG signal encoding, since it can’t meet the required resolution,

even though it has very simple architecture and potentially very low power consumption;

Sinewave ADC could be used for EEG signal encoding, due to its low complexity circuit and

potentially low power consumption, but at the time of writing this thesis, no physical implemen-

tations could be found, therefore it was not possible to estimate its true performance;

Level Crossing ADC can be used for EEG signal encoding and BCI application as whole, since

it offers simple circuit and low power consumption (from 582nW ). But this is valid only for

low resolution applications. For desired 12-bits, both the complexity of the circuit (0.300mm2)

as well as power consumption (9 µW ) increase and make it less attractive for BCI applications;

ASDM exhibit excellent properties for EEG signal encoding and BCI application as whole. It

offers very low power consumption (from 9.4nW ) and complexity of the circuit (0.026mm2),

while preserving necessary resolution and sampling rate. The only ASDM disadvantage is more

complex and resource demanding signal reconstruction;

Peak Sampling ADC, basically, is an energy efficient modification of SAR ADC and poten-

tially could be used for EEG signal encoding. But, since at the time of writing this thesis, there

was only one physical implementation of Peak Sampling ADC (with only 8-bits), it was not

possible to estimate its true performance, even though theoretically, if better SAR ADC would
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be used in this circuit, it could offer very attractive and similar to SAR ADC properties.

By taking into account analysis and conclusions made above, SAR ADC and ASDM exhibit

the most suitable properties for EEG signal Encoding and BCI application as whole. In this

case, by considering parameters of both ADCs in Table 1.2 and advantages of asynchronous

over synchronous designs, such as [21], [22], [153]:

• lower energy consumption;

• lower electromagnetic emissions (asynchronous circuits do not emit radiation at the clock

frequency and harmonic frequencies);

• lower sensitivity against power supply voltage, temperature and development process pa-

rameter variations;

• lower delays (by avoiding the wait until the next clock edge, asynchronous circuits exhibit

better average-case performance rather than worst-case performance);

• lower complexity (easier and cheaper to realize);

• better modularity and interlinking between individual circuit units;

• higher potential for energy efficiency improvement, if used for wide dynamic range sig-

nals (as EEG signals);

• absence of overheads and problems associated with distributing clock signals,

an ASDM method is chosen for further in depth analysis, research and improvements.

Although ASDM has many advantages, the use of asynchronous systems in real life appli-

cations are limited due to incompatibility with classical (synchronous) systems, which results

in fewer research studies in this area, thus slowing down its development. Therefore, the author

of this work believes that it is very important to understand the true potential of asynchronous

systems and will dedicate himself to carry out the research in the field of ASDM.
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2. ASYNCHRONOUS SIGMA-DELTA MODULATOR

From the analysis carried out in Section 1.2 and conclusions made in Section 1.3, it is

clear that Asynchronous Sigma-Delta modulator (ASDM) can be used for electroencephalo-

gram (EEG) signal encoding and has a huge potential to reduce energy consumption and thus

prolongs the operation time of the battery in wireless Brain Computer Interface (BCI) systems.

Therefore, the main purpose of this section is to carry out an in depth analysis of ASDM to

understand its main advantages and disadvantages. At the end of this section the summary and

conclusions are given.

2.1 Signal Encoding

Asynchronous Sigma-Delta modulator (ASDM) belongs to Time Encoding Machine (TEM)

class, since amplitude information is converted into time information or time sequence. An ex-

ample of basic zero crossing TEM is depicted in Figure 2.1. In this example, the difference

x(t)−f(t) is passed through a comparator where f(t) is a periodic ramp function. Since the

comparator switches at t = tk when x(tk) = f(tk) holds, the time sequence tk, which corre-

sponds to the comparator output z(t) represents the input signal x(t). The function f(t) can

also be chosen to be constant f(t) = 0 [128] or sinusoid f(t) = A0sin(2πf0t) [154], where

A0 ≥ |x(t)| and f0 exceeds the maximum frequency of the input signal x(t). [19] [143] [155]

Figure 2.1: a) Time Encoding Machine (TEM) block diagram b) TEM input signal - x(t),
known function - f(t) and comparator output - z(t) [143]

ASDM is slightly more complicated then the simplest TEM and the block diagram of it is

shown in Figure 2.2. It consists of an integrator with parameter κ, a non-inverting Schmitt trigger

with parameters δ and b and a negative feedback. The values of these parameters determine the

59



average switching rate of the trigger. [143] [156]

Figure 2.2: Asynchronous sigma-delta modulator (ASDM) block diagram [143] [26]

The input signal x(t) of ASDM is bounded in amplitude as [156]:

|x(t)| ≤ c < b (2.1)

Since trigger output z(t) has either b or−b value, the integrator input is either x(t)+b or x(t)−b.

From (2.1) it follows the integrator output y(t) is strictly increasing or decreasing function for

t ∈ [tk, tk+1], and

y(tk) = (−1)kδ (2.2)

The relationship between the binary output z(t) and the input signal x(t) of the ASDM for

tk+1 > tk, and integers k ∈ Z, is given by the integral equation [157]∫ tk+1

tk

x(t)dt = (−1)k[2κδ − b(tk+1 − tk)] (2.3)

Due to (2.1) the distances between consecutive triggering points tk and tk+1 are bounded [158]

τmin =
2κδ

b+ c
≤ tk+1 − tk ≤

2κδ

b− c
= τmax (2.4)

If the input x(t) of the ASDM is bounded as (2.1), the output of the integrator at time tk+1 >

tk is [157]

y(tk+1) = y(tk) +
1

k

∫ tk+1

tk

[x(t)− z(t)]dt (2.5)

If the state of the Schmitt trigger is (−b,−δ) at t = tk, (y(tk) = −δ and z(tk) = −b), at some

time tk+1 > tk we have that [157]

δ = −δ + 1

k

∫ tk+1

tk

[x(t) + b)]dt = −δ + 1

k

∫ tk+1

tk

x(t)dt+ b(tk+1 − tk) (2.6)

Right after tk+1, the trigger switches to a (b, δ) state so that for some time tk+2 > tk+1 [157]

−δ = δ +
1

k

∫ tk+2

tk+1

[x(t) + b)]dt = δ +
1

k

∫ tk+2

tk+1

x(t)dt− b(tk+2 − tk+1) (2.7)
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which when added with (2.6) gives∫ tk+2

tk

x(t)dt = (tk+2 − 2tk+1 + tk) · κ · b = (χk − ψk) · κ · b, (2.8)

where ψk and χk are defined below. [157]

The output of the ASDM consists of a sequence of binary rectangular pulses (see Fig. 2.3),

where duration of two consecutive pulses can be defined as Tk = ψk + χk. If ψk is the duration

Figure 2.3: The output of ASDM [157]

of the pulse of amplitude 1 and χk the duration of the other pulse of amplitude −1, for x(t),

tk ≤ t ≤ tk+2, the duty-cycle ψk

Tk
can be expressed from (2.8):

0 <
ψk
Tk

=
1 + x̄(t)|t∈[tk,tk+2]

2
< 1, (2.9)

where x̄(t)|t∈[tk,tk+2]
= 1

Tk

∫ tk+2

tk
x(t)dt and the values of κ and b are chosen to be κ = b = 1.

If the input signal x(t) = 0 for all times (−∞ < t < ∞), then ψk = χk or ψk/Tk = 0.5.

But if the input signal x(t) = A, where |A| < 1 and tk ≤ t ≤ tk+2, then [157]

ψk =
(1 + A)Tk

2
(2.10)

and

χk = Tk − ψk. (2.11)

If the input signal x(t) is not constant in a time segment, the duty-cycle is not clearly defined

with respect to the amplitude. [157]

From the above it follows that the local average of the input signal x̄(t)|t∈[tk,tk+2]
can be

obtained from the ψk and χk in the duty cycle modulation, i.e., [157]

x̄(t)|t∈[tk,tk+2]
=
ψk − χk
ψk + χk

(2.12)
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Figure 2.4: Operation of ASDM. EEG signal (red line) and corresponding ASDM integrator
output y(t) (green line) and ASDM trigger output z(t) (blue line)

Figure 2.4 shows the operation of ASDM on an Electroencephalogram signal.

In order to calculate a signal to noise ratio (SNR) of the ASDM, first, the signal and noise

power must be determined. The power of a sinusoidal signal is given by: [159]

Ps =
1

2
A2

0, (2.13)

whereA0 is the amplitude (voltage) of the input signal. The total noise power within bandwidth

2Fmax is given by: [159]

PN =
8

3
(1− A2

0

2
)
1

T̄
T 2
res2Fmax, (2.14)

where T̄ is a constant mean value of Tk, but Tres denotes the resolution of the Time to Digital

Converter (TDC), which is a device for recognizing events and providing a digital representation

of the time they occurred. Assuming that A0 = 1, the signal to noise ratio of ASDM can be

calculated as follows: [159]

SNR = 10log10

(
Ps
PN

)
= 10log10

(
3

8

T̄

2T 2
resFmax

)
= 10log10

3

8

T̄

2Fmax
+ 20log10fres, (2.15)

where fres = 1
Tres

.

By knowing SNR, it is possible to calculate Effective Number Of Bits (ENOB) of an ideal

ASDM: [160]

ENOB =
SNR− 1, 76

6, 02
. (2.16)

From (2.15) and (2.16) it follows that by doubling the frequency fres of TDC, SNR and

ENOB of ASDM increase by 6 dB and 1 bit, respectively.
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2.2 Signal Recovery

In order to reconstruct the original signal encoded by ASDM, in this subsection, typical

ASDM signal recovery algorithm as well as fast and real-time signal recovery algorithms are

described.

The classical (uniform) sampling theorem by Claude Shannon states that: If a function con-

tains no frequencies higher than Fmax, it is completely determined by giving its ordinates at a

series of points spaced T = 1/(2Fmax) seconds apart [161]. It means that samples x(tn), which

are taken at time instants tn = nT , where n ∈ Z, fully represent the signal. The theorem is

supplemented by signal recovery equation: [155]

x(t) =
∞∑

n=−∞

x(nT )sinc(πt/T − nπ), (2.17)

where

sinc(t) =
sin(t)
t

. (2.18)

The signal recovery equation (2.17) can not be directly used to reconstruct the signal sampled

by ASDM, since the samples x(nT ) are not given, therefore in this section signal recovery

algorithms for ASDM encoded signals are described.

2.2.1 Signal Recovery from ASDM Output Time Sequence

The signal, which is encoded by ASDM, can be perfectly recovered from the time sequence

tk (obtain from ASDM output signal z(t)) if the maximum distance does not exceed the Nyquist

step:

τmax =
2κδ

b− c
≤ 1

2Fmax
, (2.19)

where Fmax is maximum frequency of the input signal x(t) [156]. By assuming that the signal

x(t) can be represented as

x(t) =
∑
n∈Z

ang(t− τn), (2.20)

where

g(t) =
sinΩt
πt

=
Ω

π
sinc(Ωt) (2.21)
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is the impulse response of an ideal low pass filter with cutoff frequency Ω, τn = tk+tk+1

2
and an

are the coefficients to be estimated, then from (2.3) and (2.20) follow that the coefficient values

can be expressed as [156]

a = G+q, (2.22)

where G+ is the pseudoinverse matrix of G and elements of vector q and matrix G are [156]

qk = (−1)k(2kδ − b(tk+1 − tk)) (2.23)

Gkn =

∫ tk+1

tk

g(t− τn)dt (2.24)

As graphically shown in Figure 2.5, by finding coefficient values a (black bars), which are

multiplied by sinc functions g(t− τn) (2.21) and summed together, it is possible to reconstruct

the original signal x(t) (red line).

Figure 2.5: Visualization of signal recovery. Coefficients a (black bars), sinc functions g(t −
τn) (blue lines), reconstructed EEG signal (red line)

Unfortunately, as shown in the author’s paper [27], by using this reconstruction method,

signal recovery is time and resource consuming therebymust be improved in order to reconstruct

the original signal in real time. In the next section (Section 2.2.2) an algorithm for faster signal

recovery is described.

2.2.2 Fast Signal Recovery

As outlined in Section 2.2.1, the typical approach for signal recovery in not efficient enough

for the real-time signal reconstruction. This is due to time consuming calculation of the coeffi-

cients an according to (2.22) since:
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• numerical calculation of elements gk,n from matrix G (see (2.24)) requires to assign the

function g(t) with sufficiently fine step;

• matrix G pseudoinversion (see (2.22)) is carried out. [162]

In order to increase the speed of signal reconstruction, instead of finding the coefficients an,

which correspond to signal representation (2.20), it is more efficient to find the coefficients dn,

which correspond to integral signal representation [162]∫ t

−∞
x(u)du =

∑
n∈Z

dng(t− τn) (2.25)

From (2.25) it follows [162]:∫ tk+1

tk

x(u)du =
∑
n∈Z

dn(g(tk+1 − tn)− g(tk − tn)). (2.26)

As the right side of (2.26) equals to qk (see (2.3) and (2.23)), the equation (2.26) in matrix form

can be written as

q = PVd, (2.27)

where matrix P and V elements are

Pkn = δk+1,n − δk,n (2.28)

Vkn = g(tk − tn), (2.29)

where δk,n represents the Kronecker symbol: δk,n = 1, if k = n, and δk,n = 0, if k ̸= n [162].

The unknown coefficients dn are obtained from (2.27) as:

d = V+P−1q, (2.30)

where the elements of inverse matrix P−1 at row k and column n is −1, if k ≤ n and 0, if

k > n. [162] In comparison to (2.22), in this case, the matrix V is required for estimation of the

coefficients, and since the elements ofV are found according to (2.29), the calculation of matrix

V is precise and significantly faster. [28], [162]

The next step to increase the speed of signal reconstruction, is to fasten matrix V pseudo-

inversion. This is achieved by using the periodic approximation of g(t) [28], [162]:

ĝ(t) = ξ

M∑
m=−M

ejm
2πFmax

M
t, (2.31)
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Figure 2.6: functions g(t) (blue line) and ĝ(t) (red line)

whichmore closely approximates g(t), asM tends to infinity. The coefficient ξ = 2Fmax/(2M+

1) and the valueM/Fmax determine the repetition period (see Fig. 2.6). [162]

In result, the expression (2.27) becomes:

q = ξPV̂d, (2.32)

where matrix V̂ elements are:

V̂kn =
M∑

m=−M

ejm
2πFmax

M
(tk−tn). (2.33)

Multiplying both (2.32) sides by P−1 and expressing V̂ = RHY, gives

P−1q = ξRHYd, (2.34)

where (.)H is a designation of conjugated transposed matrix, but matrix R and Y elements are

Rmk = e−jm
2πFmax

M
tk (2.35)

Ymn = e−jm
2πFmax

M
tn (2.36)

By denoting diagonal matrix as D = diag(tk+1 − tk), k ∈ Z, and multiplying (2.34) both sides

by RD, give [28], [162]

RDP−1q = ξRDRHYd (2.37)

Equivalently with

Φ = ξRDRH (2.38)

and

υ = ξYd, (2.39)
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we obtain (2.37) equivalent expression

RDP−1q =
1

ξ
Φυ, (2.40)

from which follow unknown coefficients υm (m = −M, . . . ,M ) vector [162]

υ = ξΦ+RDP−1q. (2.41)

In this case, pseudo-inversed is matrix Φ, which elements

Φnm = ξ
∑
k∈Z

(tk+1 − tk)e
j(m−n) 2πFmax

M
tk (2.42)

determine its Toeplitz and Hermitian type matrix structure and ensure fast pseudo-inverse. [28],

[162] The expression of coefficients υm follows from (2.39)

υm = ξ
∑
n∈Z

dne
−jm 2πFmax

M
tn (2.43)

Further, if (2.31) is used instead of g(t), from (2.25) it is obtained:∫ t

−∞
x(u)du = ξ

∑
n∈Z

dn

M∑
m=−M

ejm
2πFmax

M
(t−tn) (2.44)

By considering (2.43) and transforming right side of (2.44), we obtain∫ t

−∞
x(u)du =

M∑
m=−M

ejm
2πFmax

M
tξ
∑
n∈Z

dne
−jm 2πFmax

M
tn =

M∑
m=−M

υme
jm 2πFmax

M
t (2.45)

Finally, by deriving right side of (2.45), the expression of reconstructed signal is obtained [28],

[162]

x̂(t) =
j2πFmax

M

M∑
m=−M

mυme
jm 2πFmax

M
t (2.46)

By using this - fast signal recovery method, the signal reconstruction is up to 228 times faster

(see simulation results in Section 4.1.1.2). Still, the signal reconstruction from time instants tk is

not possible in real time, since prior to reconstruction it is necessary to store time instants from

z(t) signal. In order to reconstruct the original signal in real-time, a separate section (Section

2.2.3) is dedicated to describe an idea [163] on how to reconstruct the signal, which is encoded

by ASDM, in real time.
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2.2.3 Real-time Signal Recovery

As outlined in Section 2.2.2, despite the fact that it is possible to reconstruct the original

signal significantly faster, it is not possible to reconstruct the signal in real-time, since prior

to reconstruction it is necessary to store ASDM output time instants tk. Usually, in real-time

systems, the signal is continuously sampled by ADC at the rate of fs, and the ADC presents a

new sample to the Digital Signal Processor (DSP) at this rate. In order to maintain a real-time

operation, the DSPmust perform all its required computation within the sampling interval, 1/fs,

and present an output sample before arrival of the next sample from the ADC. [15]

In ASDM case, in order to reconstruct the signal in real-time, the reconstruction must be

carried out in short time intervals t ∈ [tmJ , tmJ+L], where m = 0, 1, 2, . . . designates the order

number of the interval, but J determines the number of switchings, after which the reconstruction

of the next interval can start, butL is a number of switching instants, which determines the length

of the interval (see Fig. 2.7). [163]

Since the precision of the reconstructed signal fragment at the beginning and at the end of the

fragment is low, the reconstructed signal x̂m(t) is multiplied by corresponding window function:

[163]

wm(t) =


0, if t /∈ (τm, σm+1],

θm(t), if t ∈ (τm, σm],

1, if t /∈ (σm, τm+1],

1− θm+1(t), if t ∈ (τm+1, σm+1],

(2.47)

where τm = tmJ+M , σm = tmJ+M+K and

θm(t) = sin2
π(t− τm)

2(σm − τm)
. (2.48)

After the multiplication, the signal fragment is different from zero only in the middle part of

the interval, therefore the next interval is chosen after receiving J = L − 2M − K switching

time instants, thus ensuring overlapping of the intervals. In this case, increasing L not only

improves the accuracy of the reconstruction, but also broadens window function wm(t) in time

domain, and hence decreases its bandwidth Ωw in frequency domain. It should be noted that

enlarged size and decreased conditioning of G increase the computational load for calculating

the pseudo-inverses G+ (see (2.22)). [163]
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Figure 2.7: Real-time signal reconstruction by using interval approach [163]. In this particular
case/figure, t0 = 0, L = 8,M = 2, K = 1(J = 3)

By combining all intervals, it is possible to obtain the whole reconstructed signal [163]:

x̂L,M,K(t) =
∑
m∈Z

x̂m(t)wm(t, L,M,K). (2.49)

In this case, it can be assumed that the signal is recovered in real time if every last interval

is reconstructed before the new sequence of J switching time instants have arrived (see Section

4.1.1.2).

The overall reconstruction error can be quantified by the following equation [163]:

eL,M,K(t) = x(t)− x̂L,M,K(t). (2.50)

and SNR, according to (2.50), after reconstruction is given by:

SNRr = 10log10
Ps
Pe

= 10log10

∫
x2(t)dt∫
e2(t)dt

. (2.51)

In order to restore the initial signal frequency bandwidth, reconstructed signal x̂L,M,K(t) is

low pass filtered with a cut-off frequency Ω. Since the reconstruction spreads over the range

ω ∈ (−Ωw − Ω,Ωw + Ω), low pass filtering also improves the overall accuracy. If h(t) and ∗

denote the filter’s impulse response and convolution, respectively, the error signal can be written
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as [163]:

ẽL,M,K(t) = x(t)− x̂L,M,K(t) ∗ h(t), (2.52)

but SNR for reconstructed signal:

SNRr = 10log10
Ps
Pẽ

= 10log10

∫
x2(t)dt∫
ẽ2(t)dt

. (2.53)

2.3 Advantages and Disadvantages

As shown in Section 1.3, ASDM design, instead of other synchronous and asynchronous

designs, in analog to digital converters (ADC) exhibit better properties such as low energy con-

sumption and encoding complexity, etc. However, ASDM also have some disadvantages, for

example, unnecessary high switching activity when it’s applied to wide dynamic range signals

(i.e. EEG signals) and complex signal reconstruction. In order to understand how to improve

the ASDM, in this subsection an analysis on ASDM advantages and disadvantages are carried

out in more details. Special emphasis will lay on ASDM disadvantages.

