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Abstract – A complex classification task as scene recognition is 
considered in the present research. Scene recognition tasks are 
successfully solved by the paradigm of transfer learning from 
pretrained convolutional neural networks, but a problem is that 
the eventual size of the network is huge despite a common scene 
recognition task has up to a few tens of scene categories. Thus, the 
goal is to ascertain possibility of a size reduction. The modelling 
recognition task is a small dataset of 4485 grayscale images broken 
into 15 image categories. The pretrained network is AlexNet 
dealing with much simpler image categories whose number is 
1000, though. This network has two fully connected layers, which 
can be potentially reduced or deleted. A regular transfer learning 
network occupies about 202.6 MB performing at up to 92 % 
accuracy rate for the scene recognition. It is revealed that deleting 
the layers is not reasonable. The network size is reduced by setting 
a fewer number of filters in the 17th and 20th layers of the AlexNet-
based networks using a dichotomy principle or similar. The best 
truncated network with 384 and 192 filters in those layers 
performs at 93.3 % accuracy rate, and its size is 21.63 MB. 

 
Keywords – AlexNet, convolutional neural network, pretrained 

network, scene recognition, size reduction, transfer learning, 
truncated network. 

I. INTRODUCTION 
Transfer learning has been widely used in deep learning 

applications since 2017 [1], [2]. A pretrained network is taken 
and used as a start-off point to learn a new task. If the new task 
is not very vast, fine-tuning a network with transfer learning is 
expected to be relatively faster and easier than training a 
network with randomly initialized weights from scratch [3], [4]. 
Learned features are transferred to a new task using a smaller 
number of training images [2], [5], [6]. 

In fact, pretrained networks exploited for transfer learning 
are complicated and consume many resources. New networks 
after transfer learning should be simpler and occupy less 
memory. However, this requires additional knowledge of how 
to reduce the network size without losing information. 

Transfer learning is nonetheless purposed for solving tasks 
that have lots of features [3], [5], [6]. The tasks are not really 
simple themselves. One of such tasks is scene recognition [7], 
[8]. Scene recognition is a way harder classification task than 
tasks of object recognition [9], [10]. The matter is that human 
performance in classifying objects (like faces, cars, animals, 
devices, gestures, road signs, etc.) is naturally higher than in 
classifying indoor and outdoor places and views [8], [11], [12]. 
                                                           
* Corresponding author’s e-mail: romanukevadimv@gmail.com 

Pictures of scenes are more informative, wherein the 
background and its details are important. The background in 
pictures with objects is usually ignored. 

II. FOUNDATION AND MOTIVATION 
Scenes are successfully classified by convolutional neural 

networks (CNNs) that allow approaching the human 
performance [7], [13], [14]. The best example is made with a 
pretrained CNN known as AlexNet [15]. A screenshot of its 
architecture in MATLAB is shown in Fig. 1. The CNN has five 
convolutional layers and three fully connected layers. AlexNet 
has been trained on over a million images and can classify 
images into 1000 object categories. The CNN has learned rich 
feature representations for a wide range of images (see Fig. 2). 
Owing to this, the AlexNet CNN is widely used for transfer 
learning to perform classification on a new collection of images 
(see Fig. 3). 

A pretrained AlexNet CNN occupies about 217 MB. A fine-
tuned CNN after transfer learning according to Fig. 3 occupies 
less memory but this decrement is not much. This is explained 
with the following reason. The CNN layers are transferred to a 
new classification task by replacing the last three layers with a 
fully connected layer, a softmax layer, and a classification 
output layer. Such three layers in AlexNet are deleted, and the 
replacing layers are optioned to the new task. Factually, only 
the new fully connected layer is re-optioned with a number of 
object categories of the new task. Those three last layers of the 
AlexNet CNN occupy just about 14.5 MB, so a new CNN size 
is reduced by no more than 7 %. For instance, the task with 15 
object categories requires a CNN of size 202.6 MB. The size is 
not decreased much for the task whose number of object 
categories is reduced thrice – it is 202.3 MB for 5 categories. 

