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ABBREVIATIONS

AA-ASDM – amplitude adaptive asynchronous sigma-delta modulator
AA-ASDM1 – AA-ASDM with additional envelope encoding
AA-ASDM2 – AA-ASDM without additional envelope encoding
ADC – analog-to-digital converter
ASDM – asynchronous sigma-delta modulator
ATS460 – waveform digitizer BCI – brain computer interface
DC – direct current
ECG – electrocardiogram
EEG – electroencephalogram
EMG – electromyogram
EMI – electromagnetic interference
ENOB – effective number Of bits
EOG – electrooculogram
HDR – high dynamic range
LC ADC – level crossing ADC
OOK – on-off keying
PC – personal computer
PCB – printed circuit board
SAR – successive approximation register
SNR – signal to noise ratio
SWR – sine wave crossing
TDC – time to digital converter
TEM – time encoding machine
VCC – power supply voltage
XNOR – exclusive neither disjunction
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NOMENCLATURE

a – vector
aT – transposed vector
b – ASDM/AA-ASDM trigger parameter
C, c – maximum value of the modulus of a signal
c(t), õ(t) – signal time-varying envelope function
D – diagonal matrix
E – energy of the signal
e(t) – error signal
Fmax – maximum frequency
G – matrix
G−1 – inverse matrix
G+ – pseudo-inverse matrix
g(t) – signal reconstruction base function
ĝ(t) – periodic approximation of g(t)
h(t) – signal reconstruction base function / impulse response of a filter
NASDM – number of switching time instants
P – signal power
T – period / Nyquist step
t – continuous time
tn, τn – discrete time
tk – ASDM/AA-ASDM trigger switching time instants
w(t) – window function
x(t) – analog signal
x̄(t) – mean value
x̂(t) – reconstructed signal
x̂L,M,K(t) – reconstructed signal from intervals
y(t) – output of the integrator
z(t) – ASDM/AA-ASDM output trigger signal
α, β – constant
δ – ASDM/AA-ASDM trigger parameter
Θ – length of a signal
θ(t) – function, which describes the rising and falling edge of the window function
κ – ASDM/AA-ASDM integrator parameter
ξ – constant
ς(t) – integral signal representation
τmax – maximum distance between two consecutive trigger switching time instants
τmin – minimum distance between two consecutive trigger switching time instants
Ω – cut-off cyclic frequency
ω – cyclic frequency
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GENERAL DESCRIPTION OF THEWORK

The Urgency of Subject Matter
Everything we encounter in our daily lives - sound, light, temperature, pressure, smell, flavor,

etc. are in analog form. On the other hand, nowadays, almost all information is stored and
processed in digital form. In order to fill this gap between the real world and the digital world,
various analog to digital converters (ADCs) are used.

One very rapidly growing sector, which demands good quality ADCs is neuroscience. In fact,
brain neuronal activity generates electrical currents, which in turn generate electrical field poten-
tials which can be measured by using special electrodes, located on the scalp in certain places.
[1] The measured signals, called electroencephalogram (EEG) signals, are in analog form and
must be digitized (by ADC) to enable easier and much faster signal storage, analysis, process-
ing and research. Since EEG signals contain information about the brain neuronal functions and
neurophysiological properties, nowadays, by using advanced signal processing techniques [2], it
is possible to understand different processes in human body. Even further, by using advanced
signal processing techniques in modern Brain Computer Interface (BCI) systems, it is possible
to control ”by thoughts”, for example, wheelchair, robotic prosthesis, computer, or even a car
[3], [4], [5], therefore it is reasonable to believe that BCI is a future technology and it is very
important to develop such a field.

In general, BCI is a communication pathway between the brain and an external device. Typ-
ical BCI system consists of four main parts: electrodes, differential amplifiers, ADC(s) and data
processing / visualization device (i.e. PC). But, nowadays, in order to make it more accessible and
convenient to use, a modern BCI systems also include wireless data transmission and a battery
as a power source. Despite the fact that development of such systems very increasingly becomes
the subject of research, still there exist various problems, weaknesses and limitations.

In order to prolong the life of battery and thus operation time of wireless BCI system, man-
agement of energy consumption is a crucial factor. As mentioned before, one very important part
of BCI system is ADC, where energy consumption can be significantly reduced. Even further, by
using appropriate ADC it is also possible to reduce the amount of information to be transmitted,
thus greatly reducing the energy consumption of a transmitter as well. But, excluding low energy
consumption, ADC must also ensure proper sampling rate and resolution for good signal quality
as well as small physical size on-head device implementations.

Two types of ADCs can be differentiated: synchronous and asynchronous, where each type
has its own advantages and disadvantages depending on the end-use application.

For BCI application, it is shown that asynchronous designs, instead of synchronous (which are
used in almost all available BCI systems), in ADCs, exhibit better properties such as lower energy
consumption, immunity to metastable behavior, modular design, low complicity, exclusion of
electromagnetic interference (EMI) and absence of clock jitter [6], [7].

Since EEG signals can be classified as wide dynamic range signals, non-uniform sampling
method called Asynchronous Sigma-Delta Modulator (ASDM) has a great potential to improve
energy efficiency in BCI system [8], while maintaining other quality requirements. ASDM is a
Time Encoding Machine (TEM) which transforms the amplitude information of the signal into
time information or time codes without the quantization error that exists in the clocked convert-
ers. The method replaces high precision analog amplitude quantizer with 1bit comparator. This
reduces the analog circuit complexity. The number of transitions can be controlled by adjusting
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step size that is hysteresis of the comparator. This in turn reduces the switching activity and
the dynamic power consumption. [9] Latest implementations show that it is possible to create
standard ASDM with power consumption not exceeding 7.5 nW [10].

However, due to wide dynamic range that EEG signals have, a high switching activity of
ASDM circuit appears when the input signal amplitude is low, causing increased power con-
sumption of a wireless BCI system. The switching activity can be reduced by using the author’s
proposed Amplitude Adaptive Asynchronous Sigma-Delta modulator.

The Objective of the Work
The main aim of this thesis is to develop an improved method for signal encoding based on

ASDM, which allows to reduce the power consumption of the wireless BCI system, while main-
taining the desired signal quality. In order to reach the aim, following tasks have been defined:

• to carry out literature review and analysis on EEG signals, including neural activities, action
potentials, brain rhythms, EEG signal properties and measurement techniques;

• based on EEG signal and BCI system properties, to define requirements for ADCs;
• based on defined requirements, to carry out literature review and analysis on synchronous
and asynchronous ADCs and select the most appropriate ADC;

• to carry out an in-depth analysis and research on ASDM, and identify the points of im-
provement;

• to carry out an in-depth research on these improvements;
• to develop, test and assess the proposed methods.