2.3.1 Advantages

The well-known benefits of ASDM are low energy consumption, immunity to metastable

behavior, modular design, significant exclusion of electromagnetic interference (EMI), the ab-

sence of clock jitter, continuous-time signal processing, etc. (see Section 1.3) [164] [165] [166]

In the design and implementation of Brain Computer Interfaces (BCI), energy management

and use of clocks are two main issues. First of all, the power dissipation due to analog to dig-

ital conversion is significant, therefore, it is crucial to find the best possible solution to reduce

power consumption [167]. ASDM has promise for ultra-low power consumption because of

the extreme simplicity of the required analog circuitry without any oversampling requirements

[168]. Since the input signal is encoded in time and not in amplitude (voltage), it is possible to

scale down the operating voltages and power consumption of ASDM, where speed/bandwidth

is not a key limiting factor. Latest implementations show that it is possible to create a standard

ASDM with power consumption less than 7.5nW . [25]
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Secondly, the presence of clocks, which are used in synchronous ADCs, in BCIs is problem-

atic, since the required periodic clocks may cause EMI corrupting the analog signal (EEG) to

be sampled [167]. In addition, in system on chip (SoC) implementations, these clocks consume

a lot of power [169]. Even further, external clock will cause problems related to clock jitter.

For example, in Sigma Delta modulator, the input of the quantizer at each clock moment has to

be represented by a certain discrete value, thus introducing quantization noise [170]. By using

clock-less ASDM, problems with clock jitter and high frequency components of the clock will

be removed, thereby the spectrum of the signal will be “cleaner” and will have fewer distortion

components at frequencies within the band of interest. [171]

Since ASDM is not using clock, it can be implemented in very simple analog circuit, which

is much simpler than conventional ADCs circuits and allow to operate at low power levels,

thus ensuring the low encoding complexity (see Section 1.3). The elimination of clocks also

reduces device size. The latest implementations show that ASDM circuit will occupy as less as

0.026mm2 of a silicon die [146]. [172]

Finally, ASDM is immune to metastable behavior. With technology scaling, traditional high

resolution ADC design in the voltage-domain becomes difficult due to the low supply voltage

in the deep-submicrometer process. Noise would cause a meta-stability issue as the voltage

resolution shrinks. However, for time-domain architecture, the time resolution benefits from

the reduced transition time of digital circuits. [173]

2.3.2 Disadvantages

Despite the fact that ASDM has a long list of advantages, which makes it one of the best

choices for EEG encoding and BCI application, it still has some disadvantages. For example,

due to non-uniform sampling the reconstruction of the original signal x(t), based on (2.22) is

complicated (see Section 2.2). But, since the main aim is to reduce BCI power consumption

and thus the complexity at the signal encoding part, the complexity shift from encoding part to

decoding part is admissible.

Another ASDM disadvantage (inefficiency) is related to over-triggering, which occurs when

ASDM is applied to wide dynamic range signals such as EEG signals. Due to wide dynamic

range these signals have, an unnecessary high switching activity of ASDM circuit appears when
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the input signal amplitude is low (see Figure 2.8). This is due to ASDM circuit parameters (b

Figure 2.8: Switching activity of ASDM. EEG signal (red line) and ASDM trigger output sig-
nal (blue line)

and δ) are chosen considering the maximum value that is never exceeded by the signal. [27]

How to choose the parameters b and δ? If the signal being encoded is bandlimited to

[−Ω,Ω], then from Section 2.2.1 it follows that the necessary condition for perfect recovery of

the original signal from the given time sequence tk is:

supk∈Z(tk+1 − tk) ≤
π

Ω
= T (2.54)

That means τmax can not exceed π/Ω, and the parameters b and δ can be chosen according to

equation

τmax =
2κδ

b− c
= T (2.55)

The minimum distance τmin in this case becomes

τmin =
2κδ

b+ c
=
b− c

b+ c
T =

1

1 + 2/α
T, (2.56)

where b = (1+α)c and α > 0. From (2.56) it follows: the smaller the coefficient α, the smaller

the distance τmin and thus the larger the number of trigger times. On the other hand, the larger

the coefficient α, the smaller the difference between τmin and τmax and the more precision (more

bits) is required to encode the time sequence tk in order to recover the original signal. [27]

What is the inefficiency of having the constant parameter b? Let us assume we have a

signal x(t) with C being the maximum value of |x(t)|. The parameters b1 and δ1 are chosen

as b1 = (1 + α)C and δ1 = αCT/(2κ) according to (2.55). Considering that instantaneous
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maximum value of |x(t)| changes over time, and can be denoted as c(t), the maximum and

minimum distances τmax and τmin are time-varying as well:

τmax1(t) =
2κδ1

b1 − c(t)
=

T

1 + 1/α− c(t)/(αC)
(2.57)

τmin1(t) =
2κδ1

b1 + c(t)
=

T

1 + 1/α + c(t)/(αC)
(2.58)

Figure 2.9: Distances τmax (increasing lines) and τmin (decreasing lines) depending on c(t) ∈
[0, C] for three different α = β values 0.1 (red lines), 1 (blue lines) and 5 (green lines) with
constant parameter b1

The dependence of τmax1 and τmin1 on the value of c(t) ∈ [0, C] is shown in Fig. 2.9 for

different α values 0.1 (red lines), 1 (blue lines) and 5 (green lines). The decreasing lines corre-

spond to τmin1 and increasing lines to τmax1. As it can be seen, both distances τmin1 and τmax1
for small c(t) values are less than T and thus over-triggering occurs, which is not necessary for

reconstruction of the original signal. This can be reduced, if coefficient α is increased, however,

too high α values lead to small differences τmax1 − τmin1 and thus more precision is needed to

encode the distances between consecutive trigger times. [27]

2.4 Summary and Conclusions

Section 2 is dedicated to the in depth analysis of Asynchronous Sigma-Delta modulator

(ASDM). ASDM is a clock-less analog to digital converter (ADC), which converts amplitude

information of the input signal x(t) into time information or time sequence tk in a very energy

efficient way. The latest implementations show that it is possible to create a standard ASDM
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with power consumption less than 7.5nW [25], therefore it has a huge potential to reduce energy

consumption in wireless Brain Computer Interface (BCI) systems.

The relationship between the switching instants tk of the ASDM output z(t) and the input

signal x(t) is given by the integral equation (see Section 2.1):∫ tk+1

tk

x(t)dt = (−1)k[2κδ − b(tk+1 − tk)],

where κ, δ and b are ASDM circuit parameters, but tk are switching time instants of z(t).

The ASDM input signal x(t) can be represented as

x(t) =
∑
n∈Z

ang(t− τn),

where g(t) = sinΩt
πt

is the impulse response of an ideal low pass filter with cutoff frequency

Ω, τn = tk+tk+1

2
and an are the coefficients to be estimated in order to reconstruct the original

signal. From both these equations follow that the unknown coefficient an values for signal

reconstruction can be found by (see Section 2.2)

a = G+q,

where qk = (−1)k(2kδ − b(tk+1 − tk)) and Gkn =
∫ tk+1

tk
g(t− τn)dt.

Unfortunately, the signal recovery method described above is time and resource consuming

and thus can not be used for real-time applications. Therefore, in Section 2.2.2 a method for

fast signal recovery is described. In this case, expression which describes reconstructed signal

is (see Section 2.2.2):

x̂(t) =
j2πFmax

M

M∑
m=−M

mυme
jm 2πFmax

M
t,

where unknown coefficients υm can be found by:

υ = ξΦ+RDP−1q

However, despite the fact that by using the fast signal recovery method it is possible to re-

construct the original signal significantly faster, it is not possible to reconstruct the signal in

real-time, since prior to reconstruction it is necessary to store time instants from the ASDM

output signal. In order to be able to reconstruct the signal in real time, short time interval recon-

struction method should be used (see Section 2.2.3):

x̂(t) =
∑
m∈Z

x̂m(t)wm(t),
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where wm(t) is a window function, defined in (2.47).

Finally, in Section 2.3, ASDM advantages and disadvantages are described. The main ben-

efits of ASDM are low energy consumption, immunity to metastable behavior, modular design,

significant exclusion of electromagnetic interference (EMI), the absence of clock, low complic-

ity, continuous-time signal processing, etc, which makes it suitable for BCI applications. But,

the main inefficiency is related to over-triggering, which occurs when ASDM is applied to wide

dynamic range signals such as EEG signals. Due to wide dynamic range that these signals have,

an unnecessary high switching activity of ASDM circuit appears when the input signal ampli-

tude is low. This is because the ASDM circuit parameters are chosen considering the maximum

value that is never exceeded by the signal. Since the envelope of the signal changes over time,

the proposition is: instead of constant value to consider the time-varying maximum value, which

is also never exceeded by the signal. This could allow to reduce the over-triggering of the circuit

and thus the power consumption of the whole wireless BCI system, since less switchings instants

(events) will be necessary to be transmitted, which greatly reduces the power consumption of

the transmitter. The proposed amplitude adaptive method is described in Section 3.
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3. AMPLITUDE ADAPTIVE ASYNCHRONOUS SIGMA-DELTA
MODULATOR

The concept of the Asynchronous Sigma-Delta modulator (ASDM) is described in Section

2. As it was shown in Section 2.3.2, due to wide dynamic range that electroencephalogram

(EEG) signals have, an unnecessary high switching activity of ASDM circuit appears when the

input signal amplitude is low, causing increased power consumption of wireless Brain Computer

Interface (BCI) system. This is due to ASDM circuit parameters are chosen considering only

the maximum value that is never exceeded by the signal. In recent years different studies and

several applications of ASDM have been presented [173], [174], [175], [176], however, no

signal-dependent adaptive enhancements have been shown.

Since envelope of the signal changes over time, the proposition of this work is, instead of

constant value b, to consider the time-varying maximum value, which is also never exceeded

by the signal. This would allow to reduce the over-triggering of the circuit and thus the power

consumption of a wireless BCI system, since less switchings instants (events) will be necessary

to be transmitted, which greatly reduces the power consumption of the transmitter.

The block diagram of proposed Amplitude-Adaptive Asynchronous Sigma-Delta modulator

(AA-ASDM), which is an enhanced version of ASDM, is shown in Figure 3.1. In addition

Figure 3.1: Amplitude Adaptive Asynchronous Sigma-Delta modulator block diagram

to ASDM circuit (see Fig. 2.2), there is an envelope detector with output c(t) connected to

the feedback loop. Now, instead of the equation (2.3), the relationship between the switching

instants tk of the AA-ASDM output z(t) and the input signal x(t) for tk+1 > tk, and integers

k ∈ Z, is given by the following equation:
tk+1∫
tk

x(t)dt = (−1)k[2κδ −
tk+1∫
tk

c(t)dt], (3.1)
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where κ and δ are AA-ASDM circuit parameters. By using the proposed method, the perfect

recovery of the original signal is still possible, if c(t) is known.

Based on this, two amplitude adaptive methods: 1) AA-ASDM with additional envelope

encoding (Section 3.1); and 2) AA-ASDM without additional envelope encoding (Section 3.2);

which are both particularly advantageous for signals with wide dynamic range, are proposed

and described further in this section. In addition, at the end of this section a summary and

conclusions are given.

3.1 AA-ASDM with additional envelope encoding

In this section, the proposed AA-ASDM with additional envelope encoding is described.

First of all, signal encoding and decoding/recovery principles are described in Section 3.1.1 and

Section 3.1.2.1. Then, in order to reconstruct the original signal in real-time, a method for fast

signal reconstruction and a method for real-time signal reconstruction are given accordingly in

Section 3.1.2.2 and Section 3.1.2.3.

3.1.1 Signal Encoding

As outlined in Section 2.3.2, having the constant parameter b is inefficient (see equations

(2.57) and (2.58)). In order to avoid over-triggering, the proposition is instead of constant pa-

rameter b to use time-varying parameter b2(t) according to c(t) to ensure

τmax2(t) =
2κδ2

b2(t)− c(t)
= const. = T, (3.2)

where T is the Nyquist step and equals the maximum distance between two consecutive trigger

switching times tk and tk+1. [27] In this case, the difference b2(t) − c(t) must be constant and

thus b2(t) can be written as

b2(t) = c(t) + βC, (3.3)

where β > 0 is a constant, but C is the maximum value of |x(t)|. [27] The second parameter

δ2 = βCT/(2κ) follows from (3.2) and the minimum distance between two consecutive trigger

switching times becomes

τmin2(t) =
2κδ2

b2(t) + c(t)
=

T

1 + 2c(t)/(βC)
. (3.4)
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The dependence of τmin2 on the value of c(t) ∈ [0, C] is shown in Fig. 3.2 by colored lines

for different β values: 0.1 (red line), 1 (blue line) and 5 (green line), but for τmin1 by black and

gray lines for different β values: 0.1 (black line), 1 (dark gray line) and 5 (light gray line) (see

also Fig. 2.9). As can be seen, τmin2 > τmin1 and τmax2 > τmax1 for all c(t) and β = α values,

which means the over-triggering reduces in comparison to the classical b = const. case. Also

the differences τmax2 − τmin2 are larger for all c(t) < C values. [27]

Figure 3.2: Distances τmax (increasing lines) and τmin (decreasing lines) depending on c(t) ∈
[0, C] for three different α = β values 0.1 (red line), 1 (blue line) and 5 (green line) for AA-
ASDM case (time-varying parameter b2(t)), and α = β values 0.1 (black lines), 1 (dark gray
lines) and 5 (light gray lines) for ASDM case (constant parameter b1).

The block diagram of the proposed AA-ASDM with additional envelop encoding is shown

in Figure 3.3. Now instead of (2.3) the following equation holds [27]:

Figure 3.3: Amplitude Adaptive Asynchronous sigma-delta modulator (AA-ASDM) with ad-
ditional envelop encoding block diagram
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tk+1∫
tk

x(t)dt = (−1)k[2κδ − βC(tk+1 − tk)−
tk+1∫
tk

c(t)dt], (3.5)

where β > 0 is a constant and C is the maximum value of |x(t)|, but c(t) can be obtained from

expression:
t̂k+1∫
t̂k

c(t)dt = (−1)k[2κcδc − bc(t̂k+1 − t̂k)] = q̂k. (3.6)

As it follows from (3.5), the envelope signal c(t) is also needed for recovery of x(t), therfore

it is encoded by another ASDM with circuit parameters κc, δc and bc. Now, for AA-ASDM to

be advantageous over ASDM, the signal c(t) must have low frequencies in comparison to x(t).

This ensures the number of triggering points in zc(t) is much less than in z(t). [27]

In this case, the complexity of signal recovery increases, but power consumption of the

wireless BCI system decreases, due to fewer trigger switchings. The effectiveness of this AA-

ASDM approach is estimated by simulations in Section 4.1.2.

Regardless of the decrease of the number of switchings, the perfect recovery of the original

signal from the obtained time sequence is still possible (see Section 3.1.2). [27]

3.1.2 Signal Recovery

The signal reconstruction in AA-ASDM (with additional envelop encoding) is similar to one

described in Section 2.2, but in this case, the envelope signal c(t) is also needed for recovery

of x(t) (see Section 3.1.2.1). The speed of x(t) reconstruction in AA-ASDM can be increased

by using fast signal reconstruction approach described in Section 3.1.2.2. Also, AA-ASDM

method can be used for real-time signal recovery as described in Section 3.1.2.3.

3.1.2.1 Signal Recovery from AA-ASDM Output Time Sequence

The signal x(t) with time-varying envelope function c(t) is recovered considering that both

x(t) and c(t) are bandlimited to [−Ωx, Ωx] and [−Ωc, Ωc], respectively. The first step is recovery

of c(t) from the given time sequence t̂k by finding the unknown coefficients on in

c(t) =
∑
n∈Z

onh(t− τ̂n), (3.7)
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where

h(t) =
sinΩct

πt
=

Ωc

π
sinc(Ωct) (3.8)

and τ̂n = (t̂k + t̂k+1)/2. [162], [27] From (3.1) and (3.7) follows

o = H+q̂ (3.9)

where H+ is the pseudoinverse of H and the elements of vector q̂ and matrix H are

q̂k = (−1)k(2κcδc − bc(t̂k+1 − t̂k)) (3.10)

and

Hkn =

∫ t̂k+1

t̂k

h(t− τ̂n)dt. (3.11)

When c(t) is found, the signal x(t) is recovered from the given time sequence tk by finding

the unknown coefficients ân in

x(t) =
∑
n∈Z

âng(t− τn), (3.12)

where

g(t) =
sinΩxt

πt
=

Ωx

π
sinc(Ωxt) (3.13)

and τn = (tk + tk+1)/2. [162], [27] From (3.5) and (3.12) follows

â = G+q, (3.14)

where

qk = (−1)k
(
2κδ − βC(tk+1 − tk)−

∫ tk+1

tk

c(t)dt

)
(3.15)

and

Gkn =

∫ tk+1

tk

g(t− τn)dt (3.16)

By using this signal recovery method, signal reconstruction is time and resource consuming

(see Section 4.1.1.2) thereby can be improved in order to reconstruct the original signal in real

time. In next the Section 3.1.2.2, an algorithm for faster signal recovery is described.
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3.1.2.2 Fast Signal Recovery

The signal recovery approach, described in Section 3.1.2.1, is not efficient enough for real-

time signal reconstruction. This is due to time consuming calculation of the coefficients on and

ân according to (3.9) and (3.14).

In order to increase the speed of signal reconstruction, instead of finding the coefficients ân,

which correspond to signal representation (3.12), it is more efficient to find the coefficients d̂n,

which correspond to integral signal representation [162], [27]

ς(t) =

∫ t

−∞
x(u)du =

∑
n∈Z

d̂ng(t− τn) (3.17)

From (3.17) it follows:∫ tk+1

tk

x(u)du =
∑
n∈Z

d̂n[g(tk+1 − τn)− g(tk − τn)] (3.18)

Similarly, the integral envelope c(t) representation can be written as∫ t

−∞
c(u)du =

∞∑
n=−∞

ônh(t− τ̂n).) (3.19)

From (3.19) it follows:∫ t̂k+1

t̂k

c(u)du =
∑
n∈Z

ôn[h(t̂k+1 − τ̂n)− h(t̂k − τ̂n)] (3.20)

∫ tk+1

tk

c(u)du =
∑
n∈Z

ôn[h(tk+1 − τ̂n)− h(tk − τ̂n)] (3.21)

As the right side of (3.6) equals q̂k, from (3.6) and (3.20) it follows that

q̂k =
∑
n∈Z

ôn[h(t̂k+1 − τ̂n)− h(t̂k − τ̂n)]. (3.22)

The equation (3.22) in matrix form can be written as

q̂ = P̂Ĥô, (3.23)

where matrix P̂ and Ĥ elements are

P̂kn = δk+1,n − δk,n (3.24)
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Ĥkn = h(t̂k − τ̂n), (3.25)

where δk,n represents the Kronecker symbol: δk,n = 1, if k = n, and δk,n = 0, if k ̸= n, but

unknown coefficients ôn are obtained from (3.23) as:

ô = Ĥ+P̂−1q̂ (3.26)

where the elements of inverse matrix P̂−1 at row k and column n is−1, if k ≤ n and 0, if k > n.