Therefore, the transfer learning scheme in Fig. 3 is not 
efficient, despite it is consistent. Its inefficiency lies in that the 
size of a transfer learning CNN (TLCNN) is almost the same as 
the size of the pretrained AlexNet CNN, although the 
recognition task is much simpler by considering only the 
number of object categories. On the other hand, truly speaking, 
the content of tasks intending to use TLCNNs is more 
complicated than that in AlexNet comparing the categories in 
Fig. 2, for instance, to indoor and outdoor scene recognition 
tasks [16], [17]. Nonetheless, a grand total of information 
processed by CNNs like AlexNet is much bigger than a 
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common scene recognition task having up to a few tens of scene 
categories but no more [8], [14], [16], [18], [19]. 

Thus, a question is whether it is possible to obtain a TLCNN 
of a substantially reduced size. The TLCNN performance 

should not be decreased. This is very actual for tasks of 
classifying scenes and other complex objects, where the number 
of object categories is much smaller than 1000. 

 
Fig. 1. The AlexNet CNN architecture in MATLAB. ReLU layers are typical, pooling layers are atypical, and 2 DropOut layers are inserted to prevent overfitting. 

 

Fig. 2. The first 43 and last 43 object categories of the AlexNet CNN. Some 
really vast objects, like “lakeside”, “seashore”, “valley”, etc., are true scenes. 

 
 
Fig. 3. A general scheme of fine-tuning a pretrained AlexNet CNN to perform 
classification on a new collection of images (origin: www.mathworks.com). 
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III. GOAL AND ITEMS FOR ITS ACHIEVEMENT 
As the size of TLCNNs obtained by the scheme in Fig. 3 is 

not satisfactory, the goal is to ascertain a possibility of a 
TLCNN size reduction. The reduction is implied as a truncation 
of the pretrained CNN in the ending layers or just their 
simplification by decreasing numbers of filters. A modelling 
recognition task should be much difficult than that in AlexNet, 
but it should have a much smaller number of object categories 
for seeing an impact of the size reduction, if any. Eventually, if 
it is possible to simplify TLCNNs for such tasks, a method of 
the simplification (which factually is equivalent to the size 
reduction) will be stated. For achieving the said goal, the 
following items are to be fulfilled: 

1. To substantiate a modeling recognition task. 
2. To obtain TLCNNs for this task using the scheme in Fig. 3, 

with achieving an acceptable accuracy of recognition. 
3. To try changing and truncating the ending layers in order 

to reduce the TLCNN size by maintaining the acceptable 
accuracy of recognition. 

4. To state a method of the TLCNN size reduction, whichever 
it will be. 

5. To infer from benefits, if any, of the method. 
The results will be discussed paying a special attention to 

practical implementations. If the method works at least 
partially, an outlook for further research will be stated. 

IV. MODELLING RECOGNITION TASK 
One of the known scene recognition tasks is a small dataset 

of 4485 grayscale images broken into 15 image categories 
(Fig. 4). The number of images per category is not the same 
(Fig. 5). It badly changes if to compare categories “bedroom”, 
“kitchen”, “office” to “coast”, “mountain”, “opencountry”, or 
“tallbuilding”. Total number of images in the training set is 
4037. A validation set is 448 images. For lack of the data, the 
testing set is the same. Considering the variety of those 15 
scenes and their complex details, the training set is very poor. 

 

Fig. 4. A set of 100 images in the dataset. The initial size of images is various. 

 

Fig. 5. The number of images per category. Its distribution appears stochastic. 
 
To make a CNN learn from such a poor portion of the initial 

information, the training set must be augmented [2], [9], [20]. 
The augmentation is executed via horizontal and vertical shifts 
of the initial images. A rotation is not suitable for those images. 
A scaling is factually emerging from the shifts [21]. 