The Methodology of Research
In order to complete the tasks of the thesis work, the following methodology was used. Ana-

lytic research methods were used for literature review and development of mathematical models.
Mathematical calculations and numerical simulations were extensively used to test and assess
both the reference design (ASDM) as well as the proposed method (AA-ASDM). This included
signal encoding, fast and real-time decoding, error analysis, etc. Experimental measurements and
testing were done to validate the proposed method and its performance when connected as a part
of BCI system in laboratory environment.

Scientific Novelty and Main Results
The scientific novelty of the thesis is associated with the developed theory and methods for

amplitude adaptive ASDM sampling and reconstruction. The main results are:

• a new Amplitude Adaptive Asynchronous Sigma-Delta modulator (AA-ASDM) method
for signal-dependent sampling is proposed and described in detail (signal encoding, de-
coding, fast and real-time decoding principles). The proposed method allows to reduce the
switching activity of the circuit by up to 68.85 %, when used for EEG signals;

• an analysis on the AA-ASDM parameters and their impact on the circuit’s switching activ-
ity, power consumption, speed, precision and complexity;

• two AA-ASDM encoding methods (with additional envelope encoding and without addi-
tional envelope encoding) are developed and verified by numerical simulations as well as
by circuit simulations;
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• several signal reconstruction methods (decoding, fast decoding and real time decoding)
from AA-ASDM encoded signals are developed and verified by numerical simulations on
different EEG signals;

• a printed circuit board for AA-ASDM is designed, developed and tested;
• a hardware for AA-ASDM based EEG data acquisition system is designed, developed and
tested.

Thesis Statements to Be Defended
In this work, the following thesis statements have been promoted and proven:

1. In comparison to ASDM, the decrease of the number of switchings per second of the Am-
plitude Adaptive Asynchronous Sigma-Delta modulator (AA-ASDM) output trigger is de-
termined by the mean value and the maximum value of the modulus of the signal and the
mean value of its estimated envelope function.

2. For electroencephalogram (EEG) signals, the AA-ASDMwith the proposed envelope func-
tion has up to 68.85 % less average switchings per second of the output trigger, compared
to ASDM, while maintaining a 22-bit resolution of AA-ASDM conversion.

3. In comparison to ASDM, by using AA-ASDM it is possible to reduce energy consumption
of an event-driven data transmitter by 50 % depending on the circuit parameters.

Practical Value and Approbation
The theory and methods developed within this thesis can be used for signal-dependent sam-

pling and processing with the aim to reduce the power consumption of data acquisition devices,
which is of particular importance in wireless sensor networks. The proposed methods are partic-
ularly advantageous for wide dynamic range signals, such as EEG, EMG, ECG, EOG, seismic,
etc. signals.

The scientific research results of this work have been published in the following papers:

• Ozols K., Shavelis R., Amplitude Adaptive ASDM without Envelope Encoding, 2016 24th
European Signal Processing Conference (EUSIPCO), Budapest, 2016, pp. 165-169.

• Ozols K., Implementation of reception and real-time decoding of ASDM encoded and
wirelessly transmitted signals, 2015 25th International Conference Radioelektronika (RA-
DIOELEKTRONIKA), Pardubice, 2015, pp. 236-239.

• Ozols K., Greitans M., Shavelis R., Amplitude Adaptive Asynchronous Sigma-Delta Mod-
ulator, 2013 8th International Symposium on Image and Signal Processing and Analysis
(ISPA 2013), Trieste, 2013, pp. 460-464

• Ozols K., Greitans M., Shavelis R., EEG Data Acquisition System Based on Asynchronous
Sigma-Delta Modulator, 2012 13th Biennial Baltic Electronics Conference, Tallinn, 2012,
pp. 183-186.

The research results of this work have been promoted in the following international conferences:

• ”13th Biennial Baltic Electronics Conference”, 3-5 October 2012, Tallin, Estonia;

9



• ”8th International Symposium on Image and Signal Processing and Analysis (ISPA 2013)”,
4-6 September 2014, Trieste, Italy;

• ”TheMicrowave and Radio ElectronicsWeek 2015 (MAREW2015)”, 21-23April, Paradu-
bice, Czech Republic;

• ”24th European Signal Processing Conference (EUSIPCO)”, 28 August - 2 September
2016, Budapest, Hungary.

The work has been implemented in the Institute of Electronics and Computer Science, Riga,
Latvia, and the results have been applied in the following projects:

• National Research Programme „Cyber-physical systems, ontologies and biophotonics for
safe&smart city and society” (SOPHIS) project No. 4 “Development of technologies for
secure and reliable smart-city” (GUDPILS);

• European Social Fund’s (ESF) project “R&D Center for Smart Sensors and Networked
Embedded Systems” (VieSenTIS) No. ”2009/0219/1DP/1.1.1.2.0/09/APIA/VIAA/020”.

Structure of the Thesis
The volume of the Thesis is 174 pages, and it has following structure. In Section 1, a lit-

erature review on neural activities, action potentials, brain rhythms, EEG signal properties and
measurement techniques is carried out. Also, in this section, an in-depth analysis of synchronous
and asynchronous analog-to-digital converters is performed, in order to identify their advantages
and disadvantaged as well as suitability for BCI applications. Based on this analysis, one the most
suitable ADC for BCI is selected for in-depth analysis in Section 2. This section is dedicated to re-
search on ASDM, particularly on signal encoding and decoding fundamental principles. Also, the
main advantages and disadvantages are identified and analyzed. Knowing the main drawbacks
of ASDM, in Section 3 the proposed new method, called AA-ASDM is presented. This section
describes the main theoretical principles of AA-ASDM signal encoding and reconstruction, as
well as fast and real-time reconstruction. In order to verify and assess this theory in practice, in
Section 4 various simulations, modeling and physical implementations are carried out for both
ASDM (as a reference design) and AA-ASDM. Finally, at the end of this work, in Section 5,
conclusions are given. In appendices several mathematical derivations andMatlab codes related
to ASDM and AA-ASDM are given.

This Doctoral thesis is based on the papers [11], [12], [13] [14]. Here and further in the text,
the references with authors own contribution are highlighted in bold un underlined.
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1. BACKGROUND AND RELATEDWORK

The main purpose of this section is to describe previous research in the field of analog-to-
digital converts (ADC) and choose one the most appropriate for electroencephalogram (EEG)
encoding and brain-computer interface (BCI) application as whole. In order to achieve this aim,
first of all it is necessary to understand the nature of EEG signals and how BCI systems work.
Based on that, the most suitable for EEG signal encoding, synchronous and asynchronous ADC’s
will be chosen and analyzed against criteria set out in the Section 1.2. After the analysis, the most
appropriate/promising ADC for brain-computer interface (BCI) application will be selected for
further in-depth analysis in Section 2.