[162], [28]

From (3.5), (3.18) and (3.21) obtain∑
n∈Z

d̂n[g(tk+1 − τn)− g(tk − τn)] =

= (−1)k[2κδ − βC(tk+1 − tk)] + (−1)k+1
∑
n∈Z

ôn[h(tk+1 − τ̂n)− h(tk − τ̂n)]. (3.27)

If

q̃k = (−1)k[2κδ − βC(tk+1 − tk)], (3.28)

then from (3.27) and (3.28) follows [28]∑
n∈Z

d̂n[g(tk+1 − τn)− g(tk − τn)] = q̃ + (−1)k+1
∑
n∈Z

ôn[h(tk+1 − τ̂n)− h(tk − τ̂n)] (3.29)

∑
n∈Z

d̂n[g(tk+1 − tτn)− g(tk − τn)] = q̃ +
∑
n∈Z

ôn[(−1)k+1(h(tk+1 − τ̂n)− h(tk − τ̂n))] (3.30)

The equation (3.30) in matrix form can be written as [28]

PGd̂ = q̃+ P̃Hô, (3.31)

where matrix P, G, P̃ and H elements are

Pkn = δk+1,n − δk,n (3.32)

Gkn = g(tk − τn) (3.33)

P̃kn = (δk+1,n − δk,n) · (−1)k+1 (3.34)

Hkn = h(tk − τ̂n). (3.35)

From (3.26) and (3.31) it follows, that unknown coefficients d̂n are obtained as [162], [28]:

d̂ = G+P−1 · (q̃+ P̃Hô) = G+P−1 · (q̃+ P̃HĤ+P̂−1q̂). (3.36)
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When all coefficients d̂n are found, ς(t) in (3.17) can be calculated as [28]

ς(t) =
N∑
n=1

d̂ng(t− τn), (3.37)

and then, original signal can be found from

x(t) =
dς(t)

dt
. (3.38)

In order to increase the speed of signal reconstruction even more, it is necessary to fasten

matrix G and H pseudoinversion in (3.36). This can be achieved by using the same method as

described in Section 2.2.2.

Still, by using fast signal reconstruction method, the signal reconstruction from time instants

tk and t̂k is not possible in real time, since prior to reconstruction it is necessary to store time

instants from z(t) and zc(t) signals. In order to reconstruct the original signal in real-time, a

separate section (Section 3.1.2.3) is dedicated to describe how to reconstruct the signal, which

is encoded by AA-ASDM with additional envelope encoding, in real time.

3.1.2.3 Real-Time Signal Recovery

In order to reconstruct the envelop as well as the original signal in real-time, the reconstruc-

tion must be carried out in short time intervals. The principle of the real-time short time interval

signal reconstruction method is described in Section 2.2.3, based on [163].

In AA-ASDM case, first of all the envelop signal c(t) must be reconstructed in short time

intervals t̂ ∈ [tmJc , tmJc+Lc ], in order to reconstruct the original x(t) signal (see Fig.3.4).

When the first interval of c(t) is reconstructed, the real-time reconstruction of x(t), in short

time intervals t ∈ [tmJ , tmJ+L], can start. In this particular example in Fig. 3.4, it is assumed

that c(t) frequency is four times lower than x(t) frequency, therefore it is possible to reconstruct

four x(t) intervals by knowing one c(t) interval. In practice, c(t) frequency is up to twenty

times lower than x(t) frequency. The main drawback of this method applied to AA-ASDM

approach is an increased delay at the beginning of the conversion. In this case, the delay intro-

duced by reconstruction of c(t) is between t̂10 − t̂0 and t̂18 − t̂0. Also, since it is necessary to

reconstruct two signals, the AA-ASDM real-time reconstruction algorithm is more computing

resource demanding than ASDM real time reconstruction algorithm.
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Figure 3.4: Real-time signal reconstruction by using interval approach. a) reconstruction of
the envelop c(t), t̂0 = 0, Lc = 10,Mc = 1, Kc = 1; b) reconstruction of the original signal
x(t), t0 = 0, L = 8,M = 2, K = 1

Although AA-ASDM with additional envelop encoding is advantageous over ASDM in

terms of switching activity (see Section 4.1.2), the efficiency of this method can be improved,

if the envelope of the signal is not needed to be encoded and transmitted in order to recover the

signal. Since the envelope depends on the signal itself, the appropriate reconstruction method

could be developed for recovery from only one time sequence obtained at the output of the upper

trigger in Fig. 3.3. This would also allow to avoid the delay, which is introduced by additional

envelope signal reconstruction prior to the original signal reconstruction. This is the topic, which

is further described in Section 3.2. [27]

3.2 AA-ASDM without additional envelope encoding

In Section 3.1, an improved version of ASDM, called AA-ASDM was presented, where by

using time-varying envelope of the input signal in the feedback loop of ASDM, it is possible

to reduce the switching activity of ASDM and thus the power consumption of the wireless BCI

system. Regardless of this reduction the perfect recovery of the original signal from the obtained

time sequences is still possible. [27] However, as concluded in Section 3.1.2.3, the efficiency

of AA-ASDM can be improved if the time-varying envelope of the signal is not additionally
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encoded and transmitted in order to recover the original signal.

Further studies have led to a solution which not only solves the above-mentioned problem,

but also allows to reduce the switching activity of the ASDM circuit even more. The principles

of an improved version of AA-ASDM is described in Section 3.2.1. The proposed method

shows how to choose the time-varying envelope in such a way, that there is no need to encode

and transmit information about the time-varying envelope and to be able to recover the original

signal from the obtained time sequence. In the proposed fast signal reconstruction method,

Fourier series instead of sinc functions are used for signal representation, thus improving the

speed of reconstruction while keeping the precision (see Section 3.2.2.1 and Section 3.2.2.2). A

method for real-time reconstruction is described in Section 3.2.2.3.

3.2.1 Signal Encoding

The block diagram of the proposed AA-ASDM without additional envelop encoding is

shown in Figure 3.5. [29]

Figure 3.5: Amplitude Adaptive Asynchronous sigma-delta modulator (AA-ASDM) without
additional envelop encoding block diagram

The relationship between the switching instants tk of the AA-ASDM output z(t) and the

input signal x(t) is given by the same equation as in Section 3.1.1 (see equation (3.5)):∫ tk+1

tk

x(t)dt = (−1)k[2κδ − βC(tk+1 − tk)−
∫ tk+1

tk

õ(t)dt], (3.39)

where x(t) is bounded in amplitude as [−1, 1]; κ, δ, β, C are known coefficients (C = 1, since

|x(t)| ≤ 1); and õ(t) is the estimated envelope of the input signal, where õ(t) ≥ |x(t)|.

In this case, the proposition is to choose the time-varying envelope function as [29]:

õ(t) = const.+ x2(t). (3.40)
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By choosing const. = 0.25, the inequality õ(t) ≥ |x(t)| holds for all x(t) ∈ [−1, 1] (see Fig.

3.6), therefore the time-varying envelope õ(t) of the input signal x(t) is selected as [29]:

Figure 3.6: Selection of the constant value in (3.40)

õ(t) = 0.25 + x2(t) ≥ x(t). (3.41)

This function, as follows from the next Section 3.2.2, does not require any additional encoding

scheme.

3.2.2 Signal Recovery

The signal reconstruction methods, described in Section 2.2 and Section 3.1.2, are not effi-

cient, because sinc functions are not well suited for representing time-limited signals and integral

values of sinc functions can no be analytically found, therefore the calculation of matrix G is

both time consuming and not perfectly precise. The proposition is therefore to use Fourier series

instead of sinc functions for the original signal representation. The proposed signal reconstruc-

tion method can also be used for real-time signal recovery as described further in sub-sections.

3.2.2.1 Signal Recovery from AA-ASDM Output Time Sequence

By inserting (3.41) into (3.39), a relationship between the output sequence {tk}k=1,2,...,K and

the input signal x(t) of AA-ASDM can be obtained [29]:∫ tk+1

tk

x(t)dt = (−1)k[2κδ − βC(tk+1 − tk)−
∫ tk+1

tk

(0.25 + x2(t))dt]. (3.42)

The equation (3.42) can be expressed as:∫ tk+1

tk

x(t)dt = (−1)k[2κδ − βC(tk+1 − tk)− 0.25

∫ tk+1

tk

dt−
∫ tk+1

tk

x2(t)dt] (3.43)
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∫ tk+1

tk

x(t)dt+ (−1)k
∫ tk+1

tk

x2(t)dt = (−1)k[2κδ− βC(tk+1 − tk)− 0.25(tk+1 − tk)] (3.44)∫ tk+1

tk

x(t)dt+ (−1)k
∫ tk+1

tk

x2(t)dt = (−1)k[2κδ − (βC + 0.25)(tk+1 − tk)]. (3.45)

By denoting

q̃k = (−1)k[2κδ − (βC + 0.25)(tk+1 − tk)], (3.46)

the equation (3.45) becomes:∫ tk+1

tk

x(t)dt+ (−1)k
∫ tk+1

tk

x2(t)dt = q̃k. (3.47)

By assuming that the input signal x(t) can be represented as

x(t) =
N−1∑
n=0

d̃ngn(t), (3.48)

where d̃n are unknown coefficients and gn(t) are the chosen base functions, the first term of

(3.47) can be written as ∫ tk+1

tk

x(t)dt =
N−1∑
n=0

d̃n

∫ tk+1

tk

gn(t)dt = d̃Tgk, (3.49)

where d̃ = [d̃0, d̃1, · · · , d̃N−1]
T and

gk =


∫ tk+1

tk
g0(t)dt∫ tk+1

tk
g1(t)dt
...∫ tk+1

tk
gN−1(t)dt

 . (3.50)

The second term of (3.47) can be written as∫ tk+1

tk

x2(t)dt =

∫ tk+1

tk

(N−1∑
n=0

d̃ngn(t)
)2

dt =

=


d̃0
d̃1
· · ·
d̃N−1


T
∫ tk+1

tk


g0(t) g0(t) · · · g0(t)
g1(t) g1(t) · · · g1(t)
... ... . . . ...

gN−1(t) gN−1(t) · · · gN−1(t)

 ◦


g0(t) g1(t) · · · gN−1(t)
g0(t) g1(t) · · · gN−1(t)
... ... . . . ...

g0(t) g1(t) · · · gN−1(t)

 dt


d̃0
d̃1
...

d̃N−1

 =

=


d̃0
d̃1
· · ·
d̃N−1


T


∫ tk+1

tk
g0(t)g0(t)dt

∫ tk+1

tk
g0(t)g1(t)dt · · ·

∫ tk+1

tk
g0(t)gN−1(t)dt∫ tk+1

tk
g1(t)g0(t)dt

∫ tk+1

tk
g1(t)g1(t)dt · · ·

∫ tk+1

tk
g1(t)gN−1(t)dt

... ... . . . ...∫ tk+1

tk
gN−1(t)g0(t)dt

∫ tk+1

tk
gN−1(t)g1(t)dt · · ·

∫ tk+1

tk
gN−1(t)gN−1(t)dt



d̃0
d̃1
...

d̃N−1

 =
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= d̃T · Ĝk · d̃ (3.51)

where ◦ denotes the Hadamard product, but Ĝkmn =
∫ tk+1

tk
gm(t)gn(t)dt.

From (3.47), (3.49) and (3.51) the final equation corresponding to the time interval t ∈

[tk, tk+1] follows [29]:

d̃T · gk + (−1)kd̃T · Ĝk · d̃ = q̃k. (3.52)

As there are totalK−1 time intervals, thenK−1 equations (3.52) are obtained, and the unknown

coefficients d̃ are found by minimizing the total error value [29]:

K−1∑
k=1

(
d̃T · gk + (−1)kd̃T · Ĝk · d̃− q̃k

)2

. (3.53)

The question is what base functions gn(t) to choose for representing the input signal x(t),

the bandwidth of which is limited to ω ∈ [−Ω,Ω]. In Section 2.2 and Section 3.1.2, the base

functions gn(t) were chosen to be sinc functions: gn(t) = sinc(Ω(t − τn)) [156], [163], how-

ever, two problems exist: 1) these functions are well suited for representing only time-unlimited

signals; 2) calculation of gk and Ĝk is both time consuming and not perfectly precise since no

analytical solutions of the integrals exist. In order to solve these problems, in [162], periodic

sinc functions and integral signal representation is presented. The proposition of this work is

to use Fourier series instead of sinc functions for the original signal representation, in order to

increase speed of reconstruction even more, while keeping the precision in the same level. This

approach is described in next Section 3.2.2.2.

3.2.2.2 Fast Signal Recovery

By using Fourier series, given the output sequence {tk}k=1,2,...,K with the corresponding time

period Θ = tK − t1, the input signal for t ∈ [t1, tK ] is expressed as

x(t) = d̃0 +
M∑
m=1

(
d̃m cos(m

2π

Θ
t) + d̃m+M sin(m

2π

Θ
t)
)
, (3.54)

where the upper limitM follows from the bandwidth Ω of the signal [29]:

M =
⌊ΩΘ
2π

⌋
. (3.55)
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Such a representation of x(t) is both well suited for expressing time-limited signals of length Θ

and allows fast and precise calculation of gk and Ĝk (see simulation results in Section 4.1.3.2),

the expressions of which are given in Appendix A.

3.2.2.3 Real-Time Signal Recovery

The real-time signal reconstruction in ”AA-ASDM without additional envelope encoding”

is carried out in short time intervals as described in Section 2.2.3. The principle stays the same,

only the signal reconstruction inside each of the windowswm is different. [29] In this case a new

signal recovery method, described in previous subsections (Section 3.2.2.1 and Section 3.2.2.2),

is used instead of method described in Section 2.2.1 and Section 2.2.2.

3.3 Comparison of number of samples

Given a signal fragment x(t), t ∈ [0, Θ], a number NASDM of switching instants 0 ≤ t0 <

t1 < . . . < tNASDM
≤ Θ, where t0 − 0 < T and Θ − tNASDM

< T , at the output of ASDM can

be found from equation (2.3) by dividing its both sides by (−1)k:∫ tk+1

tk

[(−1)kx(t) + b]dt = 2κδ. (3.56)

After summing the left side of (3.56) over all k = 0, 1, . . . , NASDM − 1, it is obtained:

b(tNASDM
− t0) +

NASDM−1∑
k=0

∫ tk+1

tk

(−1)kx(t)dt = 2κδNASDM , (3.57)

where Θ − 2T < tNASDM
− t0 ≤ Θ, therefore, if Θ ≫ T , then tNASDM

− t0 ≈ Θ and

NASDM ≈ 1

2κδ

(
bΘ +

NASDM−1∑
k=0

∫ tk+1

tk

(−1)kx(t)dt
)
. (3.58)

By denoting x̄abs = 1
Θ

∫ Θ
0
|x(t)|dt and considering −x̄absΘ ≤

∑NASDM−1
k=0

∫ tk+1

tk
(−1)kx(t)dt ≤

x̄absΘ, it follows:
Θ

2κδ
(b− x̄abs) ≤ NASDM ≤ Θ

2κδ
(b+ x̄abs), (3.59)

where b > x̄abs. If b is much larger than x̄abs, then NASDM ≈ Θb/(2κδ).
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In case of AA-ASDM a relationship between the output sequence tk, k ∈ Z, and the input

signal x(t) holds: ∫ tk+1

tk

[x(t) + (−1)kc(t)]dt = (−1)k2κδ. (3.60)

By similar procedure, if both sides of (3.60) are divided by (−1)k and then summed over all

k = 0, 1, . . . , NAA−ASDM − 1, a numberNAA−ASDM of switching instants 0 ≤ t0 < t1 < . . . <

tNAA−ASDM
≤ Θ at the output of AA-ASDM is found:

NAA−ASDM ≈ 1

2κδ

(
c̄Θ +

NAA−ASDM−1∑
k=0

∫ tk+1

tk

(−1)kx(t)dt
)
, (3.61)

from which:
Θ

2κδ
(c̄− x̄abs) ≤ NAA−ASDM ≤ Θ

2κδ
(c̄+ x̄abs), (3.62)

where c̄ = 1
Θ

∫ Θ
0
c(t)dt is the mean value of c(t).

From (3.59) and (3.62) a ratio between the minimum value of NASDM and the maximum

value of NAA−ASDM can be obtained:
NASDM min

NAA−ASDM max

=
b− x̄abs
c̄+ x̄abs

. (3.63)

By introducing the coefficients γx = x̄abs/C and γc = ¯̃o/C, where ¯̃o = 1
Θ

∫ Θ
0
õ(t)dt is the

mean value of õ(t), then b and c̄ can be expressed as b = C + αC = x̄abs(1 + α)/γx and

c̄ = ¯̃o+ αC = γcC + αC = x̄abs(γc + α)/γx, which, after inserting into (3.63), gives:
NASDM min

NAA−ASDM max

=
1− γx + α

γc + γx + α
. (3.64)

The coefficient γx is solely determined by x(t) and its values are bounded: γx ∈ (0, 1], since

x̄abs ≤ C. On the other hand, the coefficient γc additionally depends on the chosen õ(t) and its

values γc ≥ γx, since õ(t) ≥ |x(t)|. In AA-ASDM2 case, the maximum ratio is 4.

If the mean value x̄abs is small in comparison to the maximum value C of |x(t)|, then 1− γx

in (3.64) is close to 1 and for small γc ≈ γx and α values the number NAA−ASDM will be

significantly less than NASDM . In addition, NASDM min > NAA−ASDM max for all α, if γc <

1 − 2γx. It means that AA-ASDM is advantageous over ASDM for signals having high peak-

to-peak amplitudes in comparison to their mean absolute values.

As α grows, the ratio (3.64) for small γc ≈ γx values decreases towards 1, however, since

the trigger times tk are measured with finite precision, increasing α values also reduce signal

reconstruction quality.
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3.4 Summary and Conclusions

As indicated in the conclusions of Section 2, Asynchronous Sigma-Delta modulator (ASDM)

circuit is inefficient when applied to wide dynamic range signals, such as electroencephalogram

(EEG) signals, i.e. an unnecessary high switching activity of ASDM circuit appears when the

input signal amplitude is low, causing increased power consumption of the wireless Brain Com-

puter Interface (BCI) system. This is due to ASDM circuit parameters are chosen considering

the maximum value that is never exceeded by the signal. Since envelope of the signal changes

over time, the proposition made in this Section is, instead of constant value, to use the time-

varying maximum value, which is also never exceeded by the signal, i.e. to change the ASDM

circuit parameter b according to c(t) to ensure that maximum distance between two consecutive

trigger switching times is:

τmax2(t) =
2κδ2

b2(t)− c(t)
= const. = T

In this case, the difference b2(t)− c(t)must be constant and thus b2(t) can be written as b2(t) =

c(t) + βC, where β > 0. The minimum distance becomes

τmin2(t) =
2κδ2

b2(t) + c(t)
=

T

1 + 2c(t)/(βC)

The proposed method, called Amplitude Adaptive Asynchronous Sigma-Delta modulator

(AA-ASDM) allows to reduce the over-triggering of the circuit and thus the power consumption

of wireless BCI system. Regardless of this reduction the perfect recovery of the original signal

from the obtained time sequence is still possible.

To implement this idea, in addition to ASDM circuit, there is an envelope detector with

output c(t) connected to the feedback loop. Now, the relationship between the switching instants

tk of the AA-ASDM output z(t) and the input signal x(t) for tk+1 > tk, and integers k ≥ 0, is

given by the following equation:
tk+1∫
tk

x(t)dt = (−1)k[2κδ − βC(tk+1 − tk)−
tk+1∫
tk

c(t)dt].

Based on the above mentioned, two amplitude adaptive methods: 1) AA-ASDM with ad-

ditional envelope encoding; and 2) AA-ASDM without additional envelope encoding, are pro-

posed and described.
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AA-ASDM with additional envelope encoding

In this case, the envelope signal c(t) is also needed for recovery of x(t), therefore it is en-

coded by another ASDM. Now, for AA-ASDM to be advantageous over ASDM, the signal c(t)

must have low frequencies in comparison to x(t).

In order to recover the encoded signal, the first step is recovery of envelope signal c(t).

When c(t) is found, the original signal x(t) is recovered from the given time sequence tk by

finding the unknown coefficients by the following equation:

â = G+q,

where qk = (−1)k(2κδ − βC(tk+1 − tk)−
∫ tk+1

tk
c(t)dt) and Gkn =

∫ tk+1

tk
g(t− τn)dt.

By using this signal recovery method, the reconstruction is time and resource consuming

therefore fast and real-time signal reconstruction methods are considered.

In order to increase the speed of signal reconstruction, instead of finding the coefficients ân,

it is more efficient to find the coefficients d̂n, which correspond to integral signal representation:

ς(t) =

∫ t

−∞
x(u)du =

∑
n∈Z

d̂ng(t− τn)

The unknown coefficients d̂n are obtained as:

d̂ = G+P−1 · (q̃+ P̃Hô) = G+P−1 · (q̃+ P̃HĤ+P̂−1q̂).

When all coefficients d̂n are found, ς(t) can be calculated as ς(t) =
∑N

n=1 d̂ng(t−τn), and then,

original signal can be found as

x(t) =
dς(t)

dt
.