As the input of a pretrained AlexNet CNN is a colour image 
having three color channels, every image of the dataset must be 
represented as an image with three channels. Due to the lack of 
colour, the channels cannot differ in colour, so they may be 
identical. On the other hand, they may differ in shift positions 
like the shift augmentation would be applied to each channel 
separately. The whole image, after overlapping such separately 
shifted channels, will appear as if some noise is applied to it. 

Both the training and validation sets are augmented “on the 
fly”, and augmented images are not saved to memory. By 
varying an ultimate pixel shift from 10 to 60, it appears that the 
best performance is achieved at a shift equal to 40. This is the 
shift applied to the three channels simultaneously. Shifting the 
channels separately does not seem to produce any effect. 

V. PARAMETERS OF THE TRAINING PROCESS 
Before executing the full-scale training, its parameters 

should be set to close-to-efficient values. This is accomplished 
via launching the training process for a few epochs and 
selecting the values corresponding to close-to-the-highest 
accuracy [21], [22]. Thus, the close-to-efficient parameters of 
the training process are the following: 

1. A solver for training CNNs is the stochastic gradient 
descent with momentum optimizer. 

2. A size of the mini-batch is 45 (the min-batch is a subset of 
the training set that is used to evaluate the gradient of the 
loss function and update the weights). 

3. Maximum number of epochs is between 28 (this is for fine-
tuning a pretrained AlexNet CNN by the scheme in Fig. 3) 
and 128 (this is for cases when the ending layers of 
TLCNNs are changed and truncated). 
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4. An initial learning rate is 0.001 (it is not too high in order 
to prevent diverging). 

5. A momentum is 0.9 (this is 90 % contribution of the 
parameter update of the previous iteration to the current 
one). 

6. The learning rate is dropped during training: this rate is 
multiplied by 0.975 after every epoch. 

7. A factor for 2  regularization (weight decay) is 0.0001. 
Setting an environment for training is optional. It can be 

either CPU or GPU, depending on whether GPUs are available 
and consistent. Obviously, training on even a single GPU is 
expected to be faster than training on a multicore CPU. 

VI. REGULAR TLCNNS 
Training TLCNNs according to Fig. 3 (regular TLCNNs) is 

not very long. Owing to the pretrained CNN consisting now of 
22 layers (without those ending three layers, which have been 
factually deleted), the training and validation accuracies 
expectedly increase fast and go into saturation (Fig. 6). The 
saturation rate is up at 92 %. It is never achieved but approached 
since just a few epochs. Such a good performance from the very 
starting epochs is explained by that the first layer filters have 
learned edge-like features from training data of AlexNet (see 
them in Fig. 7). 

 
Fig. 6. A screenshot of the training process progress for regular TLCNNs. The training loses after the 11th epoch. The TLCNN size is approximately 202.6 MB. 

 
Fig. 7. The first layer weights have a well-defined structure used in TLCNNs. 

 

Accuracy at 91.07 % rate achieved under the set above 
parameters of the training process is acceptable. It still may be 
improved by additionally adjusting the learning rate drop factor. 
Nevertheless, the accuracy improvement is not going to be 
significant. Henceforward, we are going to try changing and 
truncating the ending layers under the accepted configuration of 
the training process in order to reduce the TLCNN size and to 
approach the achieved accuracy. 

VII. TLCNNS WITH DEEPER TRUNCATIONS 
Regular TLCNNs have three fully connected layers. They 

have 4096, 4096, and 15 filters. Could we decrease those 
numbers in the 17th and 20th layers without an accuracy 
decrement? This question is addressed to a substantial reduction 
of the layer volume, not a few percent decrement of the number 
of the convolutional layer filters. For instance, the 17th and 20th 
layers may be tried with 2048 and 1024 filters. 
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A more radical variant is to delete one or two fully connected 
layers. However, when a one fully connected layer is deleted, 
the TLCNN has size of 143 MB, but it is trained then less 
efficiently, with a slightly dropped accuracy (Fig. 8). Therefore, 
deletion of fully connected layers is not reasonable. 

