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 Reliable operation of a power transformer with a certain load depends on the technical 

condition of individual construction parts and the ability to prevent defects that can cause 

a failure. During the lifecycle of a transformer, valuable data is constantly accumulated, 

which forms the basis for technical or risk assessment of the equipment. Therefore it also 

serves as a ground for the decisions on further operation, or repairs, or replacement. To 

achieve this goal, data need to be systematized. Since technical condition indexing allows 

combining various types of data including results of diagnostic tests is used within the 

framework of this research. 

As part of a larger risk assessment methodology, algorithms for two indicators are 

proposed in this paper, and they are based on results of electrical measurements and 

analysis of oil parameters, respectively. The novelty of the algorithms for indicators 

introduced in this paper is based on analysis of features specific to the power system in 

Latvia such as large proportion of aged transformers, low loading level, significant 

variation in oil volumes, and statistics on typical faults. Proposed limits of parameters are 

verified with data from operation history. Taking into account the differences in the 

measurement periodicity, the indicator that is based on electrical measurements assesses  

the individual constructive parts of the transformer (windings and core, bushing and on-

load tap changer) separately, whereas the other, indicator combines the results of oil 

parameters into a single assessment. These indicators were verified by using 30 

transformers from the Latvian power system and the obtained results coincide well with the 

operation history. 
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1. Introduction 

This paper is an extension of the results disseminated in the 
international conference paper relating to the development of risk 
indicator for power transformers based on electrical measurements 
[1]. This risk indicator is  part of a condition indexing algorithm 
that allows categorizing a large volume of technical data obtained 
during operation and maintenance of a power transformer into 
discrete risk categories. It provides information in a fast and 
systematic way, so that transformers can be easily compared and 
critical ones can be selected for further investigation.  

The main goal of this extended  paper is to present an algorithm 

for determining the numerical value of the indicator based on 

results of electrical measurements (EM indicator), as well as for 

establishing the numerical value of the indicator based on results 

of oil parameters analysiss. The outcome for both indicators is the 

risk category derived on a scale from 1 (lowest risk) to 5 (highest 

risk, outage expected or immediate action necessary). The 

proposed indicators correspond to diagnostic tests regularly 

performed on power transformers in  Latvian transmission system. 

However, significant differences in the periodicity of oil checks 

and electrical measurements determined the disparate structure of 

both algorithms and the mathematical methods selected. 

The proposed indicators have been verified with 30 case 

studies. Results of diagnostic tests both from  transformers that 

required repairing, and transformers in a normal operation 

condition were used. The authors express their gratitude to the 

Latvian Transmission System Operator (Augstsprieguma tikls, 

JSC) for providing data for the case studies. 

Different approaches are applied to develop appropriate and 
efficient algorithms for technical condition index which includes 
such common power transformer parameters as oil characteristics, 
dissolved gas analysis and electrical measurements [2]. 

Artificial neural networks (ANN) and adaptive neuro-fuzzy 
inference system (ANFIS) models, for instance, are no longer 
limited just for diagnosing faults and aging of power transformers. 
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These models can also be used to quantify the general condition of 
a power transformer [3], also as  synthetic risk assessment methods 
[4] and fuzzy logic [5]. 

The different diagnostic tools and methods, periodicity and 
power system charchteristics  are actually driving the need to 
develop a unique, expert-made assessment models for a certain 
power system. The novelty of the algorithms for indicators 
introduced in this paper is based on analysis of features specific to 
the power system in Latvia such as large proportion of aged 
transformers, low loading level, significant variation in oil 
volumes, and statistics on typical faults. Proposed limits of 
parameters are verified with data from operation history. The 
algorithms provide evaluation of the main constructive parts of a 
power transformer, and also the structure of indicator algorithms 
is planned as adjustable, if the amount of applied diagnostics tests 
is changed. 

2. Technical Condition Index as a Part of Risk Matrix 

Configurations of the risk matrix proposed for Latvian power 
system within the framework of this research is shown in Figure 1, 
and can be effectively used to evaluate each power transformer in 
the system, as well as to plan the maintenance or replacement of 
aged units. Risk matrix is divided into 3 parts, where green 
indicates a low-risk with no concern, blue indicates a moderate risk 
region or a transformer in a normal operation and technical 
condition, whereas the red region indicates a need for immediate 
action. The greatest attention will be paid to 4 cases depicted in 
Figure 1, that fall in the high-risk region. 