It is also shown that speed of signal reconstruction can be increased even more by fastening

matrix G and H pseudoinversion (see Section 4.1.1.2).

In order to reconstruct the envelop as well as the original signal in real-time, the recon-

struction is carried out in short time intervals. When the first interval of c(t) is reconstructed,

the reconstruction of x(t), in short time intervals, can start. If c(t) frequency is, for example,

twenty times lower than x(t) frequency, it is possible to reconstruct twenty x(t) intervals by

knowing one c(t) interval. The main drawbacks of this method are an increased delay at the

beginning of the conversion and a demand for increased computational resources.
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Although ”AA-ASDM with additional envelop encoding” is advantageous over ASDM in

terms of switching activity, the efficiency of this method can be improved, if the time-varying

envelope of the signal is not additionally encoded and transmitted in order to recover the original

signal.

AA-ASDM without additional envelope encoding

The relationship between the switching instants tk of the AA-ASDM output z(t) and the input

signal x(t) is the same as in ”AA-ASDM with additional envelope encoding”, only in this case,

the proposition is to use the time-varying envelope function as õ(t) = 0.25 + x2(t), where

the inequality õ(t) ≥ |x(t)| holds for all x(t) ∈ [−1, 1]. This function does not require any

additional encoding scheme to be able to reconstruct the original signal with the same precision

as with the ASDM (see Section 4.1.3).

The input signal x(t) can be represented as x(t) =
∑N−1

n=0 d̃ngn(t), where d̃n are unknown

coefficients and gn(t) are the chosen base functions. The unknown coefficients d̃ are found by

minimizing the total error value:
K−1∑
k=1

(
d̃T · gk + (−1)kd̃T · Ĝk · d̃− q̃k

)2

.

The question was what base functions gn(t) to choose for representing the input signal x(t).

If the base functions gn(t) are chosen to be sinc functions, as in ASDM and ”AA-ASDM with

additional envelop encoding” case, two problems occur: 1) these functions are not well suited

for representing time-limited signals; 2) calculation of gk and Ĝk is both time consuming and

not perfectly precise since no analytical solutions of the integrals exist. In order to solve these

problems, the proposition of this work is to use Fourier series instead of sinc functions for the

original signal representation.

By using Fourier series, given the output sequence {tk}k=1,2,...,K with the corresponding time

period Θ = tK − t1, the input signal for t ∈ [t1, tK ] is expressed as

x(t) = d̃0 +
M∑
m=1

(
d̃m cos(m

2π

Θ
t) + d̃m+M sin(m

2π

Θ
t)
)
,

where the upper limit M follows from the bandwidth Ω of the signal M =
⌊
ΩΘ
2π

⌋
. Such a

representation of x(t) is both well suited for expressing time-limited signals of length Θ and

allows fast and precise calculation of gk and Ĝk. The real-time signal reconstruction is carried

out by using the same approach as in ”AA-ASDM with additional envelope encoding” case.
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”AA-ASDMwithout additional envelope encoding” allows not only to reduce the switching

activity of the ASDM circuit even more, compared to ”AA-ASDM with additional envelope

encoding”, but it also decreases the speed and delay of the signal reconstruction meanwhile

keeping the desired precision (see Section 4.1.3).

The ratio between the minimum value of a number NASDM of switching time instants and

the maximum value of NAA−ASDM can be obtained from the following expression:

NASDM min

NAA−ASDM max

=
1− γx + α

γc + γx + α
,

where γx = x̄abs/C and γc = ¯̃o/C are coefficients. It follows that AA-ASDM is advantageous

over ASDM for signals having high peak-to-peak amplitudes in comparison to their mean ab-

solute values.
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4. EXPERIMENTAL RESEARCH

In order to verify and assess the theory, developed in Section 3, in practice, in this Sec-

tion various simulations, modeling and physical implementations are carried out. First of all, in

Section 4.1, Asynchronous Sigma-Delta Modulator (ASDM) (as a reference design) and Am-

plitude Adaptive Asynchronous Sigma-Delta Modulator (AA-ASDM) are simulated in Matlab

numerical computing environment. Then, in Section 4.2, ASDM and AA-ASDM are modeled

in SIMetrix circuit simulation software. In Section 4.3, AA-ASDM together with other Brain

Computer Interface (BCI) system’s components are designed in Altium Designer Printed Circuit

Board (PCB) design software and finally constructed as physical devices. In each of these sub-

sections, a detailed description of tests as well as corresponding results are given. In addition,

at the end of Section 4, a summary and conclusions are given.

4.1 Simulations

In this sub-section, both ASDM and AA-ASDM are simulated and tested inMatlab environ-

ment. Both approaches are tested on real electroencephalogram (EEG) signals acquired by the

14-channel Emotiv EPOC [9] headset. An excerpt from these signals can be seen in Fig. 4.1.

Figure 4.1: EEG signals used for simulations

Considering typical EEG signal frequencies (see Section 1.1.2), all signals are low-pass fil-
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tered up to 49Hz ir order to remove the noise prior to encoding.

4.1.1 Asynchronous Sigma-Delta Modulator

Based on the theory, described in Section 2, ASDMMatlab functions for signal encoding, re-

construction, fast reconstruction and real-time reconstruction are developed, tested and assessed

in this Section. All usedMatlab functions can be found in Appendix B.

4.1.1.1 Signal Encoding

ASDM Matlab function for signal encoding is shown in Appendix B-1. First, considering

inequation (2.4) τmin = 2κδ
b+c

≤ tk+1 − tk ≤ 2κδ
b−c = τmax, the parameters of the ASDM must be

set in such a way that maximum distance between two consecutive trigger switchings tk+1 − tk

does not exceed the Nyquist step, i.e, τmax ≤ 1
2Fmax

= T . In this case, ASDM parameters are

set as follows: κ = 1, b = c+ α · c, where α is a constant (0.1, 0.3, 0.7, 1, 1.3, 1.9 or 2.5) and c

is a maximum amplitude of absolute value of the EEG signal, but δ is calculated as

δ = 0.9
(b− c)T

2κ
= 0.9

αc 1
2Fmax

2κ
= 0.9

αc

4Fmax
, (4.1)

where ”0.9” is added due to computing inaccuracies, otherwise, there might be occasions when

actual measured maximum distances between two trigger switching time instants is τ̂max > T .

It introduces a small over-triggering, but ensures that τ̂max is less than T. [27], [29]

The simulation results for different α values and EEG signals are shown in Table 4.1.

Table 4.1: Number of switching time instants per sec. for different α values and EEG signals

As can be seen in Table 4.1, for low α values the average switching activity is high which

is not recommended due to increased power consumption, but for too high α values variance of
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distances between consecutive trigger switching time instants reduces and more precision (more

bits) is needed to measure the distances. The optimal choice could be α = 1, when the minimum

distance between consecutive trigger times is T /3. [27], [29]

The distances between consecutive trigger switching time instants when α = 1 are shown

in Fig. 4.2.

Figure 4.2: EEG signal (red line) and the obtained ASDM distances between consecutive trig-
ger switching time instants (blue line) and Nyquist step (T ) multiplied by 0.9 (green line)

As can be seen in Fig. 4.2, the maximum distances (equaling nearly T (green line)) are

obtained only when the input EEG signal reaches its highest values at≈0.15 and≈1.3 seconds.

Due to constant parameter b, the over-triggering occurs most of the time and the distances vary

closely around T/2. This over-triggering causes an increased power consumption of a BCI

system.

As can be seen in Table 4.1, τ̂max/T values are close to 0.9 · T , except for α = 0.1 and

α = 0.3, where this parameter is less than 0.9. This is due to fact that the maximum absolute

value c of the original signal is set to be above the actual maximum value, since in real life

systems it is only normal to set the maximum and minimum amplitude values to be above the

range of the expected input signal.

Since the maximum distance between two consecutive ASDM trigger switching time in-

stants does not exceed Nyquist step, a sufficient condition to reconstruct the original signal
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from switching time instants tk is fulfilled (see next sub-section).

4.1.1.2 Signal Recovery

As shown in Section 2.2, ASDM encoded signal can be recovered by using two approaches.

The first one (Classical reconstruction) is based on expressions (2.20) and (2.22), and the second

one (Fast reconstruction) on expressions (2.41) and (2.46). In order to reconstruct the signal in

real time, an expressions (2.49) is used. Matlab functions for each of the approaches are shown

in Appendixes B-2, B-3 and B-4 accordingly.

Experimental simulation results, when α = 1, show that in average 0.420 seconds are re-

quired for Classical reconstruction algorithm and 0.017 seconds for Fast reconstruction algo-

rithm to recover a 1 second long signal on a mid-range personal computer (PC) (see Table 4.2).

Table 4.2: Comparison of algorithms (Average time necessary to reconstruct the signal)

Since the reconstruction speed (time) can vary depending on the performance of the PC, the

time values are compared in relative terms. In this case, Fast reconstruction algorithm is ≈ 25

times faster then Classical reconstruction algorithm, if the signal length is 1 second, and ≈ 61,

≈ 130 and≈ 228 times faster, if the length of the signal is 2, 4 and 8 seconds, respectively. [28]

In order to evaluate the accuracy of both signal reconstruction methods, the average Signal-

to-Noise radio (SNR) is calculated based on the simulation results. ForClassical reconstruction:

SNRASDMC
= 10log10

Ps
Pe

= 10log10(
E[x(t)]

E[x(t)− x̂(t)]
) = 132.33 dB, (4.2)

where E denotes the energy of the signal, x(t) is the original signal, but x̂(t) the reconstructed

signal. From expression (4.2), it follows that Effective Number of Bits are

ENOBASDMC
=
SNR− 1, 76

6, 02
=

132.33− 1, 76

6, 02
≈ 22 bits. (4.3)

Accordingly, for Fast reconstruction: SNRASDMF
= 131.49 dB, and ENOBASDMF

≈

22 bits.
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Fig. 4.3 shows an example of the original signal and the reconstructed signal (visually it is

not possible to see the difference), as well as the error signal, defined as the difference between

the original and reconstructed signal.

Figure 4.3: Original EEG signal (red line), reconstructed signal (green line) and error signal
(blue line), which is the difference between original and reconstructed signal

As can be seen in Fig. 4.3 a), it is impossible to see the difference between the original and

reconstructed signal due to fact that the error signal is in a range of 10−8V.

The simulation results show that by using Fast reconstruction algorithm the reconstructed

signal is slightly less accurate (SNRASDMC
= 132.33 dB, SNRASDMF

= 131.49 dB), but the

time it takes to reconstruct the original signal is significantly faster (see Table 4.2).

In order to reconstruct the signal in real time, the reconstruction is carried out in short time

intervals as described in Section 2.2.3. In this case, the parameters are chosen as follow: L = 15,

M = 2, K = 2 and J = L − 2M −K = 9, which means that each time after receiving nine

switching time instants tk, a new signal fragment reconstruction begins (see Fig. 4.4). [29]

In this particular example, nine ASDM trigger switchings time instants are generated in

70ms, but the signal reconstruction takes only 40ms, which means that by using this method it

is possible to reconstruct the signal in real time.

By using real-time reconstruction method, the SNR is also affected. The simulation results
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Figure 4.4: Reconstructed signal (d) by using three consecutive intervals: a), b) and c), where
green line is ASDM output signal, red line - reconstructed signal in interval before it is multi-
plied by window function (black line), blue line - original signal (before encoding)

show that in this case the average SNR is:

SNRASDMRT
= 10log10

Ps
Pe

= 10log10(
E[x(t)]

E[x(t)− x̂(t)]
) = 123.62 dB, (4.4)

while

ENOBASDMRT
=
SNR− 1, 76

6, 02
=

123.62− 1, 76

6, 02
≈ 20 bits. (4.5)

4.1.2 AA-ASDM with additional envelope encoding

Based on the theory, described in Section 3.1, AA-ASDMwith additional envelope encoding

is simulated and assessed in this Section.

4.1.2.1 Signal Encoding and Reconstruction

Matlab function for signal encoding is shown in Appendix C-1. First, considering expres-

sions (3.2) and (3.3), the parameters of the AA-ASDMmust be set in such a way that maximum

distance between two consecutive trigger switchings tk+1− tk does not exceed the Nyquist step,
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i.e, τmax ≤ 1
2Fmax

. In this case, AA-ASDMparameters are set as follows: κ = 1, b2 = c(t)+βC,

where β = α is a constant (0.1, 0.3, 0.7, 1, 1.3, 1.9 or 2.5) and C is a maximum amplitude of

absolute value of the EEG signal, but δ2 is calculated from the equation δ2 = 0.9βCT/2. For

envelope encoding, the parameters are set as κc = 1, bc = 2C and δc = C/4Fmaxc . [27]

The example of the input EEG signal and its estimated envelope function, when α = 0.1, is

shown in Fig. 4.5. In this case, the envelope function (solid blue line in Fig. 4.5) is acquired

Figure 4.5: Input EEG signal (red line) and its low frequency envelope functions (blue lines)

by finding peak values of the modulus of input signal, which are interpolated and then low

pass filtered by a 5Hz filter. If more precise (more rapid) envelope (dashed line in Fig. 4.5) is

used, then less triggering occurs at the output of the upper trigger (see Fig. 3.3), however, more

switchings are required to encode the envelope.

The simulation results for different α values and EEG signals are shown in Table 4.3. [29]

Table 4.3: Total number of switching time instants per second for different α = β values for
different EEG signals

In this case the total number of switching time instants is composed of two numbers, the

first number corresponds to the output of the upper trigger in Fig. 3.3, while the second to the
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output of the lower trigger. For example, for EEG1 signal, when α = β = 0.1, the number of

switching time instants of the upper trigger is 390, but for lower trigger 10, giving a total of 400

switchings per second. Since envelope signal is limited to 5Hz, for all coefficient α = β values

and all EEG signals, for envelope encoding there are needed 10 switching time instants.

Comparing Table 4.1 and Table 4.3 it can be seen that it is possible to reduce the switching

activity of ASDM, if instead of trigger output the time-varying envelope of the signal is used in

the feedback loop of the circuit. This also can be seen in Fig. 4.6, where α = β = 0.1.

Figure 4.6: Fragment of the input EEG signal (red line) and the trigger output (blue line) in
non-adaptive and amplitude adaptive cases. a) Switching activity of ASDM, b) Switching
activity of AA-ASDM with additional envelope encoding

Knowing that the main power consumer of a BCI system is transmitter (see Section 1.1.3),

by reducing the amount of information (switching time instants) to be transmitted, the power

consumption of the transmitter will reduce proportionally. Thus, it is possible to calculate the

energy saving, if AA-ASDM instead of ASDM is used [29] :

E = (1− NAA-ASDM

NASDM
) · 100%, (4.6)

where NAA-ASDM is the total number of switching time instants for AA-ASDM, but NASDM for

ASDM. From Table 4.1 and Table 4.3 it can be calculated that AA-ASDM, for different α = β

values, can achieve up to 65.69% energy saving for transmitter compared to ASDM (see further
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in the work Table 4.5). As the α = β values grow, the advantage (in switching activity) of

AA-ASDM over ASDM becomes less, however, it is not recommended to choose too high

these values since the variance of distances between consecutive trigger times reduces and more

precision (more bits) is needed to measure the distances. On the other hand, too low α = β

values are not recommended as well since high switching activity appears in both cases. [27]

The distances between consecutive trigger switching times when α = β = 1 are shown in

Fig. 4.7. The blue line corresponds to ASDM with the maximum distances (equaling nearly

Figure 4.7: EEG signal (red line) and the obtained distances between consecutive trigger
switching time instants for ASDM (blue line) and AA-ASDM (pink line), and Nyquist step
(T ) multiplied by 0.9 (green line)

Nyquist step T ) obtained when the signal x(t) reaches its highest values at ≈0.15 and ≈1.3

seconds. Due to constant parameter b = 2C, the over-triggering occurs most of the time and the

distances vary closely around T/2. On the contrary, the pink line, which corresponds to AA-

ASDM with additional envelop encoding, shows that the maximum distances (equaling nearly

0.9 · T ) occur all the time and the values t̂k+1 − t̂k are more spread. [27]

In both cases, the maximum distance between consecutive trigger times is close and do not

exceed 0.9 ·T , which is a sufficient condition to reconstruct the original signal from the obtained

reduced AA-ASDM time sequence. The signal reconstruction for AA-ASDM with additional

envelop encoding is the same as in ASDM case (see Section 4.1.1) with the same accuracy.
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Although AA-ASDM with additional envelop encoding is advantageous over ASDM in

terms of number of samples, it has few drawbacks. For example, there is a need to transmit two

signals instead of one and there is a delay introduced by additional envelope signal reconstruc-

tion prior to the original signal reconstruction. Even further, the physical implementation of the

AA-ASDMwith additional envelop encoding involves envelope detector which introduce addi-

tional delay to the system and synchronization with the original signal. Therefore, AA-ASDM

without additional envelope encoding (see Section 4.1.3) is used in further research.

4.1.3 AA-ASDM without additional envelope encoding

Based on the theory, described in Section 3.2, ”AA-ASDM without additional envelope

encoding”Matlab functions for signal encoding, fast and real-time reconstruction are developed,

tested and assessed in this Section. All theseMatlab functions are available in Appendix D.

4.1.3.1 Signal Encoding

AA-ASDM Matlab function for signal encoding is shown in Appendix D-1. Considering

expressions (3.2) and (3.3), the parameters of the AA-ASDMmust be set in a way that maximum

distance between two consecutive trigger switchings tk+1− tk does not exceed the Nyquist step,

i.e, τmax ≤ 1
2Fmax

= T . AA-ASDM without additional envelope encoding parameters are set as

in Section 4.1.2. In this case, the envelop function is set as c(t) = 0.25 + x2(t). [29]

The example of the input signal and its estimated envelope function, when α = 0.1, is shown

in Fig. 4.8, but simulation results of the average amount of triggering switching time instants

Figure 4.8: Input EEG signal (red line) and its envelope function (blue line)
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per second for different α values and EEG signals are shown in Table 4.4.

Comparing Fig. 4.5 (AA-ASDM with additional envelope encoding (AA-ASDM1)) and

Fig. 4.8 (AA-ASDM with additional envelope encoding (AA-ASDM2)), it can be seen that in

AA-ASDM2 case the envelope is more precise and thus the number of trigger switching time

instants is lower, as it can be also seen by comparing Table 4.1 and Table 4.4.

Table 4.4: Number of switching time instants per sec. for different α values and EEG signals

The distances between consecutive trigger switching time instants, when α = β = 1, are

shown in Fig. 4.9. As can be seen in Fig. 4.9, the maximum distances (equaling nearly 0.9 · T

Figure 4.9: EEG signal (red line) and the obtained distances between consecutive trigger
switching time instants for ASDM (blue line) and AA-ASDM (pink line), and Nyquist step
(T ) multiplied by 0.9 (green line)
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(green line)) occur all the time (pink line), if compared to ASDM case (blue line), and the values

t̂k+1− t̂k are more spread. Since the maximum distance between consecutive trigger times does

not exceed the Nyquist step, it is still possible to reconstruct the signal from the obtained reduced

time sequence (see Section 4.1.3.2). [29]

As mentioned before, the main power consumer of a BCI system is a transmitter, where

by reducing the average number of time codes needed to be transmitted, the average power

consumption of the transmitter will reduce proportionally (see expression (4.7)). That means,

the energy consumption of the whole BCI system reduces, if the average switching rate of the

Schmitt trigger decreases. From expression (4.6), it is possible to calculate the energy saving,

if AA-ASDM2 instead of ASDM is used. The simulation results show that it is possible to

achieve up to 68.85% energy saving for transmitter compared to ASDM (see Table 4.5, where

a comparison of ASDM, AA-ASDM1 and AA-ASDM2, based on Tables 4.1, 4.3 and 4.4 and

expression (4.6) is shown).

Table 4.5: Comparison number of trigger switching time instants per second and correspond-
ing energy saving of the transmitter for ASDM, AA-ASDM1 and AA-ASDM2

As the α = β values grow, the advantage (in switching activity) of AA-ASDM2 over ASDM

becomes less, however, it is not recommended to choose too high these values since the variance

of distances between consecutive trigger times reduces and more precision (more bits) is needed

to measure the distances. Too low α = β values are not recommended as well since high

switching activity appears in both cases.

