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GENERAL OVERVIEW OF THE THESIS 

Motivation 

Information theory understands the transmission, processing, extraction and use of 

information. In this way, information can be pre received as uncertainty resolution [1]. 

Nowadays, private and public companies all around the world collect different types of 

information and use stochastic modeling in forecasting with the purpose to estimate the 

expected (forecasted) interest rate term structure, exchange rates, inflation rates, electricity 

demand in different time periods, prices of derivative instruments, etc., to implement an 

optimal state budget management policy, limit financial risks, model inventory levels and 

prices of different financial assets. The flow of the abovementioned information [2] is 

continuously increasing, and modern forecasting developers face big data, the processing 

techniques of which may hinder decision-making. Therefore, fast information processing 

algorithms based on nonparametric models are needed. In this regard, the promotion work has 

created iterative forecasting procedures based on cumulative regressions.  

It is essential to forecast future values of financial assets, technical parameters and 

macroeconomic data. One of the most common forecasting tools is the Box–Jenkins (Box and 

Jenkins, 1970) autoregressive integrated moving average (ARIMA) model. However, the 

Box–Jenkins methodology has its own shortcomings (it does not account for thick tails and 

high peaks (leptokurtic) of asset return distribution). Nowadays forecasting in fields like 

finance is related to work with heteroscedastic data (volatility is not stationary – spikes of 

high volatility appear in different time periods). Therefore, a responsible practitioner has to 

use forecasting methods that are able to react to changes in volatility and serial correlations. 

Heston [71] was one of the first to deal with stochastic oscillation models and suggested 

describing the dispersion process with a separate stochastic, but did not focus on verifying the 

model's compliance with real data.   The importance of the topic is underscored by the fact 

that there exists plentiful software that calculate forecasting error, usually with the maximum 

likelihood method, but none of them tests whether stability conditions hold true for the error 

distribution [3]. In this way, the existing demand for forecasting methods, which are suitable 

for working with serial correlated data, makes this paper highly topical.  

Research purpose and tasks 

The purpose of the promotion work is to develop methods and algorithms for constructing 

forecasting models accounting for the non-linear dependency of observational errors. The 

work solves practical problems that appear in financial analysis, such as, how to find the true 

value of derivative instruments including call and put options using the abovementioned 

model, or how to construct a copula-type function in order to describe the impact of different 

financial risks on the price of a derivative instrument, as well as estimate the range of asset 

volatility in the case of a sudden huge uncertainty in financial markets.  
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To reach the research purpose, the following tasks have been formulated: 

 to develop a method of constructing autoregressive model based on copula-type 

relations; 

 to develop a method for incorporating the balance correlation into a stochastic 

differential equation and a transition to continuous time – to study the stationary of 

this equation; 

 to introduce a correction for correlation into D. Nelson’s conditional variance risk 

management model in the discrete time; 

 to analyse the impact of observation errors’ correlation on the Black-Scholes model 

parameters and recalculate the hedging factors. 

Research object and subject 

The object of the research is the time series. The main research subject is the conditional 

variance of observed errors. 

Research methods 

The research method is based on the formulated problem (models for analyzing data with 

autocorrelated residuals). The following methods are proposed and constitute practical base 

for solving the formulated tasks: analysis of linear regression residuals with non-stationary 

variance; R. Engle’s (the Nobel awardee) method; J. Carkov’s diffusion approximation 

method of conditional variance GARCH models; a copula-based non-linear regression 

construction method; and the risk management and limitation method by R. Merton and M. 

Scholes (both Nobel awardees). To develop an imitation apparatus, which is a set of 

operations necessary for the statistical approbation of the proposed models, commonly known 

stochastic models with added asset return autocorrelations have been used. The proposed 

model for solving the formulated research problem is the two-factor affine model, where the 

first factor is asset price and the second is its volatility. For successful representation of the 

model’s results, a discrete representation of the imitation models and copula construction 

have been performed. The obtained models have been applied for financial markets data using 

Matlab software. All in all, the promotion work makes use of methods of mathematical 

statistics and probability theory, optimization theory and imitation modeling methods.  

Scientific novelty 

The following applications constitute the work’s product. 