1.1 Electroencephalogram Signals
Human brain has more than 100 billion neurons which conduct electrical impulses and are

the core components of the nervous system. These electrical activities can be measured by non-
invasive methods from scalp by using electrodes, and the measured signals are called EEG sig-
nals. Since human’s brains primarily operates in five brain rhythms: delta (0.2-3.9 Hz), theta
(4-7.9 Hz), alpha (8-12.9 Hz), beta (13-40 Hz) and gamma (40+ Hz), all these components to-
gether are forming the EEG signal. Typically the amplitude of the measured EEG signal from
scalp is between 0.5 and 200 μV.

By using EEG signals, it is possible to create BCI, which can be used to control other electrical
or electro-mechanical devices by ”thoughts”. If simplified, usually modern BCI consists of an
electrode (as a sensor), an amplifier, an ADC, a transmitter, a receiver and a computer.

Since a recent trend is to develop wireless BCI devices, management of energy consumption
becomes a crucial factor. One very important part of all BCI systems is ADC, where power
consumption can be significantly reduced. In addition, by choosing appropriate ADC, it is also
possible to reduce the power consumption of the transmitter, by reducing the amount of data to
be transmitted.

1.2 Analogue-to-Digital Converters
In order to select the most suitable ADC for BCI, ten different synchronous and asynchronous

ADCs are described and analyzed against requirements/criteria, which were set out based on
the EEG signal properties and the current situation in the field of the BCI systems. These four
main criteria are: Energy Efficiency (the less consumption, the better), Encoding Complexity
(the smaller area of silicon die occupied, the better), Resolution (at least 12-bits) and Sampling
Rate (at least 400 S/s).

Synchronous Analogue-to-Digital Conversion

Currently, the most popular architectures of analogue-to-digital converters (ADCs) are
Flash ADC, Pipeline ADC, Digital Ramp ADC, Tracking ADC, SAR ADC and Sigma-Delta
ADC. Since all of these ADCs are driven by a global clock, where ADC states are changed only
on rising or falling edges of the clock pulses, such ADCs are called synchronous ADCs. In this
section, an overview of mentioned ADCs as well as analysis in relation to requirements is given.
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Flash ADC is not suitable for EEG signal encoding, since it does not meet the required res-
olution (12-bits). Also, the power consumption (98 000 μW) as well as complexity of the circuit
(0.253 mm2) is high. In some special cases, the resolution can be increased, but then, the power
consumption will be even higher. The complexity and power consumption can be slightly reduced
by using two-step Flash ADC, but then there is an increase in latency. Flash ADC is designed for
low resolution and high sampling rate applications, and for BCI applications there is no need for
GS/s sampling rate, since the maximum EEG signal frequency is 200 Hz; [15]

Pipeline ADC meets the requirements of resolution and sampling rate, but the power con-
sumption is high (30 000 μW) and the complexity of the circuit is very high (0.860mm2). Pipeline
ADC could be used for EEG signal encoding, but it is clear that it is not the best option for BCI,
where energy efficiency and small size play crucial role; [16]

Digital RampADC can be implemented in a very small dimensions on the silicon die (0.017mm2),
which makes it very attractive for BCI applications. On the other hand, although it can ensure the
necessary resolution and sampling rate, the power consumption of the circuit is high (3800 μW),
which makes it less attractive for BCI applications; [17]

Tracking ADC is able to ensure the necessary resolution and sampling rate, but the power
consumption (50 000 μW) and complexity of the circuit (0.350 mm2) is too high for BCI; [18]

SAR ADC is one of the best choices for EEG signal encoding and BCI as whole, since it can
ensure not only the necessary resolution and sampling rate, but also very low power consumption
(0.100 μW), despite the fact that complexity of the circuit is relatively high (0.300 mm2); [19]

Sigma Delta ADC as SAR ADC is very attractive for EEG signal encoding and BCI applica-
tion as whole. It offers high resolution (up to 32-bits) and low power consumption (13.3 μW for
12-bits) and proper sampling rate. The only disadvantage is the complexity of the circuit, which
occupies more space on silicon die (0.510 mm2). [20]

Asynchronous Analogue-to-Digital Conversion

Although some of synchronous ADC architectures fit the defined requirements and could
be used for EEG and BCI applications, most of them exhibit poor properties in terms of elec-
tromagnetic interference (EMI), complexity of circuit, sensitivity against power supply voltage,
temperature and development process parameter variations, delays, etc. [6], [7].

An alternative to synchronous ADCs is asynchronous ADCs, which due to its great proper-
ties often are used for encoding of non-stationary signals. [21], [8] Since EEG signals are wide
dynamic range signals, non-uniform sampling methods have a great potential to improve energy
efficiency, reduce complexity of the encoding and avoid unnecessary EMI in BCI [8]. There-
fore, in this section, an overview of the most popular non-uniform sampling methods as well as
analysis in relation to set out requirements are given.

Zero ADC can’t be used for EEG signal encoding, since it can’t meet the required resolution,
even though it has very simple architecture and potentially low power consumption; [22]

Sinewave ADC could be used for EEG signal encoding, due to its low complexity circuit and
potentially low power consumption, but at the time of writing this thesis, no physical implemen-
tations could be found, therefore it was not possible to estimate its performance; [23]

Level Crossing ADC can be used for EEG signal encoding, since it offers simple circuit and
low power consumption (from 582 nW). But this is valid only for low resolution applications.
For desired 12-bits, both the complexity of the circuit (0.300 mm2) as well as power consumption
(9 μW) increase and make it less attractive for BCI applications; [24]
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ASDM exhibit excellent properties for EEG signal encoding and BCI application as whole.
It offers very low power consumption (from 9.4 nW) and complexity of the circuit (0.026 mm2),
while preserving necessary resolution and sampling rate. The only ASDM disadvantage is more
complex and resource demanding signal reconstruction; [25]

Peak Sampling ADC, basically, is an energy efficient modification of SAR ADC and po-
tentially could be used for EEG signal encoding. But, since at the time of writing this thesis,
there was only one physical implementation (with 8-bits), it was not possible to estimate its true
performance. [26]

1.3 Conclusions
There are trade-offs for each of the listed ADCs. A comparison is given in the Table 1.1.

Table 1.1: Comparison of different types of ADCs, where in each type the most suitable ADC
for EEG/BCI application is selected, based on the set out criteria

By taking into account analysis in Section 1.2, and overview in Table 1.1, SAR ADC and
ASDM exhibit the most suitable properties for EEG signal Encoding and BCI application as
whole. In this case, by considering parameters of both ADCs in Table 1.1 and advantages of
asynchronous over synchronous designs, such as [6], [7]: lower energy consumption, electromag-
netic emissions, sensitivity against power supply voltage, temperature and development process
parameter variations, delays and complexity; better modularity and interlinking between individ-
ual circuit units; higher potential for energy efficiency improvement, if used for EEG signals; and
absence of overheads and problems associated with distributing clock signals; an ASDMmethod
is chosen for further in-depth analysis, research and improvements.