In Figure 1, the ordinate axis of the risk matrix, shows 
operation characteristics and it is based on such important 
parameters as transformer age, load, maintenance history, the 
existence of monitoring system, importance in the system (as 
additional option). Three indicators are used to determine the 
technical condition index. Together with scoring and weighting 
factors it is depicted as a value on abscise axis of the risk matrix. 
Parameters used to determine the technical condition index are 
given in Table 1 and they correspond to diagnostic tests regularly 
performed on power transformers in Latvian transmission system. 

The algorithm of the indicator based on dissolved gas analysis 
(DGA) is provided in [6]. It is based on assessment of 7 key gases 
shown in Table 1 and includes analysis of features specific to the 
power system in Latvia where power transformers are aged and 
variations in oil volumes are significant. Transformer loading, 
operation of the on-load tap changer (OLTC), and oil treatment are 
also taken into account in order to quantify this indicator. 

 

Figure 1. Proposed configuration of risk matrix 

The indicator based on electrical measurements for technical 
condition indexing of a power transformer is developed by 
evaluating separately 3 main parts of a power transformer: 
windings, bushings and OLTC. A failure of any of these parts may 
be critical for a power transformer, the surrounding equipment,  
environment and even service personnel. The indicator based on 
analysis of oil parameters such as flash point, dissipation factor, 
acidity and moisture content is developed as a combined approach 
of binary and fuzzy logic which allows evaluating the risk on basis 
of several oil parameters as a single entity. 

Both indicators are described in detail in the following chapters of 
this article. 

Table 1. Indicators for technical condition indexing 

Electrical measurements 

Windings 

and core 
Bushings OLTC 

Power factor, PF Power factor, PF 
Static resistance, 

SR 

Insulation resistance, 

Rm 

Insulation resistance,  

Rm Transition time & 

current ripple from 

dynamic resistance 

measurement 

(DRM) 

Short-circuit 

impedance, Zk Capacitance, C1 

No-load losses, P0 

Transformer oil 

Oil analysis DGA 

Dissipation factor H2, CH2 

Flash point C2H4 C2H6 

Moisture content C2H2 

Acidity CO, CO2 

 

3. Development of Electrical Measurement Indicator 

3.1. Winding and core 

Power factor, insulation resistance and short-circuit impedance 
allow verifying the technical condition of transformer windings, 
whereas variations in no-load losses reflect the condition of a 
transformer core. 

 A flowchart of a multi-step algorithm is shown in Figure 2. 
where scoring system for windings and core as a part of the EM 
indicator is derived on a scale from T=1 (lowest risk) to T=5 
(highest risk, outage expected).  

The first step is input of measured parameter values from  test 
reports: insulation resistance (Rm), power factor (PF), short-circuit 
impedance (Zk), no-load losses (P0), and winding temperature 
readings from a thermometer on a transformer.  

Next step is data processing. As a reference point, it requires 
data from the factory test report for a particular power transformer, 
as well as background information such as age, rated voltage, etc. 
This information is stored in a specific technical file that is 
prepared for each transformer in the system. This file is also used 
for other condition indexing indicators. Since the technical file 
contains limits for the evaluation of parameters shown in Table 2, 
modifications are restricted. 

http://www.astesj.com/
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During data processing the input data are modified into a 
suitable form for further analysis. PF values from the test report 
are calculated at base temperature of 20 ̊C. Thus the limits 
proposed in Table 2 and stored in the technical file can be applied 
for risk evaluation (E1 indicates low risk, and E5 – high risk). PF 
limits are based on recommendations provided in the standard 
IEEE C57.152-2013. On basis of maintenance experience, 
additionally value for level E5 were specified. PF=1.5% at 20 ̊C is 
an effective parameter for detecting high risk since moisture and 
contamination of windings in this case in practice proved to be too 
high for reliable operation. Another parameter used for high risk 
detection is the Dt coefficient. It is a ratio between the measured 
resistance and rated voltage of high voltage winding (Rm/Un). 