Decreasing the numbers of filters in the 17th and 20th layers 

should be done in a way reminding a dichotomy or tetrachotomy 
[23], with multiplicity of 2 to some integer power. As initially 
those layers are of 4096 filters both, the following combinations 
are tried: 1024 and 512, 768 and 384, 512 and 256, 384 and 192, 
256 and 128, and so on. It appears that the best combination of 
them is 384 and 192 filters (Fig. 9). 

 

Fig. 8. The truncated TLCNN with 22 layers is trained less efficiently than a regular TLCNN with 25 layers (compare it to Fig. 6), although the odds are small. 

 
Fig. 9. The training progress for a truncated TLCNN with 384 and 192 filters in its 17th and 20th layers. High accuracies are achieved before the final accuracy. 
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Fig. 10. The accuracy of the TLCNN with 384 and 192 filters in the 17th and 20th layers against the number of epochs. The best accuracy is first achieved after the 
71st epoch, whereupon the same accuracy is achieved after the 116th epoch. Thus, the training process could have been stopped right after the 71st epoch. 

The size of the TLCNN with 384 and 192 filters in the 17th 
and 20th layers is 21.63 MB, whereas the accuracy is even better 
than the accuracy of a regular TLCNN. A truncated TLCNN 
performing at the highest accuracy is selected amongst 
TLCNNs produced after those 128 epochs. The best truncated 
TLCNN in Fig. 9 happens two times: after the 71st and 116th 
epochs (Fig. 10). This is an outstanding positive impact of 
almost 9.4 times reducing the size of TLCNN. 

The top achieved 93.3 % accuracy rate is really close to the 
human performance on that 15 scene dataset conceding only 
about 1.5 %. Figure 10 shows that the accuracy rate does not 
drop below 90.5 % since the 55th epoch. Any TLCNN is a good 
scene classifier since that epoch. Besides, owing to the 
reduction, truncated TLCNNs operate faster that regular ones. 

VIII. METHOD OF THE TLCNN SIZE REDUCTION 
Regarding AlexNet-based TLCNNs, the following method is 

stated for the TLCNN size reduction: 
1. Only two fully connected layers can be changed by setting 

a fewer number of their filters. 
2. The number of the filters can be decreased simultaneously 

by using a principle reminding a dichotomy or 
tetrachotomy: decrements must be equal to 12n−  or 22n− , 
where 2n  is the current number of filters. 

3. If the accuracy after such decrements drops dramatically, a 
gradual decreasing must be tried. Generally, the number of 
filters is decreased by 2n m− , where 1, 1m n= − . 

4. The decrements are canceled when the accuracy drops 
below an acceptable rate, and the last successfully truncated 
TLCNN is returned/stored. 

This method does not ensure increasing the accuracy. 
Nonetheless, it ensures that the TLCNN size, for tasks similar to 
the recognition of 15 scene categories, will be reduced, 
whichever the reduction is. 

IX. DISCUSSION 
Along with reducing the TLCNN size, a kind of faster 

training is benefited from the stated method. However, it is not 
as fast as it could have been if the initial size were kept. The 
reason is that, after reduction, TLCNN starts re-learning some 
specific features previously stored in the whole layers before 
reducing them. Moreover, a greater number of epochs may be 
required for appropriately training the TLCNN in order to 
achieve an acceptable rate of the recognition accuracy. Thus, 
the training process may factually take a longer period than it 
would have taken for TLCNNs by the scheme in Fig. 3. 