4.1.3.2 Signal Recovery

Based on the Section 3.2.2.2, the simulation results of both fast and real-time signal re-

construction methods are shown in this section. Matlab functions for fast and real-time signal

reconstruction are shown in Appendixes D-2 and D-3, accordingly.
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For AA-ASDM, the experimental simulation results show, that it takes in average 0.09s to

reconstruct one original signal fragment with a length of 0.5s, when α = β = 1 (see Table 4.6)

Table 4.6: Comparison of ASDM and AA-ASDM2 reconstruction speed for different α = β
values and signal lengths

As can be seen in Table 4.6, the reconstruction speed vary depending on the length of the

fragment needed to be reconstructed. Also, it can be seen, that the signal reconstruction for

AA-ASDM ir more time consuming than for ASDM. This is due to fact that the optimization

algorithm, which minimizes the expression (3.53), is used to find the unknown coefficients

needed for signal reconstruction. Besides that, it can be seen that by using AA-ASDM it is

possible to achieve practically the same precision of the reconstructed signal as in the ASDM

case. It can be concluded that the performance of AA-ASDM is admissible, since it fulfills the

requirements set out in Section 1.2.

From Table 4.6, as well as from the conclusions at the end of Section 4.1.3.1, it is clear

that the best option is to use α = β = 1 and 0.5s long fragments to reconstruct the original

signal with acceptable precision and reasonably small delay. Fig. 4.10 shows an example of the

original signal and the reconstructed signal, as well as the error signal, defined as the difference

between the original and reconstructed signal. The reconstruction is done by using real-time

fragment reconstruction approach, described in Section 3.2.2.3 and shown in Fig. 4.4.

As can be seen in Fig. 4.10 b), the error signal lies within the range of 10−8V. Usually the

error increases in those regions where distance between two consecutive trigger switching time

instants is closer to 0.9 · T . Still, as can be seen in Fig. 4.10 a), it is impossible to see the
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Figure 4.10: Original EEG signal (red line), reconstructed signal (green line) and error signal
(blue line), which is the difference between original and reconstructed signal

difference between the original and reconstructed signal. Experimental simulations shows that

the use of real-time reconstruction algorithm do not affect the average SNR value.

”AA-ASDMwithout additional envelope encoding” allows not only to reduce the switching

activity of the ASDM circuit even more, if compared to ”AA-ASDM with additional envelope

encoding”, it also has lower complexity of the encoding circuit, since it does not involve an

additional encoding circuit for the envelope. Therefore, further in the next sections only this

approach will be used for experimental research.

4.2 Modeling

As shown in simulations, in Section 4.1, by using AA-ASDM it is possible to reduce the

switching activity of ASDM by up to 68.85%. In order to develop a working AA-ASDM hard-

ware prototype and estimate its properties, first an electric circuit model with existing electronic

components must be developed, simulated and analyzed for both ASDM and AA-ASDM. To

reach this aim, SIMetrix circuit simulation software is used for transient analysis and power

consumption estimation of ASDM, AA-ASDM and On-Off-Keying transmitter circuits.

108



4.2.1 Asynchronous Sigma-Delta Modulator

In order to understand the difference between ASDM and AA-ASDM in terms of hardware

implementation complexity and power consumption, first an ASDM circuit, based on block

diagram shown in Fig. 2.2, is developed, simulated and analyzed. Developed ASDM electric

circuit is shown in Fig. 4.11. It consists of a voltage adder (OpAmp1), an integrator (OpAmp2)

Figure 4.11: ASDM electric circuit

and a Schmitt trigger (OpAmp3), where resistors and capacitor determine the circuit parameters

and switching activity. The circuit is powered by a±5VDCvoltage source. As shown in Section

1.1.2, the typical EEG signal frequency is up to 50Hz, therefore, in this case, a 50Hz sinusoidal

signal with amplitude ±1V is used as a test signal, in order to cover the typical EEG signal

bandwidth. Simulation results of the ASDM circuit are shown in Fig. 4.12.

Figure 4.12: Operation of ASDM. a) Input signal (red line), integrator output (green line) and
trigger output (blue line); Power consumption of b) the trigger and c) the whole circuit
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As it can be seen in graph a), after the sinusoidal test signal (red line) is encoded, the output

of the ASDM circuit (blue line) is a continuous rectangular pulse signal with an amplitude of

±3.5V. The power consumption of the ASDM output trigger (OpAmp3) in shown in graph b),

but overall power consumption of the whole circuit in graph c).

ASDM circuit is simulated four times, each time with different capacitor C1 value of an

integrator circuit. By changing C1 from 100nF to 800nF, the numberNASDM of switching time

instants of the ASDM circuit within the given time (100ms) increases too. The results are shown

in Table 4.7.

Table 4.7: Comparison of the number of switching time instants and power consumption of
the ASDM circuit for different capacitor C1 values

As shown in Table 4.7, by increasing the value of capacitor C1 from 100nF to 800nF, the

number of switching time instants NASDM decreases from 137 to 17, but power consumption

of the whole ASDM circuit remains nearly the same, since power consumption fluctuations of

the trigger are minimal compared to its average power consumption. As shown in Fig. 4.12,

ASDM output trigger consumes the most, when it changes the state from -3.5V to +3.5V.

It should be noted that simulations were made only to verify the working principles of the

ASDM circuit and the power consumption value of≈145mW is just indicative, as it is possible

to develop ASDM circuit with 7.5nW power consumption as shown in [25], which is achieved

by developing specialized circuit structures with decreased operating supply voltage, capacities,

etc. and increased slew rates [177].

As mentioned before the main power consumer of a BCI system is transmitter, therefore it

must be also modeled and simulated together with ASDM. This is a subject of the next sub-

section.
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4.2.1.1 Wireless Data Transmission in ASDM case

As shown in Section 1.1.3 (see Fig. 1.6), modern BCI systems usually use wireless data

transmitter in order to transmit the encoded signal to data processing/visualization device. In

this case, to make ASDM based BCI system efficient, wireless data transmission must be event-

driven, where the amount of transmitted information per second is proportional to the number

of switching time instants tk per second of the ASDM output.

One, very promising and most importantly energy efficient wireless data transmission ap-

proach is a transmission based on Ultra Wide Band (UWB) pulses. In this case, for each switch-

ing time instant tk an UWB pulse is generated and transmitted to receiver. The fewer switching

time instants, the lower power consumption of the transmitter. But, as mentioned in Section

1.1.3, not only the reception and reconstruction of the signal is very complex and usually inac-

curate, but also generation of UWB pulses with different shapes is very complicated, thus not

only limiting the number of channels which can be used for BCI system, but also increasing the

complexity and the size of the circuit.

For this particular BCI application, due to its great properties, an On-Off Keying (OOK)

technique can be used for wireless data transmission. It has several advantages - simple archi-

tecture, good performance in the presence of co-channel interference, robust when exposed to

vibration and shock, and major criteria - small dimensions for on-head device implementation.

[26] Simple OOK implementation for ASDM output transmission is shown in Fig. 4.13.

Figure 4.13: Operation of the On-Off-Keying (OOK) transmitter: a) electric circuit; b) ASDM
output signal z(t) and OOK output signal OOK_out1 driven by the output of ASDM

As can be seen in Fig. 4.13 b), the circuit is transmitting all the time ASDM output is
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negative, which is not energy efficient for the ASDM case, where it is needed to transmit a

time information only, i.e., the switching time instants when ASDM output changes its state to

opposite. This can be solved by a small modification of the OOK circuit, where a short pulses

filled with carrier frequency are generated each time the ASDM output is changing its state to

opposite. The modified OOK circuit is shown in Fig. 4.14.

Figure 4.14: Operation of the modified On-Off-Keying (OOK) transmitter: a) electric cir-
cuit; b) ASDM output signal z(t) and OOK output signal driven by the output of ASDM
OOK_out2

In this case, the circuit is supplemented by a logic gate XNOR element, which consumes ad-

ditional 45µW, and two passive elements, but the overall circuit’s power consumption decreases

up to 25 times depending on the number of switching instants NASDM (see Table 4.8).

Table 4.8: Comparison of power consumtion of OOK and modified OOK circuits for different
ASDM circuit parameters

* - Pulse width: 110ns

As can be seen in Table 4.8, the average power consumption of bothOOK andmodifiedOOK

circuits decrease if the number of ASDM switching time instants (NASDM ) decreases. Assuming

that ASDM output is a 50% duty cycle, it is expected that the average power consumption of
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the OOK circuit is not changing if the number of ASDM switching time instants decreases,

however, it changes. This is due to fact that after each transmission this circuit (see Fig. 4.13)

dissipates energy that was stored in LC oscillator (see Fig.4.15). Due to this, the higher the

number of ASDM switching time instants (NASDM ) within the given time, the higher the power

consumption of the circuit. The relation is proportional.

Figure 4.15: Pulse generation in OOK circuit: ASDM output signal z(t) (red line), OOK out-
put signal OOK_out1 (green line), power consumtion of the OOK circuit (blue line)

In the modified OOK circuit case (see Fig. 4.14), the power consumption of the circuit is

directly proportional to the number of ASDM switching time instants (NASDM ):

POOKmod = P0(1− n · τtx
Ttx

) + n · Ptx · τtx
Ttx

, (4.7)

where P0 - is an average power consumption of the circuit, when LC is not oscillating, but Ptx,

when LC is oscillating during and after each transmission; τtx is a length of the transmitting

pulse (including decay time of oscillations), Ttx is a period in which the circuit is analyzed, but

n is an average number of pulses during Ttx. From (4.7) it follows, if the the number of ASDM

switching time instants is decreased, the average power consumption of the OOK circuit is also

decreased in a linear relation. It should be noted that in this case the power consumption of the

circuit when it is not transmitting is P0 ≈16.6mW, which is very high, while modern wireless

transmitters have P0 in nW [178], [179], meaning that if the number of switching time instants

are reduced by 50%, the power consumption of the transmitter will also decrease by ≈50%.

Besides that, the experimental test results show that the power consumption of the modified

OOK circuit is also directly proportional to selected pulse width (see Table 4.9).
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Table 4.9: Power consumption of the OOK circuit depending on selected pulse width

In practical implementations, the length of the pulse must be chosen the shortest possible

which can ensure reliable transmission.

4.2.2 AA-ASDM without additional envelope encoding

The electrical circuit of the AA-ASDMwithout additional envelope encoding is similar to the

ASDM circuit, shown in Fig. 4.11, only in this case it is supplemented by an Analog Multiplier

(MLT04) and a Voltage Follower (OpAmp1) (see Fig. 4.16). In order to make a comparison

Figure 4.16: AA-ASDM electrical scheme

between ASDM and AA-ASDM circuits, the parameters in both circuits are set to be equal (the

selected parameters can be found in Section 4.2.1).

Simulation results of the AA-ASDM circuit are shown in Fig. 4.17.

Just as for ASDM circuit, the AA-ASDM circuit is simulated four times, each time with

different capacitor C1 value (100nF, 200nF, 400nF and 800nF) of an integrator circuit. By

changing C1, the number of switching time instants (NAA−ASDM ) of the AA-ASDM circuit

within the given time (100ms) is changing too. The results are shown in Table 4.10.
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Figure 4.17: Operation of AA-ASDM. a) Input signal (red line), integrator output (green line)
and trigger output (blue line); Power consumption of b) the trigger and c) the whole circuit

Table 4.10: Comparison of the number of switching time instants and power consumption of
the AA-ASDM circuit for different capacitor C1 values

As can be seen in Table 4.7 and Table 4.10, for equal capacitor C1 values, the number of

switching time instants are different. For example, for C1=100nF, the number of switching

time instants for ASDM is NASDM=137, but for AA-ASDM NAA−ASDM=69. The number of

switching time instants for AA-ASDM circuit can be even smaller, if signals with wide dynamic

range is used (see Section4.1.3.1). In this modeling, a sinusoidal 50Hz test signal is used.

On the other hand, fromTable 4.7 and Table 4.10 it can be seen that the power consumption of

the AA-ASDM circuit is ≈60% higher (≈231mW), compared to ASDM (≈145mW). It should

be noted that simulations were made only to verify the working principles of both ASDM and

AA-ASDM circuits and the power consumption values are just indicative, as it is possible to

develop an ASDM circuit with 7.5nW power consumption as shown in [25]. This means, if

the AA-ASDM circuit is implemented in the same technology as shown in [25], the increase

of power consumption by 60% compared to ASDM would give an overall power consumption

of the AA-ASDM circuit: 12nW. As mentioned in Section 1.1.3 the main power consumer of a
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BCI system is a transmitter therefore it is more important to reduce the amount of information to

be transmitted. As shown in Section 4.2.1.1, the power consumption of the OOK transmitter can

be reduced significantly by reducing the number of switching time instants to be transmitted,

which can be achieved by using AA-ASDM instead of ASDM.

4.2.2.1 Wireless Data Transmission in AA-ASDM case

The transmitter, used for AA-ASDM is the same as shown in Fig. 4.14, only in this case,

the OOK transmitter is driven by the AA-ASDM output, instead of ASDM. This means, fewer

switching time instants and reduced power consumption of the OOK circuit. A comparison

of the power consumption of the OOK circuit depending on if ASDM or AA-ASDM circuit’s

output is used as an input for the OOK transmitter is shown in Table 4.11.

Table 4.11: Comparison of the power consumption of the OOK circuit depending on if ASDM
or AA-ASDM circuit’s output is used as an input for the OOK transmitter

As can be seen in Table 4.11, the reduction of the power consumption of the transmitter

by using AA-ASDM, instead of ASDM, can reach up to ≈37% depending on the number of

switching time instants. But, it is important to note that in this case the power consumption of

the circuit when it is not transmitting is very high≈16.6mW, while modern wireless transmitters

have it in a range of nW [178], [179]. This means, if the the power consumption of the circuit,

when it is not transmitting, would be for example 100nW, the reduction of the power consump-

tion could reach up to ≈50% depending on the number of switching time instants or even more

if signals with HDR is used (see Section 4.1.3), where AA-ASDM is particularly advantageous.

Asmentioned in Section 1.1.3, modernwireless data transmitters consume≈3mW. It follows

that if AA-ASDM instead of ASDM is used, it is possible to reduce the power consumption
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of the transmitter by 1.5mW, while increasing the power consumption of the encoder just by

4.5nW, giving a total of≈50% power consumption reduction in a wireless BCI system, leading

to two times longer battery life and operation time of wireless system. These parameters can be

increased even more if the system is used for wide dynamic range signals, such as EEG signals.

4.3 Practical Implementations

As shown in simulations in Section 4.1, by using AA-ASDM it is possible to reduce the

switching activity of ASDMby 68.86%, while modeling shows that such an improvement comes

with an increase in the power consumption of the AA-ASDM circuit, which is admissible, be-

cause the increase is small (4.5nW) compared to the reduction of power consumption in wireless

transmitter (≈1.5mW). In this case, the reduction of switching time instants proportionally re-

duce the power consumption of the wireless transmitter (see Section 4.2.1.1). Now, the main

challenge is to develop and test AA-ASDM based EEG data acquisition system hardware pro-

totype. To reach this aim, Altium Designer PCB design software is used for designing all the

necessary hardware components - EEG signal amplifier, AA-ASDM, wireless data transmit-

ter and receiver. All these components are constructed with an aim of creating complete one

channel BCI system. Developed hardware is tested and assessed on test signals.

4.3.1 Amplitude Adaptive Asynchronous Sigma-Delta modulator

Based on the AA-ASDM modeling results (see Section 4.2.2), a physical AA-ASDM based

EEG data acquisition system is designed (see the block diagram in Figure 4.18). [26] It consists

Figure 4.18: Full one channel block diagram

of a wireless sensor, which includes EEG signal amplifier, AA-ASDM and OOK transmitter,

and receiving and processing unit, which includes super-heterodyne receiver, ATS460 digitizer

and personal computer (PC). In the next subsections the description of each part follows.
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4.3.1.1 AA-ASDM based Wireless Sensor for EEG data acquisition

Developed AA-ASDM based Wireless Sensor for EEG data acquisition consist of 3 parts

(PCBs): EEG signal amplifier, AA-ASDM and OOK transmitter.

First, by using silver chloride (Ag/Cl) bridge electrodes and special conductive gel the weak

EEG signal is obtained. As shown in Section 1.1.2, the typical measured EEG signal amplitude

is between 0.5 - 100µV , therefore it must be amplified prior the encoding. The amplification is

performed by the first PCB: EEG signal amplifier (see Fig. 4.19). First EEG signal enters a high

Figure 4.19: PCB of the designed EEG signal amplifier: a) top routing layer; b) bottom rout-
ing layer; c) top and bottom routing layers; d) 3D model

CMRR (∼120dB) differential preamplifier (INA128) circuit with variable gain (up to g≈250),

which includes protection circuit together with Driven Right Leg (DRL) circuit. Then, the signal

is passed to 2nd stage non-inverting amplifier (g≈40), which in total gives an amplification of

∼10 000 times, amplifying EEG signal from ∼0.5-100µV to 0.005-1V. [26]

After signal amplification, it is time encoded by the second PCB: AA-ASDM (see Fig. 4.20).

Based on the Fig. 4.16, AA-ASDM is implemented by using 4 operational amplifiers, analog

Figure 4.20: PCB of the designed AA-ASDM: a) top routing layer; b) bottom routing layer; c)
top and bottom routing layers; d) 3D model
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multiplier and few passive elements. The selection of these elements and set parameters is

described in next Section 4.3.2. An example of AA-ASDM input signal x(t) and corresponding

output signal z(t) from the developed hardware is shown in Fig. 4.21.

Figure 4.21: AA-ASDM input signal (blue line) and corresponding output signal (red line)

After time encoding, the AA-ASDM output signal z(t) is wirelessly transmitted by using

the third PCB: OOK transmitter (see Fig. 4.22). As shown in Section 4.2.1.1, it consist of a

Figure 4.22: PCB of the designed OOK transmitter: a) top routing layer; b) bottom routing
layer; c) top and bottom routing layers; d) 3D model

RC filter, XNOR gate, a simple transistor circuit for OOK manipulation and bandpass filter. An

example of AA-ASDM output signal z(t) and generated pulses at the output of the XNOR gate

is shown in Fig. 4.23, while an example of one pulse and corresponding OOK output signal s(t)

is shown in Fig. 4.24.

In this case, by varying carrier frequency ωn, for different AA-ASDM outputs zn(t), it is

possible to create a multi-channel BCI system. Different carrier frequencies are obtained by

voltage controlled oscillator and the modulated signal is transmitted by chip antenna.
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Figure 4.23: AA-ASDM output signal (blue line) and XNOR gate’s output signal with pulses
generated at each rising and falling edge of the AA-ASDM output signal (red line)

Figure 4.24: One pulse of the XNOR gate output signal (red line) and corresponding OOK
output signal (blue line)

The transmitted signal s1(t) of the first channel can be written as s1(t) = z1(t) · cos(ω0t),

where ω0 is the carrier frequency, which is different for each channel (ω01, ω02, ω0n (an example

of three channel case is depicted in Fig. 4.25)). [26]

Figure 4.25: 3 channel spectrum example

By knowing the pulse width at the output of the XNOR gate, it’s possible to calculate the

occupied spectrum bandwidth. On one hand, the shorter the pulse, the wider the occupied band-
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width. On the other hand, the wider the pulse, the higher the power consumption of a transmitter.

The Wireless Sensor, which consists of EEG amplifier, AA-ASDM and OOK transmitter is

fabricated in cylindrical 16x11mm package (see Fig. 4.26). [26] The sensor design allows to

Figure 4.26: Designed wireless sensor: 1. EEG amplifier, 2. AA-ASDM, 3. OOK transmitter

put it right on the electrode surface, thus can be used as an on-head sensor device. After EEG

signal being amplified, encoded and transmitted, it also must be received and reconstructed (see

Fig. 4.18). This is a subject of the next Section 4.3.1.2.

4.3.1.2 Receiving and Processing Unit

The received signal is a sum of all transmitted signals: sr(t) =
∑N

n=1 sn(t) · cos(ωnt).

First, a super-heterodyne receiver (one receiver for all sensors) is developed (see Fig. 4.27)

and used for high frequency signal sr(t) down-conversion to a fixed intermediate frequency (IF),

Figure 4.27: PCB of the designed OOK receiver: a) top routing layer; b) bottom routing layer;
c) 3D model d) physical device

which can be more easily processed than the original 434MHz carrier frequency. So, the output
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sIF can be written as following: sIF (t) = sr(t) · cos(ω0t), where ω0 is a variable frequency.

