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Abstract – In the paper, 2D-neo-fuzzy neuron (NFN) is 
presented. It is a generalization of the traditional NFN for data in 
matrix form. 2D-NFN is based on the matrix adaptive bilinear 
model with an additional fuzzification layer. It reduces the number 
of adjustable synaptic weights in comparison with traditional 
systems. For its learning, optimized adaptive procedures with 
filtering and tracking properties are proposed. 2D-NFN can be 
effectively used for image processing, data reduction, and 
restoration of non-stationary signals presented as 2D-sequences. 
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I. INTRODUCTION 
Artificial neural networks (ANNs) and fuzzy inference 

systems (FISs) are now widely used for solving a large class of 
data mining tasks, including such modern directions as data 
stream mining, dynamic data mining, web mining, text mining 
etc. At the edge of these two approaches, hybrid systems of 
computational intelligence (HSCI) have emerged, combining 
the universal approximation properties of ANNs and their 
ability to learn, and the possibility of linguistic interpretation of 
the results provided by FIS. Although HSCI have a number of 
advantages over ANNs and FISs, their main disadvantage is 
rather low learning speed provided by gradient algorithms, with 
the learning rate parameter that is usually chosen from 
empirical considerations. The use of optimal procedures of the 
second order (Gaussian-Newtonian optimization methods) is 
limited by their computational complexity and the “curse of 
dimensionality”, arising with the growth of the input space 
dimension. 

These shortcomings can be avoided using an HSCI, known 
as neo-fuzzy neuron (NFN) [1]–[4], which is close to the zero-
order Takagi–Sugeno–Kang system, but much simpler in 
computational implementation and allowing one to use high-
speed optimization procedures for its training. 

The architecture of the conventional NFN with n  inputs and 
one output is shown in Fig. 1. 

When a vector signal 

 ( ) ( ) ( ) ( ) ( )( )T
1 2, ,..., ,..., n

i nx k x k x k x k x k R= ∈
 

is fed to the input of the NFN (here, 1, 2,...k =  is the index of 
the current discrete time), its components ( )ix k  are first 
fuzzified in the layer of membership functions which contains 
hn  kernel functions liµ , 1, 2,...,l h= ; 1, 2,..., .i n=  Then the 
fuzzified values ( )( )li ix kµ  are fed into the layer of tunable 
synaptic weights liw that are adjusted during the process of 

learning to provide the extremum of the adopted learning 
criterion. 

Thus, the output signal of the NFN at the kth time instant can 
be written in the form 

 ( ) ( )( ) ( ) ( )( )
1 1 1

ˆ 1 ,
n n h

i i li li i
i i l

y k f x k w k x kµ
= = =

= = −∑ ∑∑  (1) 

where ( )1liw k −  is the value of the corresponding synaptic 
weight obtained after previous ( )1k −  observations. 

Since the standard NFN uses triangular membership 
functions that meet the conditions of a unity partition, only two 
neighbouring ones are fired at each instant of the current time 
k  at each input. This means that at the same time only 2n  
synaptic weights are tuned. It simplifies and speeds up the 
learning process. 

Further modifications of NFN were aimed at improving its 
approximating properties. For example, the extended NFN was 
proposed in [2], and in [5], [6] the same authors proposed the 
usage of wavelets instead of triangular membership functions, 
that led to the emergence of a wavelet neuron. 

Fig. 1. Neo-fuzzy neuron. 
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Since NFN is a system with one output, which limits its 
capabilities, in [7]–[9] a generalized NFN was proposed to the 
case of multiple outputs, which allowed restoring of nonlinear 
mappings .n mR R→  

Further development was evolving NFN [10], [11], where 
not only synaptic weights were tuned in the training process, 
but also the number and the form of membership functions. All 
the described modifications allowed extending the functionality 
of the original NFN. 

Flexible neo-fuzzy neuron, double neo-fuzzy neuron, double 
wavelet neuron, spline-based neo-fuzzy neuron, neuro-fuzzy 
unit, optimized learning algorithms and HSCI architectures 
were proposed in [12]–[32], containing these modifications as 
nodes to solve problems of identification, approximation, 
filtration, prediction, signal restoration, adaptive and robust 
control, classification and image recognition, data reduction 
and compression, characterised by high speed and quality of the 
resulting solution. 

In [33], examples of solutions based on NFN for industrial 
tasks are described. 