Coefficient Dt=1M/kV at base temperature of 20 ̊C is set as the 
minimum insulation resistance limit [7]. For further analysis, 
values from the factory test report Rfact adjusted to base 
temperature are used as reference to evaluate if the decrease of 
measured Rm is acceptable. 

Limits for evaluation of short-circuit impedance Zk are based 
on [8] and given in Table 2. Two values of Zk between phases 
should be within E4 of each other. Lager deviation can indicate on 
mechanical deformation of windings. A single-phase connection 
no-load losses P0 measurement is a test that has been historically 
used for evaluating the magnetic system of power transformers in 
Latvia. A specific feature is that different test voltage is used 
(either 220V or 380V). It causes difficulties if evaluation is based 
on traditional comparative analysis to a factory test. In order to   
use results of a single measurement in this algorithm, limits based 
on statistical data and recommendations of [9] and performed 
study of measurement history of no-load losses from 100 
transformers [1]. 

3.2. Bushings 

Electrical measurement results can provide information about 
degradation of bushing insulation and help to avoid potential 
failures, such as bushing explosion and transformer winding 
deformation. Flowchart for bushing assessment is given in Figure 
3, and evaluation process is similar to the windings assessment 
described before. Although a 3-level scoring system is proposed as 
more suitable for bushings as more polarizing. It starts with 
evaluation of results of PF measurements for bushings by applying 
respective limits from Table 2. for data from test reports are used 
for input. The input is followed by the next step – data processing 
where all data are modified in a suitable form just like in the 
algorithm for windings and the core part. 

Table 2. Limits of parameters included in EM indicator 

Parameter 
Level 

E1 E3 E4 E5 

Windings and core 

PF, %, at 20 ̊C <0.5 0.5 1 ≥1.5 

P0 phase-phase, %  

P0 A-B>40                     

P0 A-B<20 

P0 A-C>4 

  

Zk phase-phase , %   ≥3  

Bushings 

PF, %, at 20 ̊C <0.5   ≥1 

On Load Tap Changer 

SRph-ph, % <2  
>2         

(at least in 3 taps) 
≥5 

Transition time, tt, ms <100   ≥200 

IN1,2, %   60  

 

If the measured PF value is above the limit E5 as it shown in 
Table 2 or the rated capacitance C1 of a bushing differs from 
factory measurement by more than 10 %, to reduce the risk of 
failure, it is advisable to remove the bushing from service [10].  

(Rm <0.7*Rfact 

or 
PF>E3)

or
P0 ph-ph>E3

Data processing
Windings and core

Dt<1 
or

 PF≥E5

Rm <0.5*Rfact 

or 
PF>E4

or
Zk ph-ph>E4

T=5

T=4

0.85*Rfact≤ Rm<2*Rfact

and
PF<E3

Yes

T=3

Rm ≥ 2*Rfact

and
Age ≥  20 years

T=2 T=3

T=1

Input

Yes

Yes

Yes

Yes

No

No

No

No

No

 

Figure 2. The algorithm of EM indicator for windings and core 

Data processing
Bushings

Dc<1 
or

1.3*C1fact>C1m>0.7*C1fact

or
PFC1>E5

B=5

Rm <0.5*Rfact 

or
(C1m<0.9*C1fact

and
PFC1>E1) 

B=3

PFC1<E1
and

  1.1*C1fact >C1m>0.9*C1fact

B=1

No

Input

NoYes

Yes

Yes

 

Figure 3. The algorithm of EM indicator for bushing 

3.3. OLTC 

The static resistance measurement (SRM) is an important tool 
in this industry and it is used to check for loose connections, 
broken strands, as well as high contact resistance in tap changer. 
For decades, SRM is performed for each tap in the tap changer for 
all power transformers in Latvia and the experience is significant. 
Therefore SRM is included in the OLTC algorithm as the 
exclusion rule which can only indicate if the risk is low or high. 
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For input in Figure 4, SRMs of all phases and all taps are assessed 
without the factory test report results; therefore the technical file is 
not needed.   

In accordance with [11], the agreement with limit E5 indicates 
on high risk and it is an important signal to consider the need to 
repair tap changer immediately. If the SRM difference between 
phases is within the limit E1, it indicates on low risk. If resistance 
in 3 taps exceeds the limit E1, it should be investigated and TC=4 
is assigned. 