Although ASDM has many advantages, the use of asynchronous systems in real life appli-
cations are limited due to incompatibility with classical (synchronous) systems, which results in
fewer research studies in this area, thus slowing down its development. Therefore, the author
of this work believes that it is very important to understand the true potential of asynchronous
systems and will dedicate himself to carry out the research in the field of ASDM.
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2. ASYNCHRONOUS SIGMA-DELTA MODULATOR

2.1 Signal Encoding
ASDM is a clock-less ADC, which converts amplitude information of the input signal x(t)

into time information or time sequence tk in a very energy efficient way. The block diagram of
the ASDM is shown in Figure 2.1. It consists of an integrator with parameter κ, a non-inverting
Schmitt trigger with parameters δ and b and a negative feedback. The values of these parameters
determine the average switching rate of the trigger. [27] [28]

Figure 2.1: Asynchronous sigma-delta modulator (ASDM) block diagram. [27] [11]

The input signal x(t) of ASDM is bounded in amplitude as |x(t)| ≤ c < b [28]. Since
trigger output z(t) has either b or −b value, the integrator input is either x(t) + b or x(t)− b. It
follows the integrator output y(t) is strictly increasing or decreasing function for t ∈ [tk, tk+1],
and y(tk) = (−1)kδ. The relationship between the binary output z(t) and the input signal x(t)
of the ASDM for tk+1 > tk, and integers k ∈ Z, is given by the integral equation [29]∫ tk+1

tk

x(t)dt = (−1)k[2κδ − b(tk+1 − tk)] (2.1)

Due to |x(t)| ≤ c < b the distances between consecutive triggering points tk and tk+1 are
bounded [30]

τmin =
2κδ

b+ c
≤ tk+1 − tk ≤ 2κδ

b− c
= τmax (2.2)

Figure 2.2 shows the operation of ASDM on an Electroencephalogram signal.
Assuming that the amplitude of the input signal A0 = 1, the signal to noise ratio of ASDM

can be calculated as follows: [31]

SNR = 10log10

(
Ps

PN

)
= 10log10

(
3

8

T̄

2T 2
resFmax

)
= 10log10

3

8

T̄

2Fmax
+ 20log10fres, (2.3)

where Ps is the power of a sinusoidal signal, PN is the total noise power within bandwidth 2Fmax,
T̄ is a constant mean value of duration of two consecutive pulses Tk, but Tres =

1
fres

denotes the
resolution of the Time to Digital converter (TDC). By knowing SNR, it is possible to calculate
ENOB of an ideal ASDM:ENOB = SNR−1,76

6,02 . [32]. It follows that by doubling the frequency
fres of TDC, SNR and ENOB of ASDM increase by 6 dB and 1 bit, respectively.
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Figure 2.2: Operation of ASDM. EEG signal (red line) and corresponding ASDM integrator
output y(t) (green line) and ASDM trigger output z(t) (blue line).

2.2 Signal Recovery
If the ASDM input signal x(t) is represented as

x(t) =
∑
n∈Z

ang(t− τn), (2.4)

where g(t) = sinΩt
πt = Ω

π sinc(Ωt) is the impulse response of an ideal LPF with cutoff frequency
Ω, τn = tk+tk+1

2 and an are the coefficients to be estimated, then from (2.1) and (2.4) follow
that the coefficient values can be expressed as [28]

a = G+q, (2.5)

where G+ is the pseudoinverse matrix of G and elements of vector q and matrix G are qk =

(−1)k(2kδ − b(tk+1 − tk)), Gkn =
∫ tk+1

tk
g(t− τn)dt. [28]

As graphically shown in Figure 2.3, by finding coefficient values a (black bars), which are
multiplied by sinc functions g(t − τn) and summed together, it is possible to reconstruct the
original signal x(t) (red line).

Figure 2.3: Visualization of signal recovery. Coefficients a (black bars), sinc functions g(t−τn)
(blue lines), reconstructed EEG signal (red line).
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Unfortunately, since numerical calculation of elements gk,n from matrixG requires to assign
the function g(t) with sufficiently fine step and there is a need to do a matrixG pseudoinversion,
the signal recovery method described above is time and resource consuming and thus can not be
used for real-time applications. In order to increase the speed of signal reconstruction, following
expression, which describes the reconstructed signal, is used [13], [33]:

x̂(t) =
j2πFmax

M

M∑
m=−M

mυmejm
2πFmax

M t (2.6)

where unknown coefficients υm can be found by υ = ξΦ+RDP−1q (the elements of the expres-
sion can be found in full doctoral thesis).

However, despite the fact that by using the fast signal recovery method it is possible to recon-
struct the original signal significantly faster (see Section 4.1.1), it is not possible to reconstruct
the signal in real-time, since prior to reconstruction it is necessary to store time instants from the
ASDM output signal. In order to be able to reconstruct the signal in real time, short time interval
reconstruction method should be used [34]:

x̂(t) =
∑
m∈Z

x̂m(t)wm(t),

where t ∈ [tmJ , tmJ+L], but wm(t) is a window function, defined as in (2.7). In this case,m =
0, 1, 2, . . . designates the order number of the interval, J determines the number of switchings,
after which the reconstruction of the next interval can start, butL is a number of switching instants,
which determines the length of the interval (see Fig. 2.4).

Figure 2.4: Real-time signal reconstruction by using interval approach [34]. In this particular
case/figure, t0 = 0, L = 8,M = 2,K = 1(J = 3), xmJ,L(t).
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wm(t) =


0, if t /∈ (τm, σm+1],

θm(t), if t ∈ (τm, σm],

1, if t /∈ (σm, τm+1],

1− θm+1(t), if t ∈ (τm+1, σm+1],

(2.7)

where τm = tmJ+M , σm = tmJ+M+K and θm(t) = sin2 π(t−τm)
2(σm−τm) .

2.3 Advantages and Disadvantages
The main benefits of ASDM are low energy consumption, immunity to metastable behav-

ior, modular design, significant exclusion of electromagnetic interference (EMI), the absence of
clock, low complicity, continuous-time signal processing, etc, which makes it suitable for BCI
applications. [35], [36], [37]

Despite the fact that ASDM has a long list of advantages, which makes it one of the best
choices for EEG encoding and BCI application, it still has some disadvantages. The main in-
efficiency is related to over-triggering, which occurs when ASDM is applied to wide dynamic
range signals such as EEG signals (see Fig. 2.5). [12] Due to wide dynamic range that these

Figure 2.5: EEG signal (red line) and ASDM trigger output signal (blue line).

signals have, an unnecessary high switching activity of ASDM circuit appears when the input
signal amplitude is low, causing increased power consumption of a wireless BCI system.