All the above-mentioned modifications of NFN imply that 
the input signal ( )x k  is a ( )1n× –vector, which in general is 
traditional in most data mining tasks. At the same time, there is 
a fairly wide class of problems related to the processing of fields 
of observations, first of all images, where the input information 
enters the processing in the form of matrices 
  ( ) ( ){ }1 2

,n m
i ix k x k R ×= ∈  1 1, 2,..., ;i n=  2 1, 2,..., .i m=  

In principle, the matrix ( )x k  can be vectorized to the form 
of ( ) ,nmx k R∈


but the number of tunable synaptic weights 

takes on a value of hnm  that somehow leads to the appearance 
of the “curse of dimensionality” effect. 

In this connection, it seems expedient to develop a 2D-NFN 
and an algorithm for its online learning for problems where 
information for processing comes not in the form of traditional 
vectors but in the form of ( )n m× –matrices. 

II. 2D-NEO-FUZZY NEURON BASED ON THE ADAPTIVE 
BILINEAR MODEL 

Let us introduce a ( )1hn× –vector of membership functions 

 
( )( ) ( )( ) ( )( ) ( )( )(

( )( ) ( )( ))
11 1 21 1 1 1

T

, ,..., ,...,

,...,

h

li i hn n

x k x k x k x k

x k x k

µ µ µ µ

µ µ

=
 

and a corresponding vector of adjustable synaptic weights 

( ) ( ) ( ) ( ) ( )( )T
11 211 1 , 1 ,..., 1 ,..., 1li hnw k w k w k w k w k− = − − − − . 

Now we can rewrite (1) in the form 

 ( ) ( ) ( )( )Tˆ 1y k w k x kµ= −  

that corresponds to the adaptive linear model, which is used in 
the tasks of control object identification. 

 
 

Fig. 2. 2D-neo-fuzzy neuron. 

In the case of matrix input signal ( )x k , similarly an adaptive 
bilinear model can be introduced [34], [35] 

 ( ) ( ) ( ) ( )ˆ 1 1L Ry k w k x k w k= − −  (2) 

where ( )1 ,Lw k −  ( )1Rw k −  are ( )1 ,n×  ( )1m× –vectors of 
adjustable synaptic weights that are obtained using previous 
( )1k −  observations. 

Bilinear model (2) can be used as the basis for 2D-NFN. The 
architecture of the 2D-NFN is shown in Fig. 2. 

When a matrix signal ( ) ( ){ }1 2i ix k x k=  is fed to the 2D-NFN 
input, its components ( )

1 2i ix k  are first fuzzified in the layer of 
membership functions with hnm  functions ( )

1 2
,li i kµ  

1, 2,..., ;l h=  1 1, 2,..., ;i n=  2 1, 2,...,i m=  (with h  functions per 
component ( )

1 2i ix k ), resulting in a matrix signal ( )( )x kµ  of 
dimension ( )hn m× . Then this signal is fed to the layer of left-
sided tunable synaptic weights ( )1 ,Lw k −  presented as a 
( )1 hn× –vector. At the output of this layer a ( )1 m× –vector 
appears, that is fed to the layer of right-sided synaptic weights 

( )1Rw k −  in the form of a ( )1m× –vector. As a result, a scalar 
signal ( )ŷ k  appears at the output of 2D-NFN described by the 
expression 

 ( ) ( ) ( ) ( )ˆ 1 1L Ry k w k x k w k= − − .  

In principle, it would be possible to vectorize the matrix 
signal ( )x k  and process it using the conventional NFN. 
However, in this case the number of adjustable synaptic weights 
would be determined by the value .hnm  2D-NFN contains only 
hn m+  such weights, which are much smaller, i.e., 

 hn m hnm+ < . 

III. 2D-NEO-FUZZY NEURON LEARNING 
Let us introduce three types of errors (one a priori and two a 

posteriori) that arise in the learning process 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )

ˆ1 1 ,

1 ,
L R

L L R

R L R

e k y k w k x k w k y k y k

e k y k w k x k w k

e k y k w k x k w k

µ

µ

µ

 = − − − = −
 = − −
 = −

 

(here ( )y k  is the external reference signal) and two criteria 
that characterize its quality: 
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( ) ( )

( ) ( )

2

2

,

.