1. The created algorithm for the construction of an autoregressive forecasting model 

without assumptions about rational expectation and the explicit form of forecasting 

error formula. 
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2. Including residual correlation from discrete time models when transforming to the 

continuous time, which results in a more precise forecasting model and risk 

calculation.  

Practical importance 

The proposed method and algorithm to construct autoregressive models in the discrete 

time can be used for risk analysis and forecasting given the sufficient size of the stationary 

sample.  

The results regarding introducing a correlation correction allow to estimate the time of 

reaching stationary and distribution for the constructed risk component more precisely.  

The promotion work has the following practical results: 

 a forecast for the VIX index of a stock based on the discrete representation of the 

Heston model has been created; 

 nonparametric regression for the VIX index has been found, which allows building 

new forecasts; 

 an algorithm for modeling of the forecasted operational deficiencies of power 

equipment, which relates to the possibility to predict equipment safety, has been 

created; 

 considering the autocorrelation of returns, stock option agreement of Tesla Motors Inc. 

has been repriced. 

Thesis to be defended 

1. The created algorithm for the construction of a copula based regression allows to 

create an autoregressive forecasting model without assumptions about the distribution 

of rational mathematical expectations and forecasting errors, the so-called algorithm 

for constructing a complex regression, has been created. 

2. Inclusion of residual correlation from discrete time models when transforming to the 

continuous time allows us to construct a more precise forecasting model and calculate 

the risk. 

Approbation of the results 

The research has been approbated by presenting the results in 14 different international 

scholarly conferences and seminars and by publishing 10 articles in international scholarly 

journals.  

 

Scientific conferences and workshops 

 

1.  An. Matvejevs, J. Fjodorovs, O. Pavlenko “Testing Heston Model Consistency and 

Evaluation of Parameters Thought Reprezentation in Discrete Time” 10th 
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In the first section, “Financial time series and serial correlations”, a quantization algorithm 

for Heston model is developed. It may be applied to transformation of different stochastic 

models in discrete time. Then the stationarity and data fit of these models can be analyzed 

with known methods that are employed for studying ARIMA-class models. Having applied 

the proposed method to US stock option volatility indices VIX, one can see that model results 

are in line with the actual data before a decision of a buy/sell order is made. Additionally, way 

of obtaining data on the research objects, forecasting essence, and definition, types and 

stationarity of ARIMA model is described in this section.  

The second section, “Non-parametric regressions and their setting using copulas”, 

provides the definition of a non-parametric Markov model and development of transition 

densities discovery method for this model using Archimedean type copulas. With this method, 

it is possible to convert the Markov model in copula space (where Markov chain is compact), 

which, in turn, allows to use the limit theorem of probability theory and approximate 

differential equations with diffusion equations. As a result, multiple formulas for price 

determination of financial instruments can be reviewed and modified based on financial 

markets data. For illustration purposes, Markov copula-type non-parametric regression for 

VIX index data and a non-linear process, which is a real-life example from energetics, is 

presented in this section. Moreover, a copula for GARCH(1, 1) model oscillation is created 

based on several conditions regarding the model’s parameters and marginal distribution.  

In the third section, “GARCH(p, q) model with autocorrelated residuals and option 

revaluation equation”, GARCH(1, 1) model residuals are converted using Markov model with 

divided correlation coefficient. Black-Scholes option pricing model and the related option risk 

sensitivities (Greeks) is transformed. The obtained formula enables us to estimate option 

prices more precisely, accounting for thick tails of asset returns distribution. To solve the 

listed problems, we used imitation modeling in Matlab Simulink software.  

The fourth section, “Use of autocorrelation for determining option price”, presents an 

overview of algorithms proposed in the work based on estimation of Tesla Motors Inc stock 

option prices by conducting Monte-Carlo simulations of expected volatility and option 

repricing. The constructed system allows forming a personal view on situation in financial 

markets and particularly optioning prices, and making a justified decision to enter long or 

short positions in certain options.  