Dynamic resistance measurement (DRM) allows detecting 
defects caused by contact coking, contact wear, oil-film layer 
deposition, deviating transition times, contact timing problems, 
maintenance errors and damaged transition resistors. Therefore as 
additional criterion for the OLTC assessment – the dynamic 
resistance measurement (DRM) is proposed [1] evaluating two 
parameters form test report: transition time, ms, and current ripple 
change IN1,2, %. The proposed limit values E1 and E5 shown in 
Table 2 are assigned on basis of [12] research and were verified by 
authors with analysis of 76 test reports of DRM. 

Data processing
OLTC

 SRph-ph ≥E5
or

(DRM)  tt≥E5

TC=5

(>3 taps) SRph-ph ≥E1
or

(DRM) IrA >E4

TC=4

SRph-ph <E1
and

(DRM)  tt<E1

TC=1

No

Input

NoYes

Yes

Yes

 

Figure 4. The algorithm of EM indicator for OLTC 

4. Development of Oil Indicator 

4.1. General description of oil indicator algorithm 

Generally mineral transformer oil is used in power 
transformers in power system of Latvia. Regularly measured oil 
parameter are dielectric strength, moisture content, acidity, 
dielectric dissipation factor, interfacial tension, viscosity, flash 
point, and sludge content. Method for assessment of the 
measurement results described in the national standard involves 
comparison of data obtained in laboratory with the given 
assessments limits, and conclusions are obtained for each oil 
parameter separately rather than as a single entity. The standard 
does not provide guidance on how to obtain one conclusion based 
on multiple contradicting input parameters. 

Fuzzy logic is widely applied for dissolved gas analysis (DGA) 
of power transformers [13, 14] since DGA contains relatively 
many input parameters. If binary logic is used a contradiction can 
occur, where some of the input parameters correspond with a good 
condition but others with a bad condition. Fuzzy logic can provide 
more detailed assessment of technical condition. For example, 
fuzzy logic based algorithm with acidity and interfacial tension of 
oil as input parameters is used to estimate remnant life of a power 
transformer [15]. Similar approach of data processing is described 
in [16] in which remaining service life of transformer in years is 
predicted based values of viscosity, resistivity, particle count, 

acidity and moisture content of oil. Another research [17] shows 
the possibility to combine measured values of moisture and acidity 
of oil, and the power factor of the winding to determine the type of 
transformer defect based on the physical and chemical condition 
of insulation in cases with contradicting input data values. 

Therefore within the framework of this research fuzzy logic as 
data processing method is used to develop a technical condition 
indicator for a power transformer based on measurement results of 
oil parameters. Four independent oil parameters (flash point, 
dissipation factor, acidity and moisture content) and additional 
parameter (changes in flash point value in two subsequent 
measurements) are used as input data as shown in Figure 5. Limits 
shown in Table 3 are based on typical values observed for 
transformers installed in transmission network in Latvia. As a 
result, algorithm calculates the value of transformer oil indicator 
within limits from K=1 – (low risk) to K=5 (high risk, immediate 
actions required). 

Flash point (FP) is the lowest temperature at which oil in 
certain conditions releases such amount of vapour that, together 
with air, creates a flammable mixture leading to fire hazard. 
Therefore, this parameter is proposed for indicating high risk. 
Based on practical experience in decision-making for transformer 
repairs dissipation factor (tanδ) is proposed as another parameter 
indicating high risk since it is sensitive to oil aging, moisture, as 
well as changes in contamination levels.  

Table 3. Proposed Limits for Oil Parameters 

Flash point, oC Upper 

limit 

Acidity, 

mgKOH/g 

Moisture 

content, 

ppm 
Tan, % 

125 or Δ5 in 2 

subseqent 

measurements 

Level 1 <0.05 <5 <1 

Level 2 ≤0.075 ≤10 ≤2.5 

Level 3 >0.1 >15 >4 

 

 

Figure 5. Overall flowchart of oil indicator algorithm 
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Dissipation factor tanδ along with acidity and moisture content 
are proposed as criteria for medium risk evaluation. In order to 
reach a unified conclusion regarding the correlation between these 
independent oil parameters, the use of fuzzy logic is suggested. 