2.4 Conclusions
The main ASDM inefficiency is related to over-triggering, which occurs when ASDM is

applied to wide dynamic range signals. This is because the ASDM circuit parameters are chosen
considering the maximum value that is never exceeded by the signal. Since the envelope of
the signal changes over time, the proposition is: instead of constant value to consider the time-
varying maximum value, which is also never exceeded by the signal. This could allow to reduce
the over-triggering of the circuit and thus the power consumption of whole wireless BCI system,
since less switchings instants (events) will be necessary to be transmitted, which greatly reduces
the power consumption of the transmitter. The proposed amplitude adaptive method is described
in next Section 3.
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3. AMPLITUDE ADAPTIVE ASYNCHRONOUS SIGMA-DELTA
MODULATOR

In order to overcome themainASDM inefficiency, a newmethod, calledAmplitude-Adaptive
Asynchronous Sigma-Delta modulator (AA-ASDM) is proposed and described in this Section.

Since envelope of the signal changes over time, the proposition of this work is, instead of con-
stant value b, to consider the time-varying maximum value c(t), which is also never exceeded by
the signal, i.e. to change the ASDM circuit parameter b according to c(t) to ensure that maximum
distance T between two consecutive trigger switching times tk and tk+1 is [12]:

τmax2(t) =
2κδ2

b2(t)− c(t)
= const. = T, (3.1)

where b2 and δ2 are hysteresis parameters of the trigger. In this case, the difference b2(t)− c(t)
must be constant and thus b2(t) can be written as b2(t) = c(t) + βC, where C is the maximum
value of |x(t)| and β > 0. The minimum distance becomes [12]

τmin2(t) =
2κδ2

b2(t) + c(t)
=

T

1 + 2c(t)/(βC)
. (3.2)

The block diagram of proposedAA-ASDM,which is an enhanced version of ASDM, is shown
in Figure 3.1. [12] In addition to ASDM circuit (see Fig. 2.1), there is an envelope detector with

Figure 3.1: Amplitude Adaptive Asynchronous Sigma-Delta modulator block diagram.

output c(t) connected to the feedback loop. Now, instead of the equation (2.1), the relationship
between the switching instants tk of the AA-ASDM output z(t) and the input signal x(t) for
tk+1 > tk, and integers k ∈ Z, is given by the following equation:

tk+1∫
tk

x(t)dt = (−1)k[2κδ −
tk+1∫
tk

c(t)dt], (3.3)

where κ and δ are AA-ASDM circuit parameters. The proposed method allows to reduce the
over-triggering of the circuit and thus the power consumption of wireless BCI system.

Based on this, two amplitude adaptive methods: 1) AA-ASDM with additional envelope
encoding (Section 3.1); and 2) AA-ASDM without additional envelope encoding (Section 3.2);
are proposed and described.
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3.1 AA-ASDM with additional envelope encoding
In this case, the envelope signal c(t) is also needed for recovery of x(t), therefore it is encoded

by another ASDM (see Fig. 3.2). [12] Now, for AA-ASDM1 to be advantageous over ASDM,

Figure 3.2: Amplitude Adaptive Asynchronous sigma-delta modulator with additional envelop
encoding block diagram (AA-ASDM1).

the signal c(t) must have low frequencies in comparison to x(t).
In this case, the complexity of signal recovery increases, but power consumption of the wire-

less BCI system decreases, due to fewer trigger switchings. The effectiveness of this AA-ASDM1
approach is estimated by simulations in Section 4.1.2. Regardless of the decrease of the number
of switchings, the perfect recovery of the original signal from the obtained time sequence is still
possible. [12]

In order to recover the encoded signal, the first step is recovery of envelope signal c(t). When
c(t) is found, the original signal x(t) is recovered from the given time sequence tk by finding the
unknown coefficients by the following equation [33], [12]:

â = G+q, (3.4)

where qk = (−1)k(2κδ − βC(tk+1 − tk)−
∫ tk+1

tk
c(t)dt) and Gkn =

∫ tk+1

tk
g(t− τn)dt.

Similar to ASDM (see Section 2.2), by using this signal recovery method, the reconstruction
is time and resource consuming therefore fast and real-time signal reconstruction methods are
considered. Both methods and their derivations of expressions can be found in the full thesis
work.

Although AA-ASDM1 is advantageous over ASDM in terms of switching activity, the effi-
ciency of this method can be improved, if the time-varying envelope of the signal is not addition-
ally encoded and transmitted in order to recover the original signal.

3.2 AA-ASDM without additional envelope encoding
Further studies have led to a solution which not only solves the AA-ASDM1 problem, where

the envelope function must be encoded by additional ASDM, but also allows to reduce the switch-
ing activity of the ASDM circuit even more. The proposed method shows how to choose the
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time-varying envelope in such a way, that there is no need to encode and transmit information
about the envelope and to be able to recover the signal from the obtained time sequence.

The relationship between the switching instants tk of the AA-ASDM2 output z(t) and the
input signal x(t) is the same as in AA-ASDM1, only in this case, the proposition is to use the
time-varying envelope function as õ(t) = 0.25+ x2(t), where the inequality õ(t) ≥ |x(t)| holds
for all x(t) ∈ [−1, 1]. This function does not require any additional encoding scheme to be able
to reconstruct the original signal (see Fig. 3.3). [14]

Figure 3.3: Amplitude Adaptive Asynchronous sigma-delta modulator without additional en-
velop encoding block diagram AA-ASDM2.

The input signal x(t) can be represented as x(t) =
∑N−1

n=0 d̃ngn(t), where d̃n are unknown
coefficients and gn(t) are the chosen base functions. The unknown coefficients d̃ are found by
minimizing the total error value [14]:

K−1∑
k=1

(
d̃T · gk + (−1)kd̃T · Ĝk · d̃− q̃k

)2
, (3.5)

where q̃k = (−1)k[2κδ − (βC + 0.25)(tk+1 − tk)], Ĝkmn
=
∫ tk+1

tk
gm(t)gn(t)dt, but

gk =


∫ tk+1

tk
g0(t)dt∫ tk+1

tk
g1(t)dt
...∫ tk+1

tk
gN−1(t)dt

 . (3.6)

Different base functions gn(t) can be chosen for representing the input signal x(t). If gn(t)
are chosen to be sinc functions, as in ASDM and AA-ASDM1 case, two problems occur: 1) these
functions are not well suited for representing time-limited signals; 2) calculation of gk and Ĝk is
both time consuming and not perfectly precise since no analytical solutions of the integrals exist.
In order to solve these problems, the proposition of this work is to use Fourier series instead of
sinc functions for the original signal representation. [14]