Results and conclusions.  
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1. DEFINITION OF THEORETICAL MODEL AND 

DESCRIPTION OF RESIDUAL AUTOCORRELATION  

One of the main contemporary problems in econometrics is the analysis of {𝑥𝑡 , 𝑡 ∈ 𝑍} 

time series using autoregressive models without any a priori assumptions regarding the 

expected value of the phase coordinate conditional on the previous observation in the time-

series data. 

The underlying reason for the tendency to depart from traditional linear models is the non-

Gaussian character of random values that describe real model behavior.  

The main aspect of time series analysis is study, description and/or modelling of data 

structure [3]. The purpose of such studies usually is not limited to the analysis and modeling 

of existing processes. In most cases, the constructed model is employed for extrapolation or 

forecasting of time series data. Thus, the quality of such forecast may serve as a good measure 

for construction of alternative models. Creating a good model is also necessary for other 

applications like correction of seasonal effects and smoothing [4]. Finally, these models can 

be used for statistical modeling of large systems where the input data is in time series form.  

Measurement errors in economic indicators and the non-avoidable presence of random 

fluctuations makes using probability theory and mathematical statistics approach for time 

series analysis ubiquitous. These sciences interpret the observable time series data as a 

realization of a random process. It is generally assumed that the data possesses a certain 

structure, in this way differing from a series of independent random values because 

observations are not a set of fully independent values. Some structural elements of time series, 

such as trends and periods, can be discovered straight away by simply looking on plotted 

values. Usually, it is assumed that the structure of a series can be described with a model that 

contains a small number of parameters comparing to the number of observations in the series. 

It is important in practical applications to be able to use that constructed model for 

forecasting. Examples of such models are autoregression model AR(p), moving average 

model MA(q), as well as their combinations – models ARMA(p, q) and ARIMA(p, k, q). [3] 

In most research papers, a side takeaway from analysis is modeling of macroeconomic 

indicators that describe inflation, international trade, interest rates, exchange rates and other 

processes, there is observation of similarities in behavior of random residuals (forecast errors): 

their huge and small values form concentrated groups, i.e. steady and volatile periods go after 

each other [7]. Moreover, these series do not cease to be stationary and homoscedastic (i.e. error 

distribution is homogenous) even during long time periods, so the hypothesis of constant 

variance is not violated by the actual data [8]. ARMA model does not help to solve this 

phenomenon. Therefore, a modification of models known at that time is needed.  

The first mention of such modification is by R. Engle [6], who observes residuals as 

conditionally heteroscedastic, i.e. related to autoregressive dependency. He developed 

ARCH(q) model, which had plentiful modifications, inter alia the most popular GARCH(p, q).  

Information scarcity about the distribution of data does not allow to calculate the 

abovementioned expected value analytically, in a functional form with unknown parameters, 
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and reduce the problem to the least squares estimation method, as is common for Gauss’ 

theory (Fig. 1.1.).  
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Fig. 1.1. Algorithm for constructing statistical models. 
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Fig. 1.2. Data processing models. 

Figure 1.2 presents existing models (in the center) and additions to these models 

developed in the work. These additions help to improve imitation and forecasting abilities of 

different processes, i.e. allow to describe processes with residuals with serial correlation (by 

introducing the coefficient of residual correlation), as well as create models (based on copulas 

of different types) that describe not only normally distributed data, but also those with “thick 

tails” and a “spiked peak”. This approach in model imitation1 allows predicting rare outcomes 

more often than the normal distribution. Thus, various calculations in finance, economics, and 

energetics are improved.  

Heston model and its transformation to discrete time 

The goal of this work is to present an overview of applications of ARIMA model in order 

to conduct a representation of continuous Markov processes in the case of discrete time. It is 

known that each Markov process can be interpreted as a limit case of a discrete Markov 

process. Similarly, the solution of Kolmogorov diffusion equation can be approximated by 

solutions of Kolmogorov differential equations [25]. 

From this point, the Heston Volatility Model is described. This method is designed to give 

an intuitive explanation of the Heston model, not only technically, but also in a way that 

makes the subsequent sections more easily understandable. Should any questions regarding 

smaller technical details arise, the answers can be found following the provided references.  