The operation of the algorithm begins with  reading the input 
parameters, namely results from the most recent oil measurement 
which then are stored in technical file that is prepared for each 
transformer in the system for possible repetitive usage. If any of 
the necessary oil parameters have not been measured in this 
particular testing, the algorithm assumes the value of that 
parameter as in Level 2 (see in Table 3).  

If the value of the parameter is repeatedly unknown, the 
approximation is performed in a logarithmic scale as shown in 
Figure 6 where approximated value aims for the Level 3, yet 
cannot reach it, since the difference from the maximum boundary 
is halved per iteration. 

 

Figure 6. Assumed values for unknown parameter value 

Next step of the proposed algorithm is the evaluation of 
exclusion cases indicating high risk (either flash point or changes 
in value of flashpoint or dissipation factor exceeds the limits of 
Level 3) or low risk (values of dissipation factor and moisture and 
acidity are all below limits of Level 1). Fuzzy logic calculation 
block activates if neither of the exception cases checks included in 
the algorithm is positive.  

4.2. Fuzzification 

Developed shape and slope for membership functions used 
within fuzzy logic calculation block of proposed algorithm is 
shown in Figure 7 originally, the selection of membership function 
shape and slope was carried out for each of the three oil 

parameters. Illustration of membership function for tan is shown 
in Figure 8. The triangle and trapeze forms were tested for M 
(medium risk) membership function, whereas slope was altered for 
L (low risk) and H (high risk) membership functions. All variations 
were tested by using the results of oil tests for 10 transformers with 
given maintenance history and different technical condition.  

 

Results show that output values are not affected by the shape 
of M membership function, however, in some cases  value changes 
were observed by alteration of the slope of L and H membership 
functions. After evaluation it was concluded that the combination 
of increased H membership function effect has the best correlation 
with technical condition based on maintenance history.  

 

Figure 7. Membership functions of oil indicator 

For obtaining corresponding output values, a rulebox is created 
as shown in Table 4. It contains all possible combinations. 
Altogether, there are 27 combinations, since for each of the 3 input 
parameters used in the fuzzy logic block 3 membership functions 
are assigned. The specific weight value is the minimum of all three 
membership values for a given combination. The specific weights 
are summed together for each result value and thus a fuzzified 
output is obtained. Afterwards, the gravitation centre of this output 
function is calculated. The obtained result is more precise, as more 
points are used for the calculation.  

4.3. Fuzzy inference and defuzzification 

An example is illustrated in Figure 7 with following values of 
oil parameters as input data from regular oil sample test of a 
particular 110 kV transformer: flash point, 139oC;  changes in flash 
point value between two subsequent measurements, 2oC; 
dissipation factor tanδ, 2.17%; acidity, 0.12mgKOH/g; moisture 
content, 10 ppm. Since exception cases included in the algorithm 
are negative in this case fuzzy logic calculation block activates. 

 

Table 4. Rulebox for fuzzy logic calculation block 

# 
Input Variables 

Corresponding 

output 
# 

Input Variables 
Corresponding 

output 
# 

Input Variables 
Corresponding 

output 
tan

δ 
AC MC tanδ AC MC tanδ AC MC 

1 L L L 2 10 H M L 3 19 L M H 3 

2 M L L 2 11 H L M 3 20 M M H 3 

3 L M L 2 12 H M M 3 21 H H L 4 

4 L L M 2 13 L H L 3 22 H H M 4 

5 M M L 2 14 M H L 3 23 H L H 4 

6 M L M 2 15 L H M 3 24 H M H 4 

7 L M M 2 16 M H M 3 25 L H H 4 

8 M M M 2 17 L L H 3 26 M H H 4 

9 H L L 3 18 M L H 3 27 H H H 4 
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 The membership of dissipation factor is 0.78, 1 for acidity and 
0.5 for moisture content. The specific weight is calculated as 0.5. 
This process is repeated for each matching combination. The 
gravitation centre of this output function is calculated, as well as 
the position of gravity centre on x axis is estimated as shown in 
Figure 9. The third of the position of gravity centre is the result and 
final output, in this case K=4 for oil indicator is obtained, which 
indicates a  rather high operation risk. 

a)    

b)  

Figure 8. Selection of the shape and slope for membership functions for tan: 
a) shape for M membership function;  b) slope for L and H membership function 