[26]

The super-heterodyne receiver consists of chip antenna, high linearity and low power down-

converting mixer LT5526, voltage controlled oscillator (VCO), radio frequency transformer

ADT1-1WT and 50Ω output matching circuit. [26]

After frequency down converting from ≈434 MHz to ≈1 MHz, IF signal is imported into

PC using ATS460 14-bit, 125 MS/s digitizer. Further, all the signal processing is performed in

Matlab. Each channel of the imported signal sIF (t) is bandpass filtered and processed in order

to obtain AA-ASDM output switching time instants tk.

In order to obtain AA-ASDM output switching time instants tk from the band-passed signal,

following steps are made: first, the band-passed signal is multiplied by the center frequency to

obtain the envelope; then, peak values are found of the modulus of the acquired signal; further,

all the values which are lower than the predefined threshold are set to be zero, thus eliminating

the noise; finally, the switching time instants ar found in those locations, where the difference be-

tween two consecutive sample values is higher than the predefined threshold, or in other words,

the transition between non-transmitting and transmitting state is found, and marked with the

bars (see Fig. 4.28). These bars are the AA-ASDM switching time instants tk from which the

Figure 4.28: Received and band-passed OOK signal and found switching time instants

original signal, based on the algorithm shown in Section 4.1.3.2, can be reconstructed. In order

to estimate the performance of the developed system, and most importantly of the AA-ASDM,

the experimental setup is build and system tested (see next Section 4.3.2).
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4.3.2 Experimental Setup and Tests

In order to test and assess the developed AA-ASDM based EEG data acquisition system, de-

scribed in Section 4.3.1, first AA-ASDM must be calibrated. The block diagram of the calibra-

tion setup is shown in Fig. 4.29, whileMatlab program for AA-ASDM calibration in Appendix

E-1. The calibration setup consists of a signal generator, which generates test signals, physical

Figure 4.29: Block digram of the calibration setup

AA-ASDM PCB, 2-channel ATS460 digitizer (20Msps) and PC.

First, based on the Fig. 4.29, the outputs of the AA-ASDM integrator y(t) and trigger z(t) for

three different DC input signal voltage levels (in this case, DC=0V, 0.5V and 0.9V) are digitized

and imported into PC. Knowing the number and step of the quantization levels of the ATS460

digitizer, from acquired three y(t) signals (see Fig. 4.30), the actual value of the AA-ASDM

trigger parameters δ+ and δ− are acquired. In this case, +δ=1.5V, but −δ=-1.5V.

Figure 4.30: Outputs of the integrator for three different AA-ASDM input DC signal values
(0V (blue line), 0.5V (red line) and 0.9V (yellow line))

From three imported AA-ASDM trigger z(t) signals, it is possible to find the average +b

and −b parameter values as well as the trigger switching time instants tk for each of the z(t)

signals (see an example in Fig 4.31). In this case, +b=4.94V, but −b=-4.85V.

Further, from tk values, the average maximum∆tmax and minimum∆tmin distance between

two consecutive trigger switching time instants is calculated for all three signals. It should be
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Figure 4.31: The output of the AA-ASDM PCB trigger (blue line), integrator (red line) and
found switching time instants (black bars), when input signal is DC=0V

noted that for DC input there exist only one maximum and one minimum value (see an example

of DC=0V in Fig. 4.32).

Figure 4.32: Distances between consecutive AA-ASDM trigger switching time instants when
input signal is DC=0V

In order to verify if developed AA-ASDM PCB is working properly, acquired ∆tmax and

∆tmin values are compared to the theoretically calculated values. Theoretical values are calcu-

lated from the electrical scheme, shown in Fig. 4.33.

Figure 4.33: AA-ASDM electrical scheme of the actually developed PCB

124



First, the output of the Adder (U1B in Fig. 4.33) is found by following equation:

U1Bout =

(
1 +

R10

R12

)[
u1

R7||R6
R9 +R7||R6

+ u2
R9||R6

R7 +R9||R6
+ u3

R9||R7
R6 +R9||R7

]
=

=

(
1 +

20

10

)[
u1

5

36.6
+ u2

7.6

17.6
+ u3

7.6

17.6

]
= u1 · 0.4098 + u2 · 1.2951 + u3 · 1.2951,

(4.8)

where u1 is the b parameter signal, u2 the envelope signal õ(t) and u3 is the input signal x(t).

From 4.8, we can denote the coefficients as a1=0.4098 and a2=1.2951.

Knowing values of a1, a2, +b, −b, δ+ and δ−, it is possible to calculate theoretical ∆tmax/t
and ∆tmin/t:

a1

∫ tk+1

tk

x(t)dt+ a1

∫ tk+1

tk

(x2(t) + 0.25)dt+ a2

∫ tk+1

tk

b2dt =
1

κ
(δ+ − δ−), (4.9)

a1

∫ tk+2

tk+1

x(t)dt− a1

∫ tk+2

tk+1

(x2(t) + 0.25)dt− a2

∫ tk+2

tk+1

b2dt = −1

κ
(δ+ − δ−). (4.10)

where, 1
κ
= 1

R11·C1
is an integrator constant.

If x(t)=0V, equations (4.9) and (4.10) can be written as:

a1

∫ tk+1

tk

(x2(t) + 0.25)dt+ a2

∫ tk+1

tk

b2dt =
1

κ
(δ+ − δ−), (4.11)

a1

∫ tk+2

tk+1

(x2(t) + 0.25)dt+ a2

∫ tk+2

tk+1

b2dt =
1

κ
(δ+ − δ−). (4.12)

From (4.11) and (4.12) it follows:

a1(0.5 + x(t))2∆tk + a2b2∆tk =
1

κ
(δ+ − δ−), (4.13)

a1(x(t)− 0.5)2∆tk+1 + a2b2∆tk+1 =
1

κ
(δ+ − δ−). (4.14)

Finally, from (4.13) and (4.14) it is possible to calculate theminimum andmaximum distance

between two consecutive trigger switching time instants:

∆tk =
1
κ
(δ+ − δ−)

a1(x(t) + 0.5)2 + a2b2
, (4.15)

∆tk+1 =
1
κ
(δ+ − δ−)

a1(x(t)− 0.5)2 + a2b1
. (4.16)

In order to verify if AA-ASDM is working properly, the division of practically acquiredmax-

imum and minimum distances between two consecutive trigger switching time instants ∆tmax

∆tmin
is

compared to theoretically calculated ∆tk+1

∆tk
a these values must be equal or almost equal:

τmax
τmin

= 1.0046,when x(t) = 0V ; 1.6416 (0.5V ); 2.0654 (0.9V ), (4.17)
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∆tk+1

∆tk
=
a2b2 + a1(x(t) + 0.5)2

a2b1 + a1(x(t)− 0.5)2
= 1.0155,when x(t) = 0V ; 1.6692 (0.5V ).2.0778 (0.9V ).

(4.18)

As can be seen above, the practical values are almost equal to theoretically calculated, which

means the AA-ASDM is working properly. Also, the theoretically calculated integrator constant
1
κ
= 1

R11·C1
= 1

123·220−9 = 378.7879 should be almost equal to practically acquired:

1

κk
=

(δ+ − δ−)

∆tk(a2b2 + a1(x(t) + 0.5)2)
= 390.3648, (4.19)

when x(t)=0V; 389.5847 (0.5V); 385.8625 (0.9V),

1

κk+1

=
(δ+ − δ−)

∆tk+1(a2b1 + a1(x(t)− 0.5)2)
= 394.5847, (4.20)

when x(t)=0V; 395.9194 (0.5V); 388.1883 (0.9V). As can be seen, the difference from the the-

oretically calculated value is within the range of 4%. This is due to capacitor non-ideality, as

it has ±10% capacitance tolerance. As experiments shows, the precision of the reconstruction

is very sensitive to capacitor non-ideality and therefore the circuit must be calibrated first. In

further experiments, the value of 1
κ
is selected based on the practical measurements.

After calibration of the AA-ASDM and initial tests, the AA-ASDM circuit can be placed

in the overall AA-ASDM based EEG data acquisition system for further experimental tests. A

block diagram of the experimental setup is shown in Fig. 4.34.

Figure 4.34: Block diagram of the experimental setup

Knowing the parameters of the AA-ASDM circuit and by using Matlab program shown in

Appendix E-2, it is possible to acquire, process and reconstruct the original signal.

An examples of original and reconstructed signals is given in Fig. 4.35, while example of

the distances between consecutive trigger switching time instants is shown in Fig. 4.36.

As can be seen in Fig. 4.35, it is hard to see the difference between the original and recon-

structed signal, which means that it is possible to encode and qualitatively reconstruct the signal,
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Figure 4.35: Original signal (red line), reconstructed signal (green line) and error signal (blue
line), which is the difference between original and reconstructed signal

Figure 4.36: Original signal (red line) and obtained distances between consecutive trigger
switching time instants (blue line)

by using AA-ASDM2. In order to quantitatively estimate the performance of AA-ASDM it must

be implemented in a chip, with specialized circuit structures with decreased operating supply

voltage, capacities, etc., with low comparator jitter, slew rate, DC gain, voltage saturation, ex-
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cess loop delays and comparator offsets, etc. [177], [146], [180], [181] Also, as shown is [182],

Time-to-digital converter (in this case ATS460) has a significant impact on the precision of the

reconstructed signal. The precision of the reconstructed signal is directly proportional to the tk
measurement precision. [183]

4.4 Summary and Conclusions

In order to verify and assess the theory, developed in Section 3, in practice, in this Section

various simulations, modeling and physical implementations of ASDM (as a reference design)

and AA-ASDM were carried out.

Simulations

In Section 4.1, experimental simulation results confirmed the theory (in Section 2.3.2) that

by using ASDM for EEG signal encoding, an unnecessary high switching activity of the ASDM

circuit appears when input signal amplitude is low. For a 50Hz EEG signal, the average num-

ber of trigger switching time instants per second NASDM , depending on selected α value, vary

between 152 and 1184. The maximum distances between two consecutive trigger switching

time instants equaling nearly Nyquist step are obtained only when the input signal reaches its

highest amplitude values. Since the maximum distance between two consecutive ASDM trigger

switching time instants does not exceed Nyquist step, it is a sufficient condition to reconstruct

the signal.

Experimental simulation results show that Fast reconstruction algorithm is≈ 25 times faster

then Classical reconstruction algorithm, if the signal length is 1 second, and ≈ 61, ≈ 130 and

≈ 228 times faster, if the length of the signal is 2, 4 and 8 seconds, respectively. As simulations

show, both reconstruction approaches can ensure ≈24 bit resolution. But, by using real-time

reconstruction method, the resolution is affected and drops to ≈22 bits.

As expected from the theory, described in Section 3, the number of switching time instants

decreases if proposed AA-ASDM instead of ASDM approach is used. The simulation results

show that by using AA-ASDM1 (AA-ASDM with additional envelope encoding), the average

number of trigger switching time instants per second NAA−ASDM1, depending on selected α =

β value, varies between 135 and 406, which is up to 65.69% less switchings then in ASDM

case. Themaximumdistances between two consecutive trigger switching time instants (equaling
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nearly Nyquist step) occur all the time and are more spread. The signal reconstruction (fast

and real-time) for AA-ASDM1 is exactly the same as in ASDM case with the same accuracy

≈22 bits. Since the main power consumer of a BCI system is a transmitter, by reducing the

average number of time codes needed to be transmitted, the average power consumption of the

transmitter decreases proportionally. Which means, also the energy consumption of the whole

BCI system decreases.

Although AA-ASDM1 is advantageous over ASDM, there is a need to transmit two sig-

nals instead of one and there is a delay introduced by additional envelope signal reconstruction

prior to the original signal reconstruction. Even further, the physical implementation of the AA-

ASDM1 involves envelope detector which introduce additional delay to the system and syn-

chronization with the original signal. Besides that the acquisition of the AA-ASDM1 envelop

function is very difficult to obtain in practice, which complicates the physical implementation.

This can be overcome by using AA-ASDM2 (AA-ASDM without additional envelope en-

coding). In this case, the gain is even bigger and can reach up to 68.85% less switching time

instants (NAA−ASDM2) compared to ASDM. But this gain comes with more time consuming

signal reconstruction due to optimization algorithm. Still, the performance of AA-ASDM2 is

admissible, since reconstruction algorithms can reconstruct the signal in real-time on PC. Even

further, AA-ASDM2 has lower complexity of the encoding circuit, since it does not involve an

additional encoding circuit for the envelope, as it is in AA-ASDM1 case.

The comparison of ASDM, AA-ASDM1 and AA-ASDM2 is given in Table below:

Table: Comparison number of trigger switching time instants per second and corresponding
energy saving of the transmitter for ASDM, AA-ASDM1 and AA-ASDM2

Since AA-ASDM2 is particularly advantageous over ASDM if used for wide dynamic range

signals, such as EEG signals, it could be effectively used also for other wide dynamic range

signals, for example, electromyogram, electrooculogram, electrocardiogram, seismic and other

signals.
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Modeling

In order to understand the difference between ASDM and AA-ASDM2 in terms of hard-

ware implementation complexity and power consumption, in Section 4.2, first an ASDM circuit

is developed, modeled and analyzed. ASDM circuit consists of three OpAmps and few pas-

sive elements which determine the circuit parameters and switching activity. The modeling

results show that ASDM circuit consumes ≈144mW, but it should be noted that modeling were

made only to verify the working principles of the circuit, where power consumption value is

just indicative, as it is possible to develop ASDM circuit with 7.5nW power consumption by

developing specialized circuit structures with decreased operating supply voltage, capacities,

etc. and increased slew rates.

Since the main power consumer of a BCI system is transmitter, it is also modeled and sim-

ulated together with ASDM. For this particular BCI application, due to its great properties, an

On-Off Keying (OOK) technique is used for wireless data transmission. It has several advan-

tages - simple architecture, good performance in the presence of co-channel interference, robust

when exposed to vibration and shock, and major criteria - small dimensions for on-head device

implementation.

Although power consumption of the ASDM circuit does not changes based on the aver-

age number of trigger switchings, the average power consumption of presented event-driven

OOK circuit decrease proportionally if the number of ASDM switching time instants (NASDM )

decreases. Also, the power consumption of the presented OOK circuit varies depending on

selected pulse width, during which the LC is oscillating thus ensuring the data transmission.

The electrical circuit of the AA-ASDM2 is similar to the ASDM circuit, only in this case it is

supplemented by anAnalogMultiplier and aVoltage Follower OpAmp. The power consumption

of the AA-ASDM2 circuit is ≈60% higher (≈231mW), compared to ASDM, but it should be

noted that if the AA-ASDM2 circuit would be implemented in the same technology as shown

in [25], the increase of power consumption by 60% compared to ASDM would give an overall

power consumption of the AA-ASDM2 circuit: 12nW.

The simulation results show that the reduction of the power consumption of the transmitter

by using AA-ASDM2, instead of ASDM, can reach up to ≈37% depending on the number of

switching time instants. But, it is important to note that in this case the power consumption of

the circuit when it is not transmitting is very high≈16.6mW, while modern wireless transmitters
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have it in a range of nW. This means, if the the power consumption of the circuit, when it is not

transmitting, would be for example 100nW, the reduction of the power consumption could reach

up to ≈50% depending on the number of switching time instants.

Since modern wireless data transmitters consume ≈3mW, it follows that if AA-ASDM2

instead of ASDM is used, it is possible to reduce the power consumption of the transmitter by

1.5mW, while increasing the power consumption of the encoder just by 4.5nW, giving a total of

≈50% power consumption reduction in a wireless BCI system, leading to 2 times longer battery

life and operation time of wireless system. These parameters can be increased even more if the

system is used for wide dynamic range signals, such as EEG signals.

Practical Implementation

In Section 4.3, a hardware prototype of AA-ASDM2 based EEG data acquisition system

is developed and tested. The system consists of a wireless sensor (fabricated in cylindrical

16x11mm package), which includes EEG signal amplifier, AA-ASDM2 and OOK transmitter,

and receiving and processing unit, which includes super-heterodyne receiver, ATS460 digitizer

and personal computer (PC). Developed PCBs are shown in Fig. 4.37.

Figure 4.37: Developed AA-ASDM2 based EEG data acquisition system’s components: 1.
EEG amplifier, 2. AA-ASDM, 3. OOK transmitter, 4. receiver

First, by using electrodes the weak EEG signal is obtained. Then by using the first PCB:

EEG signal amplifier, the signal is amplified ∼10 000 times. After EEG signal amplification,

it is time encoded by the second PCB: AA-ASDM2. The output signal of the AA-ASDM2 is

wirelessly transmitted by using the third PCB: OOK transmitter. By varying carrier frequency

for different AA-ASDM2 outputs, it is possible to create a multi-channel BCI system. There

is a trade-off with the selection of the transmitting pulse width. On one hand, the shorter the

pulse, the wider the occupied spectrum bandwidth. On the other hand, the wider the pulse, the

higher the power consumption of a transmitter. After EEG signal being amplified, encoded and

131



transmitted, it is received by a super-heterodyne receiver (one receiver for all sensors) where

high frequency signal is down-converted to a fixed intermediate frequency (IF). IF signal is

imported into PC, by using ATS460 14-bit, 125 MS/s digitizer, for further signal processing.

At the end of signal processing AA-ASDM2 output switching time instants tk are obtained and

signal reconstruction, based on the algorithm shown in Section 4.1.3.2, can begin.

In order to estimate the performance of the developed system, and most importantly of the

AA-ASDM2, the experimental setup is build and system tested. First, to verify if the devel-

oped AA-ASDM2 PCB is working properly, it is calibrated. The calibration setup consists of

a signal generator, which generates test signals, physical AA-ASDM2 PCB, 2-channel ATS460

digitizer (20Msps) and PC. In order to calibrate the circuit, the outputs of the AA-ASDM2 in-

tegrator and trigger for three different DC input signal voltage levels (0V, 0.5V and 0.9V) are

acquired, digitized and imported into PC for further processing. At the end of signal process-

ing/calibration, the actual AA-ASDM2 integrator and trigger parameter values κ, +b, −b, δ+

and δ− are obtained and inserted in the signal reconstruction algorithm.

After the calibration, AA-ASDM2 circuit is placed in the overall AA-ASDM2 based EEG

data acquisition system for further experimental tests. Knowing the parameters of the AA-

ASDM2 circuit and by usingMatlab program, it is possible to acquire, process and reconstruct

the original signal.

Visually it is hard to see the difference between the original and reconstructed signal, which

means that it is possible to encode and qualitatively reconstruct the signal, by usingAA-ASDM2.

In order to quantitatively estimate the performance of AA-ASDM it must be implemented in a

chip, with specialized circuit structures with decreased operating supply voltage, capacities,

etc., with low comparator jitter, slew rate, DC gain, voltage saturation, excess loop delays and

comparator offsets, etc. Also, Time-to-digital converter (in this case ATS460) has a significant

impact on the precision of the reconstructed signal. The precision of the reconstructed signal is

directly proportional to the tk measurement precision.
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5. CONCLUSIONS

The main aim of this thesis to develop an improved method for signal encoding based on

ASDM, which allows to reduce the power consumption of the wireless BCI system, while main-

taining the desired signal quality has been reached.

According to defined tasks, following results are achieved:

• based on the literature review and analysis of electroencephalogram (EEG) signals and

brain computer interface (BCI) systems, the author has defined the requirements for Analog-

to-digital converters (ADC). These requirements are: energy efficiency, encoding com-

plexity, resolution and sampling rate;

• based on defined requirements, the author has reviewed, analyzed and described a liter-

ature on synchronous and asynchronous ADCs as well as selected the most appropriate

ADC for EEG signal encoding and BCI systems as whole; Due to its great properties,

Asynchronous Sigma Delta modulator (ASDM) is selected;

• the author has extensively analyzed, researched and described the ASDM and identi-

fied the points of improvement. The main inefficiency of the ASDM is related to over-

triggering, which occurs when ASDM is applied to wide dynamic range signals such as

EEG signals. Due to wide dynamic range that these signals have, a high switching activity

of ASDM circuit appears when the input signal amplitude is low;

• in order to improve te ASDM, the author has proposed and in detail described a new

method, calledAmplitude-Adaptive Asynchronous Sigma-Deltamodulator (AA-ASDM),

which allows to reduce the over-triggering of the circuit and thus the power consumption

of the whole wireless BCI system, while maintaining the desired signal quality;

• in order to test and assess the proposed method, the author has simulated (in Matlab),

modeled (in SIMetrix), designed (in Altium Designer) and developed the AA-ASDM. The

main achieved results are provided and assessed, and conclusions given;

• the author has developed and tested a complete one channel BCI system. The main

achieved results are provided and assessed, and conclusions given.