By using Fourier series, given the output sequence {tk}k=1,2,...,K with the corresponding
time period Θ = tK − t1, the input signal for t ∈ [t1, tK ] is expressed as [14]

x(t) = d̃0 +

M∑
m=1

(
d̃m cos

(
m
2π

Θ
t
)
+ d̃m+M sin

(
m
2π

Θ
t
))

, (3.7)
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where the upper limit M follows from the bandwidth Ω of the signal M =
⌊
ΩΘ
2π

⌋
. Such a

representation of x(t) is both well suited for expressing time-limited signals of length Θ and
allows fast and precise calculation of gk and Ĝk. The real-time signal reconstruction is carried
out by using the same approach as in ”AA-ASDM1” case. [14]

AA-ASDM2 allows not only to reduce the switching activity of the ASDM circuit even more,
compared to AA-ASDM1, but it also decreases the speed and delay of the signal reconstruction
meanwhile keeping the desired precision (see Section 4.1.3). [14]

The ratio between the minimum value of a numberNASDM of switching time instants and the
maximum value of NAA-ASDM can be obtained from the following expression:

NASDMmin

NAA-ASDMmax
=

1− γx + α

γc + γx + α
. (3.8)

where γx = x̄abs/C and γc = ¯̃o/C are coefficients and their elements are x̄abs =
1
Θ

∫ Θ

0
|x(t)|dt,

C is a maximum amplitude of absolute value of the input signal x(t), but ¯̃o = 1
Θ

∫ Θ

0
õ(t)dt is

the mean value of time-varying envelope õ(t) of the input signal x(t). In AA-ASDM2 case, the
maximum ratio is 4.

It follows that AA-ASDM is advantageous over ASDM for signals having high peak-to-peak
amplitudes in comparison to their mean absolute values. All derivations of expressions can be
found in the full thesis work.

3.3 Conclusions
In order to overcome the main ASDM inefficiency, in this Section, a new method, called

AA-ASDMwas proposed and described in detail. The proposition was, instead of constant value
trigger parameter b, to consider the time-varying maximum value, which is never exceeded by
the signal, i.e. to change the ASDM circuit parameter b according to c(t) to ensure that max-
imum distance T between two consecutive trigger is equal to Nyquist step T . Both presented
approaches: AA-ASDM1 and AA-ASDM2 are particularly advantageous over ASDM if used
for wide dynamic range signals. Theoretically, it is possible to achieve up to 75 % less trigger
switchings if AA-ASDM instead of ASDM is used. In order to verify and assess the theory, AA-
ASDMmust be simulated, modeled and implemented as physical device. This is done in the next
Section 4.
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4. EXPERIMENTAL RESEARCH

In order to verify and assess the theory, developed in Section 3, in practice, in this Section
various simulations (inMatlab), modeling (in SIMetrix), design (inAltiumDesigner) and physical
implementations of ASDM (as a reference design) and AA-ASDM are carried out.

4.1 Simulations
In this section, both ASDM and AA-ASDM approaches are tested on real electroencephalo-

gram (EEG) signals acquired by the 14-channel Emotiv EPOC headset. Considering typical EEG
signal frequencies (see Section 1.1), all signals are low-pass filtered up to 49Hz ir order to remove
the noise prior to encoding.

4.1.1 Asynchronous Sigma-Delta Modulator
The experimental simulation results of ASDM encoding, decoding and fast and real-time

decoding as well as estimation of speed, error, resolution, etc. are shown in the full thesis and
partially in Table 4.1 and Table 4.2 (see next Sections).

4.1.2 AA-ASDM with additional envelope encoding
Based on the theory, described in Section 3.1, AA-ASDM1 is simulated and assessed in

this Section. First, the parameters of the AA-ASDM1 must be set in such a way that maximum
distance between two consecutive trigger switchings tk+1− tk does not exceed the Nyquist step,
i.e, τmax ≤ 1

2Fmax
. In this case, AA-ASDM1 parameters are set as follows: κ = 1, b2 = c(t)+βC,

where β is a constant (0.1, 0.3, 0.7, 1, 1.3, 1.9 or 2.5) and C is a maximum amplitude of absolute
value of the EEG signal, but δ2 is calculated from the equation δ2 = 0.9βCT/2. For envelope
encoding, the parameters are set as κc = 1, bc = 2C and δc = C/4Fmaxc .

The example of the input EEG signal and its estimated envelope function, when β = 0.1, is
shown in Fig. 4.1. If more precise (more rapid) envelope (dashed line in Fig. 4.1) is used, then

Figure 4.1: Input EEG signal (red line) and its low frequency envelope functions (blue lines).

less triggering occurs at the output of the upper trigger (see Fig. 3.2), however, more switchings
are required to encode the envelope.
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The simulation results for different β values and EEG signals show that in average there are
396+10=406 (upper+lower trigger) switchings when α = β = 0.1, 220 (when α = β = 0.3),
166 (0.7), 153 (1), 146 (1.3), 139 (1.9), 135 (2.5).

If compared to ASDM, in Fig. 4.2 it can be seen that AA-ASDM1 maximum distances (close
to T ) occur all the time and the values t̂k+1 − t̂k are more spread, which allows to reduce the
number of switching time instants.

Figure 4.2: EEG signal (red line) and the obtained distances between consecutive trigger
switchings for ASDM (blue line) and AA-ASDM1 (pink line), and Nyquist step (green line).

AA-ASDM1 encoded signal can be recovered by using two approaches: Classical reconstruc-
tion and Fast reconstruction. As experimeantal simulation results show, the Fast reconstruction
method is up to 228 times faster than Classical reconstruction. In order to reconstruct in real
time, the reconstruction is carried out in short time intervals as described in Section 2.2.

Simulation results show that the average SNR for both Classical reconstruction and Fast
reconstruction approaches lies within the range of ≈131-132dB (≈ 22 bits), but for real time
reconstruction ≈123dB (≈ 20 bits).

4.1.3 AA-ASDM without additional envelope encoding
AA-ASDM2 parameters are set as in previous Section 4.1.2. In this case, the envelop function

is set as c(t) = 0.25 + x2(t).
The example of the input signal and its estimated envelope (α = 0.1), is shown in Fig. 4.3.
The distances between consecutive trigger switching time instants, when α = β = 1, are

shown in Fig. 4.4. Comparing Fig. 4.1 (AA-ASDM1) and Fig. 4.3 (AA-ASDM2), it can be seen
that in AA-ASDM2 case the envelope is more precise and thus the number of trigger switching
time instants is lower, as it can be also seen in Table 4.1.

Table 4.1: Comparison number of trigger switching time instants per second and corresponding
energy saving of the transmitter for ASDM, AA-ASDM1 and AA-ASDM2

As the α = β values grow, the advantage (in switching activity) of AA-ASDM2 over ASDM
becomes less, however, it is not recommended to choose too high these values since the variance
of distances between consecutive trigger times reduces andmore precision (more bits) is needed to
measure the distances. Too low α = β values are not recommended as well since high switching
activity appears in both cases.
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Figure 4.3: Input EEG signal (red line) and its envelope function (blue line).