 

 

 

                                                 
1 The author uses the word “imitation” meaning the Monte Carlo simulation, i.e., the development of models in a 

certain form that could provide better results for describing and predicting the process. 
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Heston [71] offers the following model: 

1d d d ,t t t t tS S t V S W              (1.1)   

  2d d d ,t t t tV k V t V W                                           (1.2) 

1 2d d d ,t tW W t   

where {St}t≥0 and {Vt}t≥0 are respectively prices and oscillation processes; {Wt
1}t≥0, {Wt

2}t≥0 

are correlated Brownian movement processes (with correlation parameter ρ); μ is a 

deterministic risk-free rate; {Vt}t≥0 is the square root of the average value of the reverting 

process the first mention of which can be found in the work by Cox, Ingersoll, and Ross [27]; 

θ is the long-term mean value; σ is standard deviation; k is mean-reverse coefficient; and ρ is 

defined as diffusion oscillations. All parameters k, μ, θ, σ are homogenous in time and state.  

Therefore, a representation of a discrete Heston model should be found with a respective 

fitting/testing method of an ARIMA-class model. Thus, the hypothesis about the existence of 

the heteroscedastic effect in model residuals can be tested using time series technique.  

Modeling VIX index with Heston model 

Let us consider a case where a Heston model in discrete representation is combined with 

an ARIMA model fitting/testing method. The object of our attention is VIX – stock market 

volatility index. VIX is a market instrument that evaluates the uncertainty implied in the base 

index, S&P 500, for 30 days in the future. The dataset contains daily observations from March 

27, 2007, to October 21, 2010. The ability to correctly interpret VIX changes and reactions of 

its price to market events can equip investors with markedly better possibilities to manage 

risk/return characteristics of their portfolios, as well as develop strategies using derivative 

instruments based on VIX positions. As a result, this allows to maximize investor’s return 

from S&P 500 and VIX correlations, which changes through time.  

 

 

Fig. 1.3. Historical dynamics of VIX stock index. 
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Figure 1.3 shows that the time series data of VIX index value clearly possesses non-

stationarity properties. Moreover, some trend changes after October 2008 are also obvious.  

Therefore, to smooth out the data, the first difference should be used. This new series DVIX 

is conditionally heteroscedastic. It does not contain the unit root based on Dickey-Fuller test 

results. Based on autocorrelation results, an appropriate model can be chosen – AR(1) with 

residuals modeled by ARCH(2). In turn, time series stability test (Chow breakpoint test) 

indicates a structural break dated October 2008. Consequently, I decide to analyze the data 

only after October 2008. For this purpose, a new time series is created.  

We can clearly see a trend in the new time series. Hence we further create another series, 

vix2, with the trend being excluded. The time interval for the series is from October 10, 2008, 

to October 21, 2010.  

12 .t t tvix vix vix        (1.3) 

The system obtained in this work from Heston model discretization is approximately 

equal to AR(1) model with GARCH-M(1, 0) residuals, where the squared variance is included 

in the main AR(1) equation for  vix2t  with a fixed coefficient of 0.5.  

Using WINRATS software package, parameters for time series vix2t are estimated in the 

following way: 

2

1

1

2 16,743 0,5 0,954 2 ;

;

5,9934 0,04138979 .

t t t t

t t t

t t

vix V vix

v V

V V





       

 


 

  (1.4) 

The discrete Heston model representation is appropriate for solving the problem related to 

correspondence of the stochastic model to a financial time series. Moreover, employing 

ARIMA method for estimation of Heston model parameters, makes the process much easier, 

i.e. model discretization simplifies the estimation of problem parameters. However, 

considering the abovementioned equation coefficients, VIX data modeling and respectively 

forecasting future values of the index using the Heston model may not always be correct. 

Therefore, the approach of stochastic Heston model discretization can be used for testing the 

fit of stochastic differential equation to the real data (Figs. 1.4 and 1.5). 
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Fig. 1.4. VIX index and its forecasted values. 

 

Fig. 1.5. VIX index and comparison of forecasts made by different models. 

Hence, one can conclude that model transformation to the discrete time allows to 

determine model fit to the real data, which increases forecasting accuracy. 