Scientific results of the research have been published in the following papers:

• Ozols K., Shavelis R., Amplitude Adaptive ASDM without Envelope Encoding, 2016 24th
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European Signal Processing Conference (EUSIPCO), Budapest, 2016, pp. 165-169.

• Ozols K., Implementation of reception and real-time decoding of ASDM encoded and

wirelessly transmitted signals, 2015 25th International Conference Radioelektronika (RA-

DIOELEKTRONIKA), Pardubice, 2015, pp. 236-239.

• Ozols K., Greitans M., Shavelis R., Amplitude Adaptive Asynchronous Sigma-Delta Mod-

ulator, 2013 8th International Symposium on Image and Signal Processing and Analysis

(ISPA 2013), Trieste, 2013, pp. 460-464

• Ozols K., GreitansM., Shavelis R., EEGData Acquisition System Based on Asynchronous

Sigma-DeltaModulator, 2012 13th Biennial Baltic Electronics Conference, Tallinn, 2012,

pp. 183-186.

Based on the results, described above, it can be concluded that the main aim of this work is

achieved.
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APPENDIX A

MATHEMATICAL EXPRESSIONS FOR AA-ASDM

A-1 Vector gk

Vector gk is defined as in (3.50):

gk =


∫ tk+1

tk
g0(t)dt∫ tk+1

tk
g1(t)dt
...∫ tk+1

tk
gN−1(t)dt

 , where

gn(t) =


1 if n = 0

cosn2π
T
t if n ∈ [1,M ] where M = N−1

2
.

sin(n−M)2π
T
t if n ∈ [M + 1, N − 1]

Considering∫ tk+1

tk
dt = tk+1 − tk∫ tk+1

tk
cosn2π

T
tdt = T

n2π

[
sinn2π

T
tk+1 − sinn2π

T
tk

]
, where n ∈ [1,M ]∫ tk+1

tk
sinn2π

T
tdt = − T

n2π

[
cosn2π

T
tk+1 − cosn2π

T
tk

]
, where n ∈ [M + 1, N − 1]

and

∫ tk+1

tk

gn(t)dt =


tk+1 − tk if n = 0
T
n2π

[
sinn2π

T
tk+1 − sinn2π

T
tk

]
if n ∈ [1,M ]

− T
n2π

[
cosn2π

T
tk+1 − cosn2π

T
tk

]
if n ∈ [M + 1, N − 1]

from the previous expressions follows

gk =



tk+1 − tk
T

1·2π

(
sin12π

T
tk+1 − sin12π

T
tk

)
...

T
M ·2π

(
sinM 2π

T
tk+1 − sinM 2π

T
tk

)
− T

1·2π

(
cos12π

T
tk+1 − cos12π

T
tk

)
...

− T
M ·2π

(
cosM 2π

T
tk+1 − cosM 2π

T
tk

)


.
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A-2 Matrix Ĝk

Matrix Ĝk elements are given as Ĝkmn =
∫ tk+1

tk
gm(t)gn(t)dt, wherem = 0, 1, ..., N −1 and

n = 0, 1, ..., N − 1:

Ĝk =


∫ tk+1

tk g0(t)dt
∫ tk+1

tk g0(t)g1(t)dt
∫ tk+1

tk g0(t)g2(t)dt · · ·
∫ tk+1

tk g0(t)gN−1(t)dt∫ tk+1

tk g1(t)g0(t)dt
∫ tk+1

tk g1(t)g1(t)dt
∫ tk+1

tk g1(t)g2(t)dt · · ·
∫ tk+1

tk g1(t)gN−1(t)dt
...

...
... . . . ...∫ tk+1

tk gN−1(t)g0(t)dt
∫ tk+1

tk gN−1(t)g1(t)dt
∫ tk+1

tk gN−1(t)g2(t)dt · · ·
∫ tk+1

tk gN−1(t)gN−1(t)dt

.

Considering gn(t) in Appendix A-1, it follows:

Ĝk =



c0 c1 c2 · · · cM s1 s2 · · · sM
c1 c1c1 c1c2 · · · c1cM c1s1 c1s2 · · · c1sM
c2 c2c1 c2c2 · · · c2cM c2s1 c2s2 · · · c2sM
... ... ... . . . ... ... ... . . . ...
cM cMc1 cMc2 · · · cMcM cMs1 cMs2 · · · cMsM

s1 s1c1 s1c2 · · · s1cM s1s1 s1s2 · · · s1sM
s2 s2c1 s2c2 · · · s2cM s2s1 s2s2 · · · s2sM
... ... ... . . . ... ... ... . . . ...
sM sMc1 sMc2 · · · sMcM sMs1 sMs2 · · · sMsM


,

the elements of which are determined by the corresponding integral values:

c0 =
∫ tk+1

tk
dt = tk+1 − tk

cn =
∫ tk+1

tk
cosn2π

T
tdt = T

n2π

[
sinn2π

T
tk+1 − sinn2π

T
tk

]
sn =

∫ tk+1

tk
sinn2π

T
tdt = − T

n2π

[
cosn2π

T
tk+1 − cosn2π

T
tk

]
cmcn =

∫ tk+1

tk
cosm2π

T
t · cosn2π

T
tdt = 1

2

∫ tk+1

tk
cos(m− n)2π

T
tdt+ 1

2

∫ tk+1

tk
cos(m+ n)2π

T
tdt =

= T
4π(m−n)sin(m− n)2π

T
t
∣∣∣tk+1

tk
+ T

4π(m+n)
sin(m+ n)2π

T
t
∣∣∣tk+1

tk
=

= T
4π(m−n)

[
sin2π(m−n)

T
tk+1 − sin2π(m−n)

T
tk

]
+ T

4π(m+n)

[
sin2π(m+n)

T
tk+1 − sin2π(m+n)

T
tk

]
,

from which it follows, that:

cmcn =
∫ tk+1

tk
cosm2π

T
t · cosn2π

T
tdt =

=


tk+1−tk

2
+ T

4π(m+n)

[
sin2π(m+n)

T
tk+1 − sin2π(m+n)

T
tk

]
, if m = n

T
4π(m−n)

[
sin2π(m−n)

T
tk+1 − sin2π(m−n)

T
tk

]
+ T

4π(m+n)

[
sin2π(m+n)

T
tk+1 − sin2π(m+n)

T
tk

]
, if m ̸= n
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smsn =
∫ tk+1

tk
sinm2π

T
t · sinn2π

T
tdt = 1

2

∫ tk+1

tk
cos(m− n)2π

T
tdt− 1

2

∫ tk+1

tk
cos(m+ n)2π

T
tdt =

= T
4π(m−n)

[
sin2π(m−n)

T
tk+1 − sin2π(m−n)

T
tk

]
− T

4π(m+n)

[
sin2π(m+n)

T
tk+1 − sin2π(m+n)

T
tk

]
,

from which it follows, that:

smsn =
∫ tk+1

tk
sinm2π

T
t · sinn2π

T
tdt =

=


tk+1−tk

2
− T

4π(m+n)

[
sin2π(m+n)

T
tk+1 − sin2π(m+n)

T
tk

]
, if m = n

T
4π(m−n)

[
sin2π(m−n)

T
tk+1 − sin2π(m−n)

T
tk

]
− T

4π(m+n)

[
sin2π(m+n)

T
tk+1 − sin2π(m+n)

T
tk

]
, if m ̸= n

cmsn =
∫ tk+1

tk
cosm2π

T
t · sinn2π

T
tdt = 1

2

∫ tk+1

tk
sin(n−m)2π

T
tdt− 1

2

∫ tk+1

tk
sin(m+ n)2π

T
tdt =

= T
4π(m−n)cos(n−m)2π

T
t
∣∣∣tk+1

tk
− T

4π(m+n)
cos(m+ n)2π

T
t
∣∣∣tk+1

tk
=

= T
4π(m−n)

[
cos2π(m−n)

T
tk+1− cos2π(m−n)

T
tk

]
− T

4π(m+n)

[
cos2π(m+n)

T
tk+1− cos2π(m+n)

T
tk

]
,

from which it follows, that:

cmsn =
∫ tk+1

tk
cosm2π

T
t · sinn2π

T
tdt =

=

− T
4π(m+n)

[
cos2π(m+n)

T
tk+1 − cos2π(m+n)

T
tk

]
, if m = n

T
4π(m−n)

[
cos2π(m−n)

T
tk+1 − cos2π(m−n)

T
tk

]
− T

4π(m+n)

[
cos2π(m+n)

T
tk+1 − cos2π(m+n)

T
tk

]
, if m ̸= n
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APPENDIX B

FUNCTIONS FOR SIGNAL ENCODING/DECODING
WITH ASDM

B-1 Matlab Function for Signal Encoding with ASDM

function [tk,ASDM_int,ASDM_trig]=ASigmaDeltaM(y,t,d,b)
% Function for signal encoding with asynchronous sigma-delta modulator (ASDM)

% tk - switching instants of the ASDM trigger output
% ASDM_int - output signal of the ASDM integrator
% ASDM_trig - output signal of the ASDM trigger
% y - input signal
% t - time vector
% d - ASDM trigger hysteresis parameter
% b - ASDM trigger hysteresis parameter

tk=[]; %vector, which will consist of ASDM trigger switching instants
dt=mean(diff(t)); %discretization step of the input signal
ASDM_int=(y(1)+b)*dt; ASDM_trig=b;
for k=2:length(y)

ASDM_int=[ASDM_int,ASDM_int(end)+(y(k)+b)*dt];
ASDM_trig=[ASDM_trig,b];
if abs(ASDM_int(end))>d && abs(ASDM_int(end-1))<=d

b=-b; tk=[tk,t(k)];
end

end

An example of how to use ASigmaDeltaM function:
load(’EEG.mat’); % uploads fourteen (14) EEG signals
signal=ch4(1:256)’; % selects 4-th channel
Fd=128; % discretization frequency of the EEG signal
Flow=0; Fhigh=49; % Limiting signal frequency band from Flow to Fhigh
M=64;
[x,y]=IdLFilter(signal,Fd,Flow,Fhigh,M);
FdNew=Fd*M; % discretization frequency after filtering
t=[0:length(y)-1]/FdNew;
b=180+180*0.1; % parameter b should be choosen as follow: 2*max(abs(y))
d=0.9*(b-180)/4/Fmax;; % parameter d should be: d<=(b-max(abs(y)))/4/Fhigh
[tk,ASDM_int,ASDM_trig]=ASigmaDeltaM(y,t,d,b); % use ”ASigmaDeltaM” function
plot(t,y,t,ASDM_int,t,ASDM_trig) % plots input, integrator and trigger signals
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B-2 Matlab Function (1): Signal Decoding from ASDM Output
Switching Instants

function [Sat,t] = ASDMrec1(tk,d,b,Fmax)
% Signal decoding from asynchronous sigma-delta modulator output switching instants

% Sat - vector of the reconstructed signal
% t - time vector
% tk - switching instants of the ASDM trigger output
% d - ASDM trigger hysteresis parameter
% b - ASDM trigger hysteresis parameter
% Fmax - max frequency of the reconstruction functions

if nargin<5, % default time vector
t=tk(1):1/80000/Fmax:tk(end);

end;

fmax=1/2/max(diff(tk)); % maximum allowable frequency
fprintf(’Fmax can be no greater than %4.4f [Hz] \n’, fmax);

sl=tk(1):1/2/Fmax:tk(end);
n=1:length(tk)-1;
q=(-1). ̂n.*(2*d-b*(tk(n+1)-tk(n))); %vector q

G=[]; dt=1/2/32/Fmax; t=tk(1):dt:tk(end);

for n=1:length(sl); % calculation of the G matrix elements
g=sinc(2*Fmax*(t-sl(n)));
for m=1:length(tk)-1;

G(m,n)=sum(g(t<tk(m+1)&t>=tk(m)))*dt;
end

end
c=pinv(G)*q’; % coefficient vector c

Sat=0; % reconstructed/decoded signal
for n=1:length(c);

Sat=Sat+c(n)*sinc(2*Fmax*(t-sl(n)));
end

An example of how to use ASDMrec1 function:
% paramters tk, d, b follow from Appendix B-1

[Sat,tt]=ASDMrec1(tk,d,b,50);
plot(t,y,tt,Sat,’r’) % reconstructed signal (red color)
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B-3 Matlab Function (2): Signal Decoding from ASDM Output
Switching Instants

function [Sat,t] = ASDMrec3(tk,d,b,Fmax,t)
% Fast Signal decoding from asynchronous sigma-delta modulator output switching instants

% Sat - vector of the reconstructed signal
% t - time vector
% tk - switching instants of the ASDM trigger output
% d - ASDM trigger hysteresis parameter
% b - ASDM trigger hysteresis parameter
% Fmax - max frequency of the reconstruction functions

if nargin<5, % default time vector
t=tk(1):1/8/Fmax:tk(end);

end;

fmax=1/2/max(diff(tk)); % maximum allowable frequency
if fmax<Fmax

fprintf(’Fmax should not exceed %4.4f [Hz] \n’, fmax);
end;
M=2*ceil((tk(end)-tk(1))*Fmax);
alfa=2*Fmax/(2*M+1);
n=1:length(tk); tk=[tk,0];
q=(-1). ̂n.*(2*d-b*(tk(n+1)-tk(n))); q=q’; % vector q
D=diag(tk(2:end)-tk(1:end-1));
tk(end)=[];
Pm1=-1+zeros(length(q),length(q));
Pm1=triu(Pm1);
m=-M:M;
X=exp(-1i*m’*2*pi*Fmax/M*tk);
A=alfa*X*D*X’;
bm=alfa*pinv(A)*X*D*Pm1*q; % coefficient vector bm
Sat=0; % reconstructed/decoded signal
for n=1:length(m);

Sat=Sat+m(n)*bm(n)*exp(1i*m(n)*2*pi*Fmax/M*t);
end
Sat=real(Sat*1i*2*pi*Fmax/M);

An example of how to use ASDMrec3 function:
% paramters tk, d, b follow from Appendix B-1

[Sat,tt]=ASDMrec3(tk,d,b,50);
plot(t,y,tt,Sat,’r’) % reconstructed signal (red color)
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B-4 Matlab Function: Real-Time Signal Decoding from ASDM Output
Switching Time Instants

function [Sat,t] = ASDMrecFragm(tk,d,b,Fmax,Fd)
% Real-time Signal decoding from ASDM output switching instants

% Sat - vector of the reconstructed signal
% t - time vector
% tk - switching instants of the ASDM trigger output
% d - ASDM trigger hysteresis parameter
% b - ASDM trigger hysteresis parameter
% Fmax - max frequency of the reconstruction functions
% Fd - discretization frequency of the reconstructed signal

fmax=1/2/max(diff(tk)); %maximum permissible frequency
fprintf(’Fmax can be no greater than %4.4f [Hz] \n’, fmax);

if nargin<5, %default Fd value
Fd=Fmax*8;

end;

L=30; M=2; K=2; %Window function parameters

for k=1:L-K-2*M:length(tk)+M-L
if k+L>length(tk)

L=length(tk)-k;
end;

ttk=tk(k:k+L);
sl=ttk(1):1/2.5/Fmax:ttk(end);

n=k:length(ttk)+k-2;
q=(-1). ̂n.*(2*d-b*(ttk(n+1-k+1)-ttk(n-k+1))); %vector q
G=[];
for n=1:length(sl); %calculation of G matrix elements

G(:,n)=sinc(2*Fmax*(ttk(2:end)-sl(n)))-sinc(2*Fmax*(ttk(1:end-1)-sl(n)));
end
c=pinv(G)*q’; %vector c (coefficients)
xat=0;

if k==1
tt=ttk(1):1/Fd:ttk(end);

else
tt=tt(tt>=ttk(1));
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tt=[tt(1:end-1),tt(end):1/Fd:ttk(end)];
end;

for n=1:length(c);
xat=xat+c(n)*sinc(2*Fmax*(tt-sl(n)));

end

xat=diff(xat)*Fd;
xat=[xat,2*xat(end)-xat(end-1)]; %reconstructed signal in interval n

if k==1 %reconstructed signal multiplication with window function and adding
xat(tt<ttk(1+M))=0;
ind1=tt>=ttk(1+M)&tt<=ttk(1+M+K);
wind1=sin(pi/2*(tt(ind1)-ttk(1+M))/(ttk(1+M+K)-ttk(1+M))).̂2;
xat(ind1)=xat(ind1).*wind1;
ind2=tt>=ttk(1+L-M-K)&tt<=ttk(1+L-M);
wind2=1-sin(pi/2*(tt(ind2)-ttk(1+L-M-K))/(ttk(1+L-M)-ttk(1+L-M-K))).̂2;
xat(ind2)=xat(ind2).*wind2;
xat(tt>ttk(1+L-M))=[];
Xat=xat;

else
wL=length(wind2);
ind1=tt>=ttk(1+M)&tt<=ttk(1+M+K);
xat(ind1)=xat(ind1).*(1-wind2);
ind2=tt>=ttk(1+L-M-K)&tt<=ttk(1+L-M);
wind2=1-sin(pi/2*(tt(ind2)-ttk(1+L-M-K))/(ttk(1+L-M)-ttk(1+L-M-K))).̂2;
xat(ind2)=xat(ind2).*wind2;
xat(tt<ttk(1+M)|tt>ttk(1+L-M))=[];
Xat(end-wL+1:end)=Xat(end-wL+1:end)+xat(1:wL);
Xat=[Xat,xat(wL+1:end)]; %adding to overall reconstructed signal

end;
end;

t=tk(1):1/Fd:tk(1)+(length(Xat)-1)*1/Fd;
[x,Sat]=IdLFilter(Xat,Fd,0,Fmax,1); %reconstruction of the signal’s initial frequency band

An example of how to use ASDMrecFragm function:
% paramters tk, d, b follow from Appendix B-1

[Sat1,tt1] = ASDMrecFragm(tk,d,b,Fhigh,FdNew);
plot(t,y,tt1,Sat1,’r’,tt1,Sat1-interp1(t,y,tt1),’k’)
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APPENDIX C

FUNCTIONS FOR SIGNAL ENCODING/DECODING
WITH AA-ASDMWITH ADDITIONAL ENVELOPE

ENCODING

C-1 Matlab Function for Signal Encoding with AA-ASDM1

function [tk,ASDM_int,ASDM_trig,okk]=ASigmaDeltaM3(y,t,d,b)
% Function for signal encoding with amplitude adaptive asyncrhonous sigma-delta modulator
% with additional envelop encoding (AA-ASDM1)

% tk - switching instants of the AA-ASDM1 trigger output
% ASDM_int - output signal of the AA-ASDM1 integrator
% ASDM_trig - output signal of the AA-ASDM1 trigger
% y - input signal
% t - time vector
% d - AA-ASDM1 trigger hysteresis parameter
% b - AA-ASDM1 trigger hysteresis parameter

tk=[]; %vector, which will consist of AA-ASDM1 trigger switching instants
dt=mean(diff(t)); %discretization step of the input signal
ASDM_int=(y(1)+b(1))*dt; ASDM_trig=1; ok=1;okk=ok;
for k=2:length(y)

ASDM_int=[ASDM_int,ASDM_int(end)+(y(k)+ok*b(k))*dt];
ASDM_trig=[ASDM_trig,ok];
if abs(ASDM_int(end))>d && abs(ASDM_int(end-1))<=d

ok=-ok; tk=[tk,t(k)];
end
okk=[okk,ok];

end

An example of how to use ASigmaDeltaM3 function:
load(’EEG.mat’); % uploads fourteen (14) EEG signals
signal=ch4(1:256)’; % selects 4-th channel
Fd=128; % discretization frequency of the EEG signal
Flow=0; Fhigh=49; % limiting signal frequency band from Flow to Fhigh
M=64;
[x,y]=IdLFilter(signal,Fd,Flow,Fhigh,M); %filtering
y = y./180; %signal rationing
FdNew=Fd*M; % discretization frequency after filtering
t=[0:length(y)-1]/FdNew;
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s=size(t,2);
tau=26e-6:1e-6:499e-6; % variable time constant
sizetau=size(tau,2);
output=zeros(474,s); % output of the envelope detector
y2=abs(y);
for j=1:sizetau % simulation of RC circuit for envelope detection

for k=1:s-1
if(y2(k)<output(j,k))
output(j,k+1)=output(j,k)*exp(-1e-7/tau(j));

else
output(j,k+1)=y2(k);

end
end

end
RC_coef = 1; % RC coeficient
apl = output(RC_coef,:); % envelope
apl(1)=2*apl(2)-apl(3);
[pks,locs]=findpeaks(abs(apl)); % find envelope’s peak values and its location
Zer = zeros(size(apl));
Zer(locs) = pks; % leave only peak values in the vector
tt=t;
tt(Zer<2e-4)=[]; % adjustin to threshold
Zer2=Zer;
Zer2(Zer<2e-4)=[]; % adjustin to threshold
Zer2 = interp1([t(1),tt,t(end)],[apl(1),Zer2,apl(end)],t,’pchip’);
apl2 = Zer2;
if min(apl2-y)<0 % acquiring a new envelope

apl2=apl2+abs(min(apl2-y));
end
[apl3,yyyy]=IdLFilter(apl2,1/mean(diff(t)),0,5,1); % evelope’s filtering
% max envelope frequency: 5Hz
apl3 = apl3+0.15; % off-set
C = 1; % max. input signal value