Figure 4.4: EEG signal (red line) and the obtained distances between consecutive trigger
switching time instants for ASDM (blue line) and AA-ASDM (pink line), and Nyquist step
(green line).

For AA-ASDM2, the experimental simulation results show, that it takes in average 0.09s to
reconstruct one original signal fragment with a length of 0.5s, when α = β = 1 (see Table
4.2). As can be seen in Table 4.2, the reconstruction speed vary depending on the length of
the fragment needed to be reconstructed. Also, it can be seen, that the signal reconstruction
for AA-ASDM ir more time consuming than for ASDM. This is due to fact that the optimization
algorithm, which minimizes the expression (3.5), is used to find the unknown coefficients needed
for signal reconstruction. Besides that, it can be seen that by using AA-ASDM it is possible to
achieve practically the same precision of the reconstructed signal as in the ASDM case. It can
be concluded that the performance of AA-ASDM is admissible, since it fulfills the requirements
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set out in Section 1.2. Experimental simulations shows that the use of real-time reconstruction
algorithm do not affect the average SNR value.

Since all AA-ASDM2 performance indicators are better than AA-ASDM1, except the recon-
struction speed, for further experimental research AA-ASDM2 is used.

Table 4.2: Comparison of ASDM and AA-ASDM2 reconstruction speed for different α = β
values and signal lengths

4.2 Modeling
In order to develop a working AA-ASDM2 hardware prototype and estimate its properties,

first an electric circuit model with existing electronic components must be developed, simulated
and analyzed for both ASDM and AA-ASDM2. To reach this aim, SIMetrix circuit simulation
software is used for transient analysis and power consumption estimation of ASDM, AA-ASDM2
and On-Off-Keying (OOK) transmitter circuits.

4.2.1 Asynchronous Sigma-Delta Modulator
Electric circuits of the ASDM and corresponding OOK transmitter as well as experimental

modeling results are shown in the full thesis.

4.2.2 AA-ASDM without additional envelope encoding
The electrical circuit of the AA-ASDM2 is similar to the ASDM circuit, only in this case it

is supplemented by an Analog Multiplier (MLT04) and a Voltage Follower (OpAmp1) (see Fig.
4.5), where by changing the value of capacitor C1, it is possible to adjust the distance between
two consecutive trigger switching time instants. In order to make a comparison between ASDM
and AA-ASDM2 circuits, the parameters in both circuits are set to be equal.

Simulation results of the AA-ASDM2 circuit are shown in Fig. 4.6. The experimental mod-
eling shows that the average power consumption of the AA-ASDM2 circuit is ≈60 % higher
(≈231 mW), compared to ASDM (≈145 mW). But, it should be noted that simulations were
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Figure 4.5: AA-ASDM2 electrical scheme.

Figure 4.6: Operation of AA-ASDM2. a) Input signal (red line), integrator output (green line)
and trigger output (blue line); b) Power consumption of the trigger; c) power consumption of
the whole circuit.

made only to verify the working principles of both circuits and the power consumption values are
just indicative, as it is possible to develop an ASDM circuit with 7.5nW power consumption as
shown in [10]. This means, if the AA-ASDM2 circuit is implemented in the same technology as
shown in [10], the increase of power consumption by 60 % compared to ASDM would give an
overall power consumption of the AA-ASDM circuit: 12nW.

As mentioned before, the main power consumer of a BCI system is a transmitter, therefore,
it is more important to reduce the amount of information to be transmitted. Therefore, an event-
driven transmitter is also modeled and simulated together with AA-ASDM2.

For this particular BCI application, due to its great properties, an OOK technique is used for
wireless data transmission. It has several advantages - simple architecture, good performance in
the presence of co-channel interference, robust when exposed to vibration and shock, and major
criteria - small dimensions for on-head device implementation. [11] Simple OOK implementa-
tion for AA-ASDM2 output transmission, where a short pulses filled with carrier frequency are
generated each time the AA-ASDM2 output is changing its state to opposite, is shown in Fig.
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4.7.

Figure 4.7: Operation of the OOK transmitter: a) electric circuit; b) AA-ASDM2 output signal
z(t) and OOK output signal OOK_out2 driven by the output of AA-ASDM2.

In this case, the power consumption of the circuit is directly proportional to the number of
AA-ASDM2 switching time instants (NAA−ASDM ):

POOKmod = P0(1− n · τtx
Ttx

) + n · Ptx · τtx
Ttx

, (4.1)

where P0 - is an average power consumption of the circuit, when LC is not oscillating, but Ptx,
when LC is oscillating during and after each transmission; τtx is a length of the transmitting pulse
(including decay time of oscillations), Ttx is a period in which the circuit is analyzed, but n is an
average number of pulses during Ttx.

It follows, if the OOK transmitter is driven by the AA-ASDM2 output, instead of ASDM,
there are fewer switching time instants witch results in reduced power consumption of the OOK
circuit. A comparison of the power consumption of the OOK depending on if ASDM or AA-
ASDM2 circuit’s output is used as an input for the OOK transmitter is shown in Table 4.3.

Table 4.3: Comparison of the power consumption of the OOK circuit depending on if ASDM
or AA-ASDM circuit’s output is used as an input for the OOK transmitter

As can be seen in Table 4.3, the reduction of the power consumption of the transmitter by using
AA-ASDM2, instead of ASDM, can reach up to ≈37 % depending on the number of switching
time instants. But, it is important to note that in this case the power consumption of the circuit
when it is not transmitting is very high≈16.6 mW, while modern wireless transmitters have it in a
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range of nW. This means, if the the power consumption of the circuit, when it is not transmitting,
would be for example 100nW, the reduction of the power consumption could reach up to ≈50 %
depending on the number of switching time instants or even more if signals with wide dynamic
range is used (see Section 4.1.3), where AA-ASDM2 is particularly advantageous.

Since modern wireless data transmitters consume ≈3 mW, it follows that if AA-ASDM2
instead of ASDM is used, it is possible to reduce the power consumption of the transmitter by
1.5 mW, while increasing the power consumption of the encoder just by 4.5 nW, giving a total
of ≈50 % power consumption reduction in a wireless BCI system, leading to two times longer
battery life and operation time of wireless system.

4.3 Practical Implementations
Based on the AA-ASDM2 modeling results in Section 4.2.2, a physical AA-ASDM2 based

EEG data acquisition system is designed. The block diagram of the designed system is shown in
Figure 4.8. It consists of a wireless sensor, which includes EEG signal amplifier, AA-ASDM2 and

Figure 4.8: Full one channel block diagram.