Summary of the first section 

1. The class of autoregressive models (ARIMA) does not fully describe all processes in 

mechanics and economy. Therefore, it makes sense to include correlation parameter 

residuals to effectively reduce forecasting errors.  

2. An algorithm of Heston model transformation is created to improve forecasting 

accuracy for heteroscedastic processes.  
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2. NON-PARAMETRIC REGRESSIONS AND THEIR SETUP 

USING COPULAS 

Non-linear time series can be identified using estimations of the conditional mean value 

and the conditional variance, which is mentioned in plentiful articles (see, for instance, [31]). 

Usually, the dependency of regressive models of stationary time series data 𝑥𝑡, 𝑡 ∊ 𝑍 is 

analyzed, which generates time process relation. As demonstrated in [31], this allows to 

separate time dependency (for example, tail relation) from the marginal distribution of time 

series behavior (such as heavy tails). Another advantage of this method is the ability to apply 

the limit theorem from probability theory for transition from an equation in differences to the 

continuous stochastic differential equation [32], [33]. 

In this work, a class of copulas is studied based on non-parametric stationary Markov 

model in the form of a scalar differential equation: 

1 1 1: ( , ) ( , ) ,t t t t tt Z X X f X g X            (2.1) 

where },{ Ztt   is i.i.d. (identically independent distributed)  N(0, 1) and ε is a small positive 

parameter, which is used for the approximation of regression (2.1). The regression is 

frequently used for imitations and estimation of the parameters in the stochastic oscillations 

model [32]. Unfortunately, a Markov chain set by Equation (2.1) is not compact in the phase 

space, which hinders employing the limit theorem of probability theory. Copulas based 

methodology lets us simplify the asymptotic analysis of Equation (2.1). 

Let us recall that to construct copula C(u, v) for the pair {Xt–1, Xt} from Equation (2.1), it 

is necessary to find the marginal invariant distribution of Xt, F(x), and insert it into the joint 

distribution function H(x, y) = P(Xt–1 ≤ x, Xt ≤ y), where C(u, v) = H(F–1(u), F–1(v)) and 

H(x, y) = C(F(x), F(y)). Considering the existence of a small parameter ε after substituting 

Ut = F(Xt) in Equation (2.1), the diffusion approximation can further be considered a diffusion 

equation in the same way as in (2.1): 

1 1 1: ( , ) ( , ) .t t t t tt Z U U f U g U            (2.2) 

This makes construction of the transmission probability more tractable and function 

estimations 𝑓(𝑢) and 𝑔̂(𝑢) easier to obtain. 

Upon the diffusion approximation in Equation (2.2), it is easier to do inverse substitution 

and obtain a stochastic equation, as the diffusion approximation in Equation (2.2). 
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Finding copulas for non-linear processes in energetics and algorithm for 

imitation of the reaching time of the random process defined limit 

The use of algorithms for constructing copulas and copula-type regressions leads to an 

opportunity of finding processes with random behavior not only in finance (see Fig. 2.1), but 

also in the rest of economy. For example, an algorithm that helps to construct an imitation 

model for a problem in energetics is created in the context of this work. Such a model allows 

forecasting the maximum power of production facilities. 

For this purpose, the work implies analysis of historical observations of operation 

parameters of plants (see line Y in Fig. 2.2). To achieve the effectiveness of plants’ work and 

receive early signals about possible malfunction in the future, one can decide on a stage 

whereat preventive works should be implemented. We are therefore interested in stable work 

of plants, i.e. the low volatility of the process. In real life, however, parameters can vary 

significantly because of different conditions. Hence our idea is to imitate a forecast of 

substantial changes of parameters. Our main idea is to define the limit for allowed deviations 

and find and algorithm that can imitate this defined limit. Obviously, it is related to 

heteroscedastic processes. To model the described process Y, the ARIMA-GARCH approach 

can be employed. Additionally, copulas may be of use for modelling critical moments, which 

are expected to occur relatively seldom.  

Considering the proposed task, the copula-type regression is adapted to time series Y in 

order to create an imitation of a certain parameter arriving at a pre-defined level, as well as an 

imitation of reaching the limit set by random time. Time series Y consists of daily 

observations from December 31, 2000, to December 31, 2015. 

