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Abstract—Smart electric thermal storage heating devices can 
be used for demand response, congestion management and 
incorporated within unit commitment and dispatch of generation 
resources for more efficient control of power systems. This paper 
presents an experiment-based thermal modelling approach of 
residential buildings which will be scaled to a national aggregate 
level to be used in overall power system modelling involving smart 
electric thermal storages. A simplified thermal network based on 
electrical RC-circuit analogy was developed to replicate building’s 
thermal dynamics and model residential heat demand at national 
scale. To obtain the equivalent parameters for the RC model, 
physical experiments were conducted during which buildings were 
let to cool down and then heated for several times and indoor and 
outdoor temperature, heat consumption and solar radiation was 
recorded. The identified model exhibits a good performance which 
improves when solar gains are considered within it. Different 
control strategies of the heating equipment were examined and the 
hourly heat demand over the year was estimated. 

Keywords—energy storage; inverse modelling; RC model; solar 
gains; thermal storage 

I.  INTRODUCTION 
Dissemination of intermittent renewable energy sources 

(RES) such as wind, wave and solar power presents new 
challenges for power systems. In order to reduce the curtailment 
of renewables and efficiently accommodate the distributed and 
variable RES across the power system, energy storage and 
management of variable energy resources has become a 
necessity. 

One of residential power-to-heat technologies is smart 
electric thermal storage with appliances for space heating and 
hot water heating [1]. It is a sensible heat storage system [2], 
which consumes electricity and is able to store it in the form of 
thermal energy for a long time to be used later when it is needed. 
Thus the power demand of the heating system is decoupled from 
the time of thermal energy end-use by the domestic customer. 
Electric thermal storage heaters have been in use for decades and 
are well known in countries where two-tariff electricity pricing 
is applied to households. Today’s communication technologies 
allow to upgrade storage heaters in order to aggregate their 
electricity demand and manage it at the power system level [3]. 

SETS can provide overall societal benefits such as cost 
savings to the customers and RES curtailment reduction, 
whereas the aggregated load can offer a number of services to 

the power system such as demand shifting and demand response 
as well as ancillary services such as frequency response, reserve 
provision etc. 

While the SETS technology and appliances are in place 
already [1], the power systems are not yet in a position to 
integrate them and there are various ongoing studies on how to 
facilitate this process. One of the problems to be solved includes 
co-optimisation of the electricity system scheduling together 
with requirements of the electric heating demand [2]. The 
modelling and optimisation environment for electrical power 
systems should endogenously represent the local small-scale 
thermal storage devices, including their technical characteristics 
and thermal energy end-use requirements. 

The approach presented in this paper will serve as basis for 
our further studies involving physical experiments in different 
buildings to derive their thermal characteristics and heating 
energy requirements. The consumption of individual buildings 
will then be scaled to a national aggregate level. The aggregated 
electric load of local small-scale thermal storage will be 
integrated into the overall power system models to assess the 
impact of storage devices on power system planning, unit 
commitment and dispatch of energy and reserves, distribution 
network congestion, power system reliability etc. While that will 
be presented in our future publications, this paper is focused on 
identification and validation of thermal models of buildings and 
modelling their heat energy demand. 

Section II presents the method employed and section III 
illustrates the results of model validation and heat demand 
estimation. Finally, conclusions are drawn. 

II. METHOD

There are many physics-based tools for building energy 
modelling that allow to calculate energy consumption of the 
building based on its physical characteristics, weather 
conditions, occupancy patterns etc. [4], [5]. To employ such 
tools, usually one needs to know exact parameters of all the 
construction elements of the particular building such as 
dimensions, thermal resistance and conductance, mass and 
density and so on. While these parameters are available during 
the design and construction phase of the building, it is resource- 
and time-expensive to obtain those for already existing 
buildings. Moreover, even if the design parameters are known, 
the actual construction characteristics often deviate from those 
and change over time. In that case parameter estimation using a 
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black-box model is a computationally-efficient method to obtain 
building parameters which can be used for simulations and 
calculation of the consumption of heating energy. 

Since we aim to model thermal energy consumption for a 
large stock of buildings, this paper builds on our previous study 
presented in [6] where a simple RC model is used to estimate 
heating energy consumption of buildings based on experimental 
data-driven black-box approach. In this paper we have included 
solar gains into the model as opposite to the aforementioned 
study which omits those (Fig. 2). 

Our study is based on physical experiments carried out in 
buildings in Latvia where annual solar irradiation is relatively 
low (total annual irradiation 972–1111 kWh/m2). However, the 
results show that the sun can have a significant impact on the 
requirements of thermal energy and thus should be considered 
too. 

The idea of the experiment lies in taking a building’s heating 
and cooling curves to estimate the model parameters. To do this, 
heating equipment was switched off and on several times during 
the period from March 13 till March 25, 2016. During the whole 
period, indoor and outdoor temperature, heat consumption and 
solar radiation measurements were taken whether on site or from 

Fig. 1. Single-family detached house with autoclaved aerated concrete walls 
where experiments for parameter identification were carried out 

Fig. 2. Thermal network used for inverse modelling 

the national meteorology centre. Data from the first 4 days was 
used for model identification, while the remaining 9 days were 
employed for verification. Simulations were performed with 
MATLAB Simulink and Simscape. 

III. RESULTS AND DISCUSSION

A. Model Validation 
Fig. 3 shows comparison of the actual and estimated indoor 

temperature during March 13–16, 2016 when building was let to 
cool for two days and then heated. We can observe that the 
derived model has a high performance accuracy as compared to 
the experimental data. The mean average percentage error for 
indoor temperature estimation is 4.44%.  