OOK transmitter, and receiving and processing unit, which includes super-heterodyne receiver,
ATS460 digitizer and personal computer (PC). Developed AA-ASDM2 based Wireless Sensor
for EEG data acquisition and receiver is shown in Fig. 4.9. The working principles of each of

Figure 4.9: Developed AA-ASDM2 based EEG data acquisition system’s components: 1. EEG
amplifier, 2. AA-ASDM, 3. OOK transmitter, 4. receiver.

the blocks in Fig.4.8 and PCBs in Fig. 4.9 are shown in the full thesis.
In order to test and assess the developed AA-ASDM2 based EEG data acquisition system first

AA-ASDM2 is calibrated by analyzing the actual outputs of the AA-ASDM2 PCBs integrator
y(t) and trigger z(t) for three different DC input signal voltage levels (in this case, DC=0V, 0.5V
and 0.9V). As a results, the actual AA-ASDM2 circuit parameters: +b, −b, ∆tmax and ∆tmin

are acquired.
In order to verify if developed AA-ASDM2 PCB is working properly, acquired ∆tmax and

∆tmin values are compared to the theoretically calculated values, where theoretical values are
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calculated from the electrical scheme, shown in Fig. 4.10. The ratio of practically acquired

Figure 4.10: AA-ASDM electrical scheme of the actually developed PCB.

values and theoretically calculated must be equal or almost equal. As the calculations show, the
difference is within the range of 4 %. This is due to capacitor non-ideality, as it has ±10 %
capacitance tolerance. As experimental results show, the precision of the reconstruction is very
sensitive to capacitor non-ideality and therefore the circuit must be calibrated first. In further
experiments, the value of 1

κ is selected based on the practical measurements.
After calibration of the AA-ASDM2 and initial tests, the AA-ASDM2 circuit can be placed

in the overall AA-ASDM2 based EEG data acquisition system for further experimental tests. A
block diagram of the experimental setup is shown in Fig. 4.11.

Figure 4.11: Block diagram of the experimental setup.

Knowing the parameters of the AA-ASDM2 circuit, it is possible to acquire, process and
reconstruct the original signal.

An example of original and reconstructed signals is given in Fig. 4.12.
As can be seen in Fig. 4.12, it is hard to see the difference between the original and recon-

structed signal, which means that it is possible to encode and qualitatively reconstruct the signal,
by using AA-ASDM2. In order to quantitatively estimate the performance of AA-ASDM it must
be implemented in a chip, with specialized circuit structures with decreased operating supply
voltage, capacities, etc., with low comparator jitter, slew rate, DC gain, voltage saturation, ex-
cess loop delays and comparator offsets, etc. [25], [38] Also, as shown is [39], Time-to-digital
converter (in this case ATS460) has a significant impact on the precision of the reconstructed
signal. The precision of the reconstructed signal is directly proportional to the tk measurement
precision. [40]
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Figure 4.12: Original signal (red line), reconstructed signal (green line) and error signal (blue
line), which is the difference between original and reconstructed signal.

4.4 Conclusions
From the simulations, it can be calculated that AA-ASDM1, for different β values, can

achieve up to 65.69 % energy saving for transmitter compared to ASDM. Although AA-ASDM1
is advantageous over ASDM in terms of number of samples, it has few drawbacks. For example,
there is a need to transmit two signals instead of one and there is a delay introduced by additional
envelope signal reconstruction prior to the original signal reconstruction. Even further, the phys-
ical implementation of the AA-ASDM1 involves envelope detector which introduce additional
delay to the system and synchronization with the original signal. This can be overcome by using
AA-ASDM2, where the gain is even bigger and can reach up to 68.85 % less switching time in-
stants compared to ASDM. But this gain comes with more time consuming signal reconstruction
due to optimization algorithm. Still, the performance of AA-ASDM2 is admissible, since recon-
struction algorithms can reconstruct the signal in real-time on PC. Even further, AA-ASDM2 has
lower complexity of the encoding circuit, since it does not involve an additional encoding circuit
for the envelope, as it is in AA-ASDM1 case.

From the modeling, it can be concluded that the increased power consumption (by ≈60 %)
of AA-ASDM2, compared to ASDM, is relatively small (4.5 nW) if compared to the power con-
sumption reduction in the transmitter (by 1.5 mW), which is achieved by having fewer switching
time instants at the output of the AA-ASDM2. The average power consumption of presented
event-driven OOK circuit decrease proportionally if the number of switching time instants de-
creases. Using AA-ASDM2 instead of ASDM in wireless BCI system leads to 2 times longer
battery life and operation time.

From the practical implementation, it can be concluded that AA-ASDM2 can be used for
EEG signal encoding and reconstruction. In order to quantitatively estimate the performance of
AA-ASDM it must be implemented in a chip, with specialized circuit structures with decreased
operating supply voltage, capacities, etc., with low comparator jitter, slew rate, DC gain, voltage
saturation, excess loop delays and comparator offsets, etc. Also, Time-to-digital converter (in this
case ATS460) has a significant impact on the precision of the reconstructed signal. The precision
of the reconstructed signal is directly proportional to the tk measurement precision.
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5. CONCLUSIONS

The main aim of this thesis to develop an improved method for signal encoding based on
ASDM, which allows to reduce the power consumption of the wireless BCI system, while main-
taining the desired signal quality has been reached.

According to defined tasks, following results are achieved:

• based on the literature review and analysis of electroencephalogram (EEG) signals and
brain-computer interface (BCI) systems, the author has defined the requirements for Analog-
to-digital converters (ADC). These requirements are: energy efficiency, encoding com-
plexity, resolution and sampling rate;

• based on defined requirements, the author has reviewed, analyzed and described a literature
on synchronous and asynchronous ADCs as well as selected the most appropriate ADC for
EEG signal encoding and BCI systems as whole; Due to its great properties, Asynchronous
Sigma Delta modulator (ASDM) is selected;

• the author has extensively analyzed, researched and described the ASDM and identified the
points of improvement. The main inefficiency of the ASDM is related to over-triggering,
which occurs when ASDM is applied to wide dynamic range signals such as EEG signals.
Due to wide dynamic range that these signals have, a high switching activity of ASDM
circuit appears when the input signal amplitude is low;

• in order to improve te ASDM, the author has proposed and in detail described a new
method, called Amplitude-Adaptive Asynchronous Sigma-Delta modulator (AA-ASDM),
which allows to reduce the over-triggering of the circuit and thus the power consumption
of the whole wireless BCI system, while maintaining the desired signal quality;

• in order to test and assess the proposed method, the author has simulated (in Matlab),
modeled (in SIMetrix), designed (in Altium Designer) and developed the AA-ASDM. The
main achieved results are provided and assessed, and conclusions given;

• the author has developed and tested a complete one channel BCI system. Themain achieved
results are provided and assessed, and conclusions given.

Based on the results, described above, it can be concluded that the main aim of this work is
achieved.
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