 

Fig. 2.2. Observations of time series Y 

In turn, a copula for process Y is found using the algorithm described in Section 3 

(Fig. 2.1). MATLAB software is used to construct the following density functions. 
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Fig. 2.3. (a) Plot of the two-dimensional function for data series Y (not transformed to 

R[0, 1]); (b) plot of the two-dimensional function for data series Y transformed to R[0, 1]. 

As it can be seen from Fig 2.3 (a), time series Y contains outliers. This significantly 

complicates the search of marginal distribution. Based on Kolmogorov-Smirnov test, different 

distributions have been tried. Eventually, the best turns out to be the joint distribution – one 

part of the data is well described by the exponential distribution and the other – by the 

uniform distribution: 

1

1 , ,
( )

( ) , ,

x

T

e x T
F x

H x T e T x T





  
 

   

    (2.3) 

1

1

,
Te

H
T T






     (2.4) 

where T is the length of time series and T1 is the length of time series without outliers.  

Considering the constructed marginal distribution, time series data Y is transformed into 

the uniform distribution (R[0, 1]). The most important step in this study is the choice of a 

copula that is appropriate for the data. Several standardized copulas are reviewed in this work 

– the Gumbel, the Frank, the normal and T copula. In different articles, various approaches  to 

checking the appropriateness of a chosen copula to the data are mentioned, such as AIC and 

BIC criteria, χ2-criteria and the Kolmogorov–Smirnov distance. The primary choice of copula 

for this research is based on the Kolmogorov–Smirnov test (see Table 2.1). 

Table 2.1 

Kolmogorov–Smirnov Test (KS distance) 

Copulas KS distance 

The Franka copula 0.67 

The Gumbel copula 0.65 

The Normal copula 0.18 

T copula 0.70 

 

1, 2, 1, 2,
,

max ( , ) ( , ) .KS n i j i j
i j

D C U U C U U     (2.5) 

a

. 

b

. 
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KS test results suggest that the best copula for time series Y is the normal copula. 

However, the normal copula links random variables linearly in essence. At the same time, we 

are interested to imitate infrequent jumps in Y, which serve as a signal for possible 

malfunction of plants. To satisfy this requirement, the copula that describes an asymmetrical 

dependency is the Gumbel copula. Based on this copula, we derive nonparametric regression 

coefficients (functions) f and g.  

For the Gumbel copula, the inverse function cannot be used with the goal to return to the 

main equation. To work with copulas of such type, certain special algorithms should be 

employed to return to the required equation form.  

Table 2.2 

Algorithm for Imitation of a Time Span for Reaching the Border of a Random Process 
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Next, the utilized model should be checked for its appropriateness to the data and 

compared to the other models. However, considering the non-stationary behavior of the data 

(time series Y), especially in the moments when the jumps are observed, ARIMA models in 

their classical form cannot be applied, and the chosen non-parametric model with the Gumbel 

copula can be tested using an imitation.  

As a result, Table 2.2 presents an algorithm for the construction of a non-parametric 

copula-type regression, which helps to solve random process imitation tasks (with 

heteroscedastic nature). This algorithm allows to imitate heteroscedastic random processes 

and find the time interval distribution for reaching the limit of this process. This is very 

important in energetics (reaching a certain limit), for example in plant operations  it can help 

to readily prepare for possible malfunction. 

The next section contains an example of imitation of time series Y using the Gumbel 

copula. Having constructed the algorithm for copula-type regressions and taking into account 

the procedure of imitation of time to reach a certain limit, which is described in Table 2.2 

(steps 1 to 4), we model the process Y with the Gumbel copula and a non-parametric 

regression (Fig. 2.4). In essence, our imitation reacts on oscillations of the process. This 

allows us to use this model for estimation of time distribution.  

 

 

Fig. 2.4. Imitation of Y time series and defined border. 