 

 

 

 

 

Figure 9. Estimation of output value 

5. Verification of EM and Oil Indicator 

Results of measurements within a time period of 8 years for 30 
power transformers are used to verify both indicators and see how 
they complement each other. It has to be noted that the power 
transformer park in Latvia is aged and power transformers installed 
between 1967 and 2000 were used for verification with different 
technical condition, repairing plans and failure rate.  Figure 10 
shows numerical values of EM and oil indicator obtained for the 
latest available measurement set of each transformer. Since 
polarized score is used omitting the values 2 and 4 for bushings 
and 2 and 3 for OLTC the combined score 3&4 is allocated in a 
separate column. Mainly a numerical value of 1 was assigned to 
parameters OLTC and bushings which reflects timely scheduled 
repairs. In those two cases where score value of 5 is assigned for 
bushings immediate decisions to replace them have been made by 
system operator. Similarly OLTC is repaired immediately if there1 
is a variation from normal operation or a problem is detected.  

 

Figure 10. Numerical values of indicator parameters of 30 power transformers 

Values 2 and 3 are obtained most frequently for oil analysis 
most showed result 2 and 3, which indicates either normal 
operation or marks out necessity for small maintenance works such 
as the change of silicagel in a thermosyphon.  In two cases when 
score of 4 for winding and core is assigned result dramatic decrease 
of winding isolation resistance and increase of power factor 
therefore obtained results concise well with operation history. 

For further analysis 4 cases from 30 were selected to illustrate 
how indicators together reveal the technical condition of a power 
transformer. Cases 1 to 3, plotted in Figure 11,  depicts the latest 
measurements available for three different transformers. Case 2 
reflects a transformer in an almost perfect technical condition. But 
in case 1, problems with OLTC can be noticed and analysis of 
measurement history revealed increased static resistance in 3 taps. 
Case 3 reveals bushing defect, caused by decreased insulation 
resistance in scheme C2 and increased power factor in scheme C1.  

 

Figure 11. Case studies results 

Since electrical measurements are performed on average once 
in four years EM indicator is more static.  Case 4, plotted in    
Figure 12, illustrates the role of the oil indicator as the first 
implication of a possible fault in a transformer since its results are 
more dynamic. It can be observed that technical condition of this 
particular transformer has decreased due to increase in moisture 
level over the years.  

 

Figure 12. Oil analysis results 
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6. Conclusions 

Literature review leads to a conclusion that methods for risk 
assessment of power transformers are mainly based on the results 
of performed diagnostic measurements and operation history. 
Since maintenance strategy may vary over the time and may 
depend on decisions by a particular transmission system operator 
the development of a modified risk matrix is a common global 
practice. 

Configuration of risk matrix for power transformers in Latvian 
transmission network proposed within the framework of this 
research is composed of three regions indicating low risk, 
moderate risk and high risk the last one requiring immediate 
action. The place of a transformer within the risk matrix depends 
on its technical condition index (x-axis) and such parameters of 
operational history as transformer age, load, maintenance history, 
importance in the system (y-axis). Technical condition index is 
established by calculating the numerical values of the three 
indicators and applying a scoring and weighting factor.  

To determine numerical values of the indicator based on oil 
analysis combined approach of binary and fuzzy logic proved to 
be successful since it allows evaluating risk based on several oil 
parameters as a single entity. Results from a verification confirm 
that higher output values are shown by transformers that have 
already attracted attention in practice. As oil analysis is done quite 
often, changes in values of this indicator are  first indication of a 
possible defect in a transformer and they substantiate the necessity 
for further testing. However, an indicator based on results of 
electrical measurements more effectively serves to detect faulty 
constructive parts more effectively and can be used as a basis for 
decisions on replacement of a bushing or repairs of an OLTC. 

Acknowledgment 
This paper has been partly supported by the State Research 

Program „LATENERGI”. 

Conflict of Interest  

The authors declare no conflict of interest. 

References 

[1] G. Poiss, S. Vitolina, “Development and Implementation of Risk Indicator 
for Power Transformers Based on Electrical Measurements”, 18th 
International Scientific Conference on Electric Power Engineering (EPE), 
Czech Republic, Kouty nad Desnou, 17-19 May, 2017, pp.425-428.  