The example of recognizing 15 scene categories is a hard-
learning recognition task, which is unlikely to be solved at 93 % 
accuracy rate without transfer learning. Similar tasks, if having 
more categories at roughly the same density of the training set 
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per category, will be solved with an apparently less impact of 
the TLCNN size reduction. Indeed, a greater number of 
categories will require smaller decrements of the number of the 
filters in the 17th and 20th layers. However, the studied example 
is a close-to-average hard-learning recognition task for transfer 
learning. Some tasks have a fewer scene/object/image category, 
where an impact of the TLCNN size reduction will be greater 
than 10. Such tasks, for example, are generated from the 
benchmark datasets initially provided for semantic image 
segmentation (SIS) tasks. The seeming simplicity of 
recognising scenes in the SIS-generated tasks dissolves in a 

limited number of training samples (see Fig. 11). Besides, some 
scenes may belong to a few categories (Fig. 12). As a result, the 
AlexNet CNN performs even poorer than a TLCNN (Fig. 13). 
Then the numbers of the filters are decreased without affecting 
the accuracy (Fig. 14), although the impact of the TLCNN size 
reduction stands here apart (Fig. 15). But the limit of such an 
impact does exist. This is 21.8 (9.294 MB against 202.6 MB), 
when two fully connected layers are deleted and the earlier 16 
layers are non-removable (see the CNN architecture in Fig. 1). 
Nevertheless, subsequent training of so deeply truncated 
TLCNNs fairly fails. 

 
Fig. 11. A validation set of 52 images in the dataset with just 4 scene categories. The dataset is of 534 images [20]. This SIS-generated task has only 70 and 48 
training samples for categories “house-about” and “road”, respectively. The other two categories, consisting of 235 and 181 images, have many similar entries. 

 
Fig. 12. A validation set of 70 images in the dataset with 9 scene categories. The dataset is of 689 images [9]. The scene categories are unequally intertwined. 
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Fig. 13. The training progress of the AlexNet CNN (202.39 MB) against a TLCNN (21.57 MB) for the task by Fig. 11. The TLCNN size reduction impact is 9.4. 

 

Fig. 14. The training progress of a TLCNN (15.1 MB) for the task by Fig. 11. The impact is 13.4, and the accuracy is greater than that of the AlexNet in Fig. 13. 

 
Fig. 15. The training progress of the AlexNet (202.48 MB) against a TLCNN (15.11 MB) for the task by Fig. 12. The impact is 13.4 at the improvable accuracy. 

X. CONCLUSION 
Despite the seeming simplicity of transfer learning, it cannot 

be efficiently executed as visualised in Fig. 3. The TLCNN size 
is reduced by setting a fewer number of the filters in the 17th 
and 20th layers of the AlexNet-based TLCNNs. In general, the 
number of filters in fully connected layers preceding the last 
fully connected layer can be decreased. The decrements are 
made from the end of a TLCNN starting from a half of the last 
but one layer or halves of layers, moving thus to early layers. If 
the accuracy drops a little after starting decrements, smaller 
portioned decrements must be made. 

The stated method serves for tasks with a few tens of object 
categories or fewer, whose training set is pretty poor but has 
complex objects. A classic example is the studied scene 

recognition task, although tasks with images of outdoor scenes 
may imply up to a hundred or a few hundred categories. Such 
cases may either be solved with non-reducible TLCNNs or even 
not fit to apply transfer learning (i.e., a CNN should be trained 
from scratch like it should be for the task by Fig. 12). 

Since setting hyperparameters of CNNs and parameters of 
their training has many close-to’s, the method of the TLCNN 
size reduction is not the only feasible [24], [25]. It is plausible 
that changing some training parameters may allow decreasing 
numbers of filters further. Two of those parameters are the 
learning rate drop factor and 2  regularization factor [26], but 
this question needs a separate study. 

 

the AlexNet CNN the truncated TLCNN  
with 384 and 192 filters in its 17th and 20th layers 

the truncated TLCNN  
with 192 and 96 filters in its 17th and 20th layers 

the AlexNet CNN the truncated TLCNN  
with 192 and 96 filters in its 17th and 20th layers 
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