While working with copulas, certain facts should not be omitted. For example, it is 

difficult to establish which copula is the most appropriate for a certain dataset, because some 

copulas more accurately fit the data near the center of the distribution, whilst others – at the 

tails of a distribution. Many copulas do not have moments closely linked to the Pearson 

correlation, hence cannot be easily compared with financial models based on correlations.  
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Summary of the second section 

The developed algorithm for constructing non-linear (non-parametric) Markov models 

based on copulas allows to model dependencies of different types – for the center and tails of 

the distribution. Moreover, this section describes the construction of GARCH(1, 1) copula 

and estimation of parameters for non-linear models. For several copulas, the inverse 

transformation does not exist, which diminishes the realization speed of the mentioned 

algorithm.  
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3. GARCH(p, q) MODEL WITH AUTOCORRELATED 

RESIDUALS AND OPTION REVALUATION EQUATION 

Mezins [60] has discovered the difference between the volatility of a financial asset’s 

price, the volatility of a financial asset’s return, and the autocorrelation coefficient of a 

financial asset’s return. His analytical solution can be reduced to a special case of the well-

known Black-Scholes option pricing formula for autocorrelated returns of financial assets. 

Mezins’ paper presents a framework for a log-normally distributed asset price S with serial 

correlation in returns. Additionally, he constructs an analytical option-pricing model that 

allows to obtain an exact solution for setting the price of a derivative instrument on a certain 

financial asset. The framework has been constructed for a normally distributed random 

process x, for which lnS = X and whose autocorrelated increments ξ have volatility coefficient 

σ2 and autocorrelation coefficient ρ. Both parameters can be estimated from historical data. If 

the heuristic form is avoided, it is possible to utilize limit theorems proposed by Carkovs [50] 

and obtain an approximation for a stochastic differential equation for continuous time 

expressed as a diffusion approximation.  

Further, one of the methods of using asymptotical methods in real life is described. 

Particularly, they can be applied for repricing of options and the corresponding sensitivity 

parameters.  

A simple mathematical model that describes changes of stock price S and implies an 

assumption about serial autocorrelations in stock returns can be expressed in the following 

form in the case of a usual assumption regarding a risk-neutral probability measure P: 

 2

1 11 ,t t tS S y                 (3.1) 

where yt is a Gaussian-type series with the zero mean and unit variance.  

If independence of observations is assumed, yt can be expressed as an AR(1) process 

(Markov process):  

1

2

1 1   ttt yy 
 ,            (3.2) 

where {ζ}t, Eζt, = 0, Eζt
2 = 1 are independent and equally distributed Gaussian series. 

To use the results of Carkovs [50], let us denote the result xt: = St   and rewrite Equation 

(4.1) as follows: 
2

1 1 .t t t t tx x y x x                   (3.3) 

As follows from this result, for small Equation (3.3) can be approximated with vector 

distribution{X(t1), X(t2), …, X(tn)}, which is defined with the help of the following Ito 

stochastic differential equation solution: 

         d d d .X s a X s s X s s                             (3.4) 

Solving (4.4) we obtain stochastic differential Equation (4.3) in the form of diffusion 

process, which satisfies Ito stochastic differential equation 

        2d d 1 2 d ,S t S t k t S t k t                (3.5) 

 


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 
1

: Corr , .
1

t m t

m

k y y







 


   

By making the substitution, we obtain the ultimate equation: 

       2 1
d d d .

1 1
S t S t t S t t

  
     

  
          (3.6) 

Option repricing equation 

Based on the obtained results, European-type call options for stocks with autocorrelated 

returns can be repriced, and market risk sensitivity parameters can be estimated.  

Let us proceed with expressing a formula for the price of European call options in the case 

when stock price process S(t) satisfies stochastic differential Equation (4.6). The limit 

conditions of a European call option are 𝐶(𝑆(𝑇), 𝑇) = ma x(𝑆(𝑡) − 𝐾, 0), and 𝐶(0, 𝑡) = 0. 

Using the standard approach, we obtain 

            2

1 2, exp ,C S t t S t N d K k T t N d              (3.7) 

where 

 
   

  

2 2

1

1
log 1 2

2
,

1 2

S t
k k T t

K
d

k T t

   
         
  
  

 

and 

  2 1 1 2 ,d d k T t     

where N(d1) and N(d2) are the cumulative functions of the normal distribution.  

 
Fig. 3.1. Call option price for different correlation coefficients. 