Results of model validation (March 17–March 25, 2016) are 
presented in Fig. 4. Until hour 114 and from hour 138–162, the 
building was let to cool down, while during the remaining time 
(hour 114–138 and 162–190) it was heated. Each day we can 
observe some solar irradiation, and in sunny spring days even 
when heating equipment is turned off, the indoor temperature 
rises showing the importance of considering solar gains. Overall 
performance of the model is good. 

Performance of the model without solar gains was compared 
to the extended model with solar gains. Results indicate that 
solar irradiation has a strong influence. For example, total annual 
heating energy consumption decreases by 6.3%—from 92.3 to 
86.5 kWh/m2 for a single-family detached house (Fig. 1). 

The derived model enables us to calculate heating 
consumption of the building during the whole heating season. 
For example, consumption during the 2015/2016 heating season 
was estimated as 86.52 kWh per square meter when solar gains 
are considered. Without solar gains, heating consumption is 
92.3 kWh per square meter. The heating demand for various 
types of buildings will be used to elaborate the national-scale 
model. 

Fig. 3. Physical experiment data of room temperature and the corresponding 
model performance (March 13–16, 2016) 



 
Fig. 4. Weather conditions and observed and modelled indoor temperature (March 17–March 25, 2016) 

 

 

 
Fig. 5. Comparison of heating operation with two different control settings 

on 22.03.2016. 

 

B. Comparison of Heating Control Settings 
In order to actually take advantage of the decreased energy 

consumption, it is important to consider solar gains within 
control algorithms of the heating system. Fig. 5 shows 
simulations for two different types of thermostat settings: 
(1)  24 h setting—temperature set to 20°C throughout day and 
night; (2)  weekday setting—temperature set to 20 °C in the 
morning (4–8 AM) and evening (15–24 PM) which lets the 
building to cool during the rest of time. Thermostat dead band 
setting (differential) is ± 0.5 °C in both cases. Two upper graphs 
in Fig. 5 indicate the time when heating equipment is turned on 
or off to maintain the required schedule and lower graph 
presents the corresponding indoor temperature for both cases. 

With the 24 h setting, total heating energy consumption on 
March 22, 2016 was 108.33 kWh, and 89.7 kWh with the 
weekday setting. It may appear at first sight that with 
continuous heating more energy should be consumed always 
than with the two-period weekday setting. However, our 
simulations show that in some days the opposite can also be 
observed. For example, on March 21 the weekday setting leads 
to the heating consumption of 89.01 kWh, while the 24 h setting 
results in a lower consumption—69 kWh. This is owing to the 
relatively large solar radiation (up to 665 W/m2) during the day. 

In addition, we can observe that the weekday setting does 
not always manage to ensure the required temperature. For 
example, from 15 PM the indoor temperature is always less 
than 19 °C (Fig. 5). This is due to the fact that the simulated 
heating system is unable to “learn” how much time is needed to 
achieve the required temperature. Accordingly, though the 
heating is on during the required time, the comfort temperature 
of 20 °C is never achieved. This emphasises the importance of 
“smarter” control algorithms to efficiently ensure the necessary 
comfort level for end-users. 
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Fig. 6. Heat demand of a single-family wooden house in 2016 (20-hour 
comfort profile daily with 20 °C set point) 

C. Annual Heat Demand Estimation 
Based on the methodology presented before, models for 

several buildings were developed. The validated models were 
used to estimate the heating demand over the year using the 
hourly outdoor temperature and solar radiation. Fig. 6 shows the 
modelled room temperature and heat demand for a single-family 
wooden house of 70 m2 in 2016. Given a set point of 20 °C and 
20-hour comfort profile daily, the simulated annual heat demand 
is 11.13 MWh with an average of 159 kWh/m2. The highest heat 
demand occurs in January (hour 0–744) which coincides with 
the coldest weather of the year. During the hottest days in 
summer the room temperature often exceeds the set point of 
20 °C, since cooling of the building is not being modelled. 
Conversely, we can also observe that additional heat is required 
a few times in summer when cold weather occurs. 

The developed model allows us also to calculate the heat 
demand with different comfort profiles and occupancy patterns. 
For example, the annual heat demand for the same building with 
19 °C set point and 17-hour comfort profile is 10.28 MWh 
(7.6% less than in previous case). 

We also modelled heat requirements of industrial buildings, 
and Fig. 8 demonstrates heat demand for a distribution network 
substation where smart electric thermal storage (SETS) has been 
installed for space heating. The set point of heating is 14 °C 
based on the ambient temperature requirements for the control 
equipment installed at the substation. This temperature is to be 
maintained all the time. The estimated annual heat demand is 
6.59 MWh in 2016 with an average of 67 kWh/m2. 

IV. CONCLUSIONS

Modelling results of residential heat demand prove the 
necessity of including solar gains into the model even in regions 
with relatively low annual solar radiation. In addition to that, 
when optimising the daily control algorithms of heating 
equipment, it is important to account for the weather forecast to 
accurately estimate the time needed to heat the building maintain 
the required comfort level of end-users. 

Fig. 7. Heat demand of a substation in 2016 (24-hour comfort profile with 
14 °C set point) 

The derived models enable estimation of the hourly heat 
demand over the year which is necessary to model the operation 
of smart electric thermal storage and optimise its charging 
schedule while maintaining the required comfort level. In our 
future work, the heating demand will be scaled to a national level 
to be used in power system models and for evaluation of the 
overall SETS potential in Latvia. 
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