[2] J. Haema, R. Phadungthin, “Development of Condition Evaluation for Power 
Transformer Maintenance”, 4th International Conference on Power 
Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13-17 May 
2013. 

[3] Hamed Zeinoddini-Meymand, Behrooz Vahidi, “Health index calculation 
for power transformers using technical and economical parameters “, IET 
Science, Measurement & Technology, Volume: 10, Issue: 7, 10 2016. 

[4] Dun Lin,  Yao-Yu Xu,   Yu Liang, Yuan Li,  Ning Liu,  Guan-Jun Zhang, 
“A Risk Assessment Method of Transformer Considering the Economy and 
Reliability of Power Network”, 1st International Conference on Electrical 
Materials and Power Equipment (ICEMPE), Xi’an, China, 2017. 

[5] Juan. P. Lata , Diego. P. Chacón-Troya , R. D. Medina, “Improved tool for 
power transformer health index analysis”, IEEE XXIV International 
Conference on Electronics, Electrical Engineering and Computing 
(INTERCON), 2017. 

[6] G.Poiss, "Development of DGA Indicator for Estimating Risk Level of 
Power Transformers," 17th International Scientific Conference on Electric 
Power Engineering (EPE 2016), Prague, 16-18 May, 2016.  

[7] A Stitch in Time: The Complete Guide to Electrical Insulation Testing, 
Dallas: Megger, 2006. 

[8] Scope and norms of testing electric equipment (in Russian), RAO "UES of 
Russia", RD 34.45-51.300-97, 1997. 

[9] Kaganovich E. A., Reichman I. M., Power transformer tests up to 6300 kVA 
and voltages up to 35 kV, (in Russian), Energia, 1980. 

[10] Electric Power Transformer Engineering, Third Edition, James H. Harlow 
CRC Press,  May 16, 2012 by CRC Press 693 pages. 

[11] "IEEE Guide for Diagnostic Field Testing of Fluid-Filled Power 
Transformers Regulators and Reactors," IEEE Std. C57.104, 2013.  

[12] J. J. Erbrink, E. Gulski, J. J. Smit, R. Leich, B. Quak, and R. A. Malewski, 
"On-load tap changer diagnosis-an off-line method for detecting degradation 
and defects: Part 2," IEEE Electr. Insul. Mag., vol. 27, no. 6, pp. 27-36, 2011. 

[13] A. Abu-Siada, S. Hmood, and S. Islam, „A New Fuzzy Logic Approach for 
Consistent Interpretation of Dissolved Gas-in-Oil Analysis,” IEEE 
Transactions on Dielectrics and Electrical Insulation, vol. 20, pp. 2343 - 
2349, 2013. 

[14] B. Nemeth, S. Laboncz, and I. Kiss, „Condition Monitoring of Power 
Transformers using DGA and Fuzzy Logic” on Proc. 2009 IEEE Electrical 
Insulation Conference, Montreal, Canada, May 31-June 3, 2009, pp. 373-376 

[15] S Forouhari, and A Abu-Siada, „Remnant Life Estimation of Power 
Transformer Based on IFT and Acidity Number of Transformer Oil” on Proc 
IEEE 11th International Conference on the Properties and Applications of 
Dielectric Materials (ICPADM), Sydney, Australia, July 19-22, 2015, pp. 
552-555. 

[16] A. K. Kori, A. K. „Sharma, and A. K. Singh Bhadoriya, Intelligent 
Diagnostic Method for Ageing Analysis of Transformer,” Energy and Power 
Engineering, Vol. 4 No. 2, 2012, pp. 53-58 

[17] W. C. Flores, E. E. Mombello, J. A. Jardini, G. Ratta, and A. M. Corvo, 
„Expert system for the assessment of power transformer insulation condition 
based on type-2 fuzzy logic systems,” Expert Systems with Applications, 
vol. 38, pp. 8119-8127, 2011. 

 

 

http://www.astesj.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Behrooz%20Vahidi.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4105888
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4105888
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7577936
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Dun%20Lin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yao-Yu%20Xu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yu%20Liang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yuan%20Li.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ning%20Liu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Guan-Jun%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20D.%20Medina.QT.&newsearch=true