L

R L

E k e k

E k e k

 =


=
 (3) 

The minimization of the first criterion of (3) by the weight 
vector Lw  using the gradient procedure leads to the algorithm 

 

( ) ( ) ( ) ( ) ( )(
( )( ) ( )) ( )( ) ( )( )
( ) ( ) ( ) ( )(
( )( )) ( )( )

T

T

1 1

1 1

1 1

,

L L L L

R L

L L L

L L

w k w k k y k w k

x k w k x k w k

w k k y k w k

x k x k

η

µ µ

η

µ µ

= − + − − ×

× − − =

= − + − − ×

×

 (4) 

and the second criterion of (3) by Rw  –  

 

( ) ( ) ( ) ( ) ( ) ( )( )(
( )( )) ( ) ( )( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( )

T

T

1

1 1

1 ,

R R R L

R L R

R R R R

w k w k k y k w k x k

w k w k x k w k

k y k x k w k x k

η µ

µ

η µ µ

= − + − ×

× − = − +

+ − −

 (5) 

where ( ) ,L kη  ( )R kη  are learning rate parameters. 
The optimization of the learning rates [12]–[14] leads to the 

learning algorithm of the 2D-NFN in the form 

( ) ( ) ( )
( ) ( ) ( )( )( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )
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1

L L L

L L L

L L L

R R R

R R R

R R R

w k w k r k

y k w k x k x k

r k r k x k

w k w k r k

y k x k w k x k

r k r k x k

µ µ

α µ

µ µ

α µ

−

−

 = − + ×


× − −

 = − +


= − + ×


× − −

 = − +

 (6) 

(here 0 1α≤ ≤  is a smoothing parameter) that have both 
tracking and filtering properties. 

It is obvious that with 0α =  it is the Kaczmarz-Widrow-
Hoff algorithm that is optimal by speed in the class of gradient 
procedures. In this case it takes the form 

( ) ( ) ( ) ( ) ( )( )
( )( )

( )( )

( ) ( ) ( ) ( )( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
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1
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1
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L L L

L

L L L L
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R R R R

y k w k x k
w k w k x k
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w k y k w k x k x k

y k x k w k
w k w k x k
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w k y k x k w k x k

µ
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µ
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 − −
= − + =



 = − + − −


− − = − + =



= − + − −

 (7) 

It is possible to increase the speed of the learning process and 
improve its smoothing properties by moving from one-step 
learning criteria (3) to their multi-step variants and using the 
exponentially weighted recurrent least squares method 

(EWRLSM), which, however, can be numerically unstable at 
high dimensions of input signals and small values of the 
smoothing parameter α . 

In this situation, it is advisable to use the optimal gradient 
recurrent exponentially weighted algorithm (OGREWA) [36], 
which is a gradient modification of EWRLSM. 

For the problem under consideration, taking into account 
relations (5) and (6), the OGREWA can be written as follows: 

 

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )
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T
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1
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1
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1 ,

1

L L L
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L L L

L L L
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α
α µ

α µ µ

 − −
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 − −

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 (8) 

and 
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α
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α µ µ

 − −
= − +

 − −


= − +
 = − +
 = − +

 (9) 

Algorithms (8), (9) combine the high speed of convergence, 
tracking and filtering properties, and are stable (unlike 
EWRLSM) for any value of the smoothing parameter α . 

IV. RESULTS OF SIMULATION 
The efficiency of the proposed 2D-neo-fuzzy system was 

demonstrated on the binary classification task. The experiment 
was carried out on the hand-written digit dataset from the UCI 
repository [37]. Two classes (digits 0 and 1) were used from 
this dataset. Some examples of the images from this dataset are 
presented in Fig. 3. 

 

Fig. 3. Examples from the digit dataset. 

Each observation from this dataset is presented as an 8x8 
matrix of digits that represents pixel values. These values were 
preprocessed before training using normalization. 

The results of the experiment and system parameters are 
presented in Table I. 
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TABLE I 
RESULTS OF THE EXPERIMENT 

Number of membership functions 5 

Number of adjusted parameters 48 

Accuracy on training set, % 97.91 

Accuracy on test set, % 97.22 

V. CONCLUSION 
The article proposes a 2D (matrix)-neo-fuzzy neuron, 

designed to solve a wide range of data stream mining tasks. The 
2D-NFN, being a hybrid system of computational intelligence, 
is intended for processing signals in the matrix form, for 
example, images. It is characterized by good approximating 
properties, high speed of learning processes; it possesses both 
tracking and filtering properties. 2D-NFN is simple in the 
computational implementation and allows processing 
information coming into it in online mode.  
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