% y(t) original signal encoding:
beta = 0.1; % coefficient
b = apl3+beta*C; % adaptive hysteresis parameter ”b”
d = 0.9*(beta*C*(1/2/Fhigh))/2;
[tk,ASDM_int,ASDM_trig,okk]=ASigmaDeltaM3(y,t,d,b); % use ”ASigmaDeltaM3” func.
% apl3(t) envelope encoding:
b2=0.1*C;
d2=0.025;
[tk2,ASDM_int2,ASDM_trig2]=ASigmaDeltaM(apl3,t,d2,b2); % use ”ASigmaDeltaM” func.
plot(t,y,t,ASDM_int,t,ASDM_trig) % plots input, integrator and trigger signals
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APPENDIX D

FUNCTIONS FOR SIGNAL ENCODING/DECODING
WITH AA-ASDMWITHOUT ADDITIONAL ENVELOPE

ENCODING

D-1 Matlab Function for Signal Encoding with AA-ASDM2

function [y_filtered,tk]=AA_ASigmaDeltaM_Precise(y,Fs,Fmax,delta,beta)
% Function for signal encoding with amplitude adaptive asyncrhonous sigma-delta modulator
% without additional envelop encoding (AA-ASDM2)

% y_filtered - bandlimited (up to Fmax) input signal
% tk - switching instants of the AA-ASDM2 trigger output
% y - input signal
% Fs - discretization frequency
% Fmax - maximum frequency of the y signal’s Fourier series (FS)
% delta - AA-ASDM1 trigger hysteresis parameter
% beta - AA-ASDM1 trigger hysteresis parameter

M=length(y);
T=M/Fs; %length of the signal
w=2*pi/T; %FS fundamental frequency (rad/s)

sp=fft(y); %DFT spectrum of y, from which follows FS coefficients
N=floor(Fmax/Fs*length(y)); %upper bound of FS

if N>=floor(M/2) %if the bound >= Fs/2
N=floor(M/2);
if rem(M,2)==1

c=[sp(end-N+1:end),sp(1:N+1)]/M; %FS coefficients -N,...,N
nn=(-N:N);

else
c=[sp(end-N+2:end),sp(1:N+1)]/M; %FS coefficients -N+1,...,N
nn=(-N+1:N);

end
else %if the bound < Fs/2

c=[sp(end-N+1:end),sp(1:N+1)]/M; %FS coefficients -N,...,N
nn=(-N:N);

end

y_filtered=real(c*exp(1i*w*nn’*(0:M-1)/Fs));
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y_f_max=max(abs(y_filtered));

if y_f_max>1 %limiting the amplitude from -1 to 1
y_filtered=y_filtered/y_f_max;
c=c/y_f_max;

end;

if beta<0
fprintf(’Warning: beta < 0, therefore set to 1 \n’);
beta=1;

end

if delta>beta/4/Fmax;
fprintf(’Warning: delta > beta/4/Fmax, therefore set to 0.9*beta/4/Fmax \n’);
delta=0.9*beta/4/Fmax;

end

tk=0; %switching instants of the AA-ASDM2 trigger output
tkp1_end=1/2/Fmax*1.2; %max time value to which will be intersections searched
tkp1=linspace(0,tkp1_end,1000);
tkr=tk;
k=1;

MN=repmat(nn’,1,length(nn))+repmat(nn,length(nn),1);
MN0ind=(MN==0);
MN_i=-1i/w./MN;

while tkr<T
cn=c./nn/1i/w.*exp(1i*w*nn*tkr);
cn(end-N)=c(end-N);
MN_i_exp=MN_i.*exp(1i*w*MN*tkr);

ut1=0; %left side of the expression
ut2=(-1)̂k*(2*delta-(beta+0.25)*tkp1(1)); %right side of the expression
dut_previous=ut1-ut2;

for r=2:length(tkp1)
yexp=exp(1i*w*nn’*tkp1(r))-ones(length(nn),1);
yexp(end-N,1)=tkp1(r);
ut11=real(cn*yexp); %integrated signal

hv=MN_i_exp.*(exp(1i*w*MN*tkp1(r))-ones(length(nn),length(nn)));
hv(MN0ind)=tkp1(r);
ut12=real(c*hv*c.’); %integrated signal squared

147



ut1=ut11+(-1)̂k*ut12; %left side of the expression
ut2=(-1)̂k*(2*delta-(beta+0.25)*tkp1(r)); %right side of the expression
dut=ut1-ut2;

if sign(dut) =sign(dut_previous)
tkr=-dut_previous/(dut-dut_previous)*(tkp1(r)-tkp1(r-1))+tkp1(r-1)+tkr;
tk=[tk,tkr];
k=k+1;
break;

else
dut_previous=dut;

end
end

end

if tk(end)>T
tk(end)=[];

end

An example of how to use AA_ASigmaDeltaM_Precise function:
load(’EEG.mat’); % uploads fourteen (14) EEG signals
signal=ch4(1:256)’; % selects 4-th channel
Fd=128; % discretization frequency of the EEG signal
Fmax=49; % limiting signal frequency band Fmax
beta=1;
delta=0.9*beta/4/Fmax;
[yf2,tk2]=AA_ASigmaDeltaM_Precise(signal,Fs,Fmax,delta,beta); %use the function

148



D-2 Matlab Function (1): Signal Decoding from AA-ASDM Output
Switching Instants

function [Sat,t] = AA_ASDM_rec_FS_Exp(tk,delta,beta,Fmax,t,f0_FS)
%Signal decoding from AA-ASDM2 output switching time instants

% Sat - reconstructed signal
% t - time vector
% tk - switching instants of the AA-ASDM2 trigger output
% delta - AA-ASDM2 trigger hysteresis parameter
% beta - AA-ASDM2 trigger hysteresis parameter
% Fmax - maximum frequency of FS functions
% f0_FS - FS fundamental frequency

if nargin<6 %default FS fundamental frequency
T=tk(end)-tk(1); % length of the signal (period)
f0_FS=1/T;

else
if f0_FS<1/(tk(end)-tk(1))/2

f0_FS=1/(tk(end)-tk(1))/2;
fprintf(’Warning: f0_FS may be too small, therefore set to default value. \n’);

end
end

if nargin<5, % default time vector
t=tk(1):1/8/Fmax:tk(end);

end;

fmax=1/2/max(diff(tk)); %maximum permissible frequency
fprintf(’Fmax can be no greater than %4.4f [Hz] \n’, fmax);

n=1:length(tk)-1;
q=(-1). ̂n.*(2*delta-(0.25+beta)*diff(tk)); %vector q

w=2*pi*f0_FS; %FS fundamental frequency (rad/s)
N=floor(Fmax/f0_FS); %upper bound of FS
nn=-N:N;

G=-1i/w*repmat(1./nn’,1,length(tk)-1).*(exp(1i*w*nn’*tk(2:end))-exp(1i*w*nn’*tk(1:end-1)));
G(N+1,:)=diff(tk); %matrix G

MN=repmat(nn’,1,length(nn))+repmat(nn,length(nn),1);
MN0ind=(MN==0);
MN_i=-1i/w./MN;

149



Ghat=zeros(length(nn),length(nn),length(tk)-1);
Gexp1=exp(1i*w*MN*tk(1));

for k=1:length(tk)-1
Gexp2=exp(1i*w*MN*tk(k+1));
Ghat_k=MN_i.*(Gexp2-Gexp1);
Ghat_k(MN0ind)=tk(k+1)-tk(k);
Ghat(:,:,k)=Ghat_k;
Gexp1=Gexp2;

end

c0=0.0+0.0*1i+zeros(1,length(nn));
[c,uu]=lsqnonlin(@(x)AA_ASDM_rec_FS_Exp_Fragm_Func(x,G,Ghat,q,n),c0);
Sat=real(c*exp(1i*w*nn’*t));

An example of how to use AA_ASDM_rec_FS_Exp function:
[Sat_AA_ASDM, ∼]=AA_ASDM_rec_FS_Exp(tk1,delta,beta,Fmax,t2,f0_FS);
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D-3 Matlab Function (2): Signal Decoding from AA-ASDM Output
Switching Instants

function [Sat,t] = AA_ASDM_rec_FS_CosSin_Fragm(tk,delta,beta,Fmax,t,LMK,f0_FS)
% Real-time signal decoding from AA-ASDM2 output switching time instants

% Sat - reconstructed signal
% t - time vector
% tk - switching instants of the AA-ASDM2 trigger output
% delta - AA-ASDM2 trigger hysteresis parameter
% beta - AA-ASDM2 trigger hysteresis parameter
% Fmax - maximum frequency of FS functions
% f0_FS - FS fundamental frequency
% [L,M,K] - window function parameters

if nargin<7 %default FS fundamental frequency
f0_FS=1/(tk(end)-tk(1));

else
if f0_FS<1/(tk(end)-tk(1))/2

f0_FS=1/(tk(end)-tk(1))/2;
fprintf(’Warning: f0_FS may be too small, therefore set to default value. \n’);

end
end
if nargin<6 %window function parameters L > 2*M+K

L=20; M=2; K=2;
else

L=LMK(1);
M=LMK(2);
K=LMK(3);

end;
if nargin<5, % default time vector

t=tk(1):1/8/Fmax:tk(end);
end;
fmax=1/2/max(diff(tk)); %maximum permissible frequency
fprintf(’Fmax can be no greater than %4.4f [Hz] \n’, fmax);
flag=0;
for k=1:L-2*M-K:length(tk) % each next interval is reconstructed after L-2*M-K switchings

if k+L-2*M-K+L>length(tk)
L=length(tk)-k;
flag=1;

end;
ttk=tk(k:k+L);
n=k:length(ttk)+k-2;
q=(-1). ̂n.*(2*delta-(0.25+beta)*diff(ttk)); %vector q
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[G,Ghat,T,NN]=AA_ASDM_rec_FS_CosSin_Fragm_matrices(ttk,Fmax,f0_FS);
c0=0.0+zeros(2*NN+1,1); %initial coefficients cn
[c,uu]=lsqnonlin(@(x)AA_ASDM_rec_FS_CosSin_Fragm_Func(x,G,Ghat,q,n),c0);
if k==1

tt=t(t>=ttk(1)&t<=ttk(end));
else

tt=t(t>ttk(1)&t<=ttk(end));
end;
xat=c(1); %reconstructed fragment in interval n
for kk=2:NN+1

xat=xat+c(kk)*cos(2*pi/T*(kk-1)*tt)+c(kk+NN)*sin(2*pi/T*(kk-1)*tt);
end;
if k==1 %reconstructed fragment multiplication with window function and adding

xat(tt<ttk(1+M))=0;
ind1=tt>=ttk(1+M)&tt<=ttk(1+M+K);
wind1=sin(pi/2*(tt(ind1)-ttk(1+M))/(ttk(1+M+K)-ttk(1+M))).̂2;
xat(ind1)=xat(ind1).*wind1;
ind2=tt>=ttk(1+L-M-K)&tt<=ttk(1+L-M);
wind2=1-sin(pi/2*(tt(ind2)-ttk(1+L-M-K))/(ttk(1+L-M)-ttk(1+L-M-K))).̂2;
xat(ind2)=xat(ind2).*wind2;
xat(tt>ttk(1+L-M))=[];
Xat=xat;

else
wL=length(wind2);
ind1=tt>=ttk(1+M)&tt<=ttk(1+M+K);
xat(ind1)=xat(ind1).*(1-wind2);
ind2=tt>=ttk(1+L-M-K)&tt<=ttk(1+L-M);
wind2=1-sin(pi/2*(tt(ind2)-ttk(1+L-M-K))/(ttk(1+L-M)-ttk(1+L-M-K))).̂2;
xat(ind2)=xat(ind2).*wind2;
xat(tt<ttk(1+M)|tt>ttk(1+L-M))=[];
Xat(end-wL+1:end)=Xat(end-wL+1:end)+xat(1:wL);
Xat=[Xat,xat(wL+1:end)]; %adding to the overall reconstructed signal

end;
if flag

break
end

end;
Sat=[zeros(size(t(t<tk(1)))), Xat];
Sat=[Sat,zeros(1,length(t)-length(Sat))];

An example of how to use AA_ASDM_rec_FS_CosSin_Fragm function:
[Sat_AA_ASDM_Fragm_2,uu]=AA_ASDM_rec_FS_CosSin_Fragm(tk1,delta,beta,Fmax,t2,LMK,1.2);
plot(t2,yf,t2,Sat_AA_ASDM_Fragm_2,t2,yf-Sat_AA_ASDM_Fragm_2)
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APPENDIX E

PHYSICAL AA-ASDM2 BASED EEG DATA
ACQUISITION SYSTEM

E-1 Matlab program for AA-ASDM calibration

load(’AAdata01032017.mat’) %load acquired data from the digitizer
int_dc00=AAint0; %input DC = 0V
trig_dc00=AAtrig0;
int_dc05=AAint05; %input DC = 0.5V
trig_dc05=AAtrig05;
int_dc09=AAint09; %input DC = 0.9V
trig_dc09=AAtrig09;
t=(0:length(int_dc00)-1)/20e6; %Digitizer sampling rate 20MSPS

figure
plot(t,int_dc00,t,int_dc05,t,int_dc09) %read max and min delta values from the graph
max_delta=10625; %from graph
min_delta=5625; %from graph

delta_plus=1.5; %actual delta+ value from oscilloscope
delta_minus=-1.5; %actual delta- value from oscilloscope

u=(max_delta*delta_minus-min_delta*delta_plus)/(delta_minus-delta_plus); %average value
gamma=delta_plus/(max_delta-u); %scale factor

int00=(int_dc00-u)*gamma; %convert to actual amplitude values
trig00=(trig_dc00-u)*gamma;
int05=(int_dc05-u)*gamma;
trig05=(trig_dc05-u)*gamma;
int09=(int_dc09-u)*gamma;
trig09=(trig_dc09-u)*gamma;

b2=abs(mean(trig00(trig00>0))); %find mean b values
b1=abs(mean(trig00(trig00<0)));

ind=find(abs(diff(diff(trig00)>0))); %max un min index
tk00=t(ind(find(abs(diff(trig00(ind)))>3)+1)); %trigger switching time instants

ind=find(abs(diff(diff(trig05)>0)));
tk05=t(ind(find(abs(diff(trig05(ind)))>3)+1));
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ind=find(abs(diff(diff(trig09)>0)));
tk09=t(ind(find(abs(diff(trig09(ind)))>3)+1));

dtk00=diff(tk00); %difference between switching time instants
dtk05=diff(tk05);
dtk09=diff(tk09);

thr1=3.28e-3; %threshold. comes from dtk graphs
dtk00_max=mean(dtk00(dtk00>thr1)); %find average max distance between switchings
dtk00_min=mean(dtk00(dtk00<thr1)); %find average min distance between switchings
thr2=3e-3;
dtk05_max=mean(dtk05(dtk05>thr2));
dtk05_min=mean(dtk05(dtk05<thr2));
thr3=2.6e-3;
dtk09_max=mean(dtk09(dtk09>thr3));
dtk09_min=mean(dtk09(dtk09<thr3));

a1=1.2951; %coefficient a1. comes from theoretical calculations
a2=0.4098; %coefficient a2

% does actual dtk_max/dtk_min values corresponds to theoretically calculated?
[dtk00_max/dtk00_min, (a2/a1*b2+(0+0.5)̂2)/(a2/a1*b1+(0-0.5)̂2)]
[dtk05_max/dtk05_min, (a2/a1*b2+(0.5+0.5)̂2)/(a2/a1*b1+(0.5-0.5)̂2)]
[dtk09_max/dtk09_min, (a2/a1*b2+(0.9+0.5)̂2)/(a2/a1*b1+(0.9-0.5)̂2)]

R=12e3; % R11
C=220e-9; %C1
alfa_theoretical=1/R/C %integrator constant 1/κ

% practically acquired integrator constants
alfa_max=(delta_plus-delta_minus)/(a1*(0+0.5)̂2+a2*b2)/dtk00_min
alfa_min=(delta_plus-delta_minus)/(a1*(0-0.5)̂2+a2*b1)/dtk00_max
alfa_max=(delta_plus-delta_minus)/(a1*(0.5+0.5)̂2+a2*b2)/dtk05_min
alfa_min=(delta_plus-delta_minus)/(a1*(0.5-0.5)̂2+a2*b1)/dtk05_max

154



E-2 Matlab Function for signal decoding from real AA-ASDM based
system

%Set 14-bit ATS460 digitizer parameters Volts/DIV = mV and CLK
V_Div = 5e-3; %mV
Fs = 20e6; %20Ms/s

V_full = V_Div*8; %full range of the ATS460 digitizer
koef = 16384/V_full; % coefficient for acquiring actual amplitude values

data1 = csvread(’EEGsystemsData.csv’); %read data from ATS460 digitizer
data2 = data1(:,1)’;
y = (data2-8192)./koef; %Set 0 level and actual amplitude values

t = 0:(1/Fs):(length(y)-1)/Fs; %time vector

%Band-pass filter
ZF = 0.35e6; % bottom cut-off freq.
AF = 2.39e6; % top cut-off freq.
CF = 1.367e6; % Center freq.

sp = fft(y); %spectrum
fr = [0:length(y)-1]*Fs/length(y); %frequency vector
ind1 = fr<ZF; %all frequency values below ZF
n1 = length(fr(ind1));
sp2 = sp;
sp2(ind1) = 0; %zeroing
sp2(end-n1+2:end) = 0; %zeroing
ind2 = fr>=ZF & fr<=AF; %all frequency values above ZF and below AF
n2 = length(fr(ind2));
sp2(n1+n2+1:end-n1-n2+1) = 0; %zeroing
yf = ifft(sp2);

yy = cos(2*pi*CF(1)*t);
yj = yf.*yy; %evelope

[pks,locs]=findpeaks(abs(yj));
Zer = zeros(size(yj));
Zer(locs) = pks; %zeroing

tt=t;
tt(Zer<0.5e-3)=[]; % remove all values below threshold 0.4e-4
Zer2=Zer;
Zer2(Zer<0.5e-3)=[];

155



dtt = diff(tt); %vector with distance between switching time instants values
ind = dtt>1e-3;
tk = tt(ind);
tk = sort([tt(ind),tt(find(ind)+1)]); %switching time instants
tl = tk;
dt = 0.0001;
t = tl(1):dt:tl(end);

x=data1(:,2)’%original signal

t2=t(1:1000:end);
alfa=390; %parameters comes from Appendix E-1
delta=(delta_plus-delta_minus)/2/alfa/a1; %parameters comes from Appendix E-1
beta=[b1 b2]*a2/a1; %parameters comes from Appendix E-1
Fmax=60;

[xf, ]=IdLFilter(x,Fs,0,Fmax,1); %Filtering
xf=(xf(1:1000:end)-u)*gamma;

%Signal reconstruction. Function from Appendix D-2
[Sat_AA_ASDM, ]=AA_ASDM_rec_FS_Exp(tk(2:end),delta,beta,Fmax,t2);
plot(t2,xf,t2,Sat_AA_ASDM)

ErrInterval=[t2(1)+0.02 t2(end)-0.02]; %SNR
ind=t2>ErrInterval(1)&t2<ErrInterval(2);
SNR_AA_ASDM=10*log10(sum(xf(ind). ̂2)/sum((xf(ind)-Sat_AA_ASDM(ind)). ̂2))
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