Recalculation of option risk sensitivity parameters (Option Greeks) 

Now it is possible to obtain formulas to calculate option price sensitivity to changes of the 

basic parameters. There exists a number of risk measures, which are usually denoted by letters 
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of the Greek alphabet. To illustrate the autocorrelation problem, the most commonly used are 

Delta, Vega, Rho and Gamma.  

These measures are very important in risk management. Each measure shows the change 

of option portfolio value due to the impact of different market factors. Thus, a portfolio can be 

rebalanced with respect to a certain risk component (interest rate, exchange rate, stock price, 

etc.) to obtain a specific explicit position against the given risk. These indicators can be easily 

calculated using the Black-Scholes formula – therefore they are very important for traders of 

financial instruments, especially those who want to limit the risk of portfolio price changes 

against certain changes in financial markets. Those risk-limiting indicators that measure the 

sensitivity to price changes of the underlying asset are mostly used, as well as time to 

maturity and volatility of the derivative instrument. Risk indicators against Delta, Vega and 

Gamma are not widespread. Moreover, portfolio managers do not usually account for option 

price sensitivity with respect to risk-free interest rate changes because this risk is immaterial. 

All the Greeks (Delta, Vega and Rho) used in this paper are first and second-order derivatives 

from option prices.  

 

Delta, Δ, is the first derivative of European call option price C by the underlying asset 

price S and is the measure of option price against the changes in the underlying asset:  

)()),(( 1dN
S

C
ttS 




  

 

Fig. 3.2. Call option of contract Delta parameter value for different correlation coefficients. 

As we see from Figs. 3.1 and 3.2, the option price is substantially affected by 

autocorrelation of returns of the underlying asset. If this autocorrelation exists, then the writer 

of an option contract may overestimate or underestimate (depending on the sign of the 

autocorrelation coefficient) the market risk, which can cause unexpected losses or even lead 

to solvency issues for the financial institution. The rest risk measures are described in the full 

text of the Doctoral Thesis (autocorrelations of the underlying asset have a huge role here, 

too).  
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Testing of stationary solution distribution function and calculation of time 

to convergence for fixed parameter values 

The next step included in the Doctoral Thesis is the stability test for the solution of 

Equation (3.4) and respectively the obtained Equation (3.5). If it is not possible to obtain a 

stationary solution for Equation (3.5) and demonstrate that it is independent from the value of 

the correlation coefficient, then the obtained formula for calculation of the European call 

option price and risk measures (Greeks) does not possess a stable solution, but there exists a 

local solution that cannot be utilized.  

 2

2

ln( ) ln 4 E{| (0) | }
( ) .

( )

z
T

 
 

 
            (3.8) 

Formula (3.8) describes the time to convergence to stationary solution 𝑥̂(𝑡). Thereby, 

using (3.8), which depends on ρ, it is possible to find the time to convergence. Moreover, 

starting from the convergence moment, the stationary solution should follow Gamma 

distribution.  

 

  

Fig. 3.3. Imitation of 𝐸𝜎2 and 𝜎2processes in Matlab Simulink environment. 

To conduct a stability analysis of the stationary solution for different correlation 

coefficient values and study their fit with the Gamma distribution, an imitation of theoretical 
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Equation (3.5) was performed (see Fig. 3.3). From 5000 observations, time series were 

created to calculate and compare the theoretical and empirical moments, perform the 

Kolmogorov test for the Gamma distribution, as well as find the time to convergence for 

Equation (3.5).  

 

Table 3.1 

Comparison of Empirical and Theoretical Moments   

Moments 

Empirical σ2 

Theoretical σ2 

5000 imitations 
Last 100 

imitations 

Average 1.00493 0.99748 1.00010 

Variance 0.00570 0.00459 0.00513 

 

As a result, as we can see from Table 3.1, moments of different orders have no significant 

differences from the Gamma distribution.  

In this case, the parameters of Equation (3.8) and Gamma distribution have been fixed. 

Imitations have been performed by changing ρ values from 0 to 1, which resulted in varying 

time to convergence.  

Considering Nelson’s [34] results, which imply that stationary solutions must be 

distributed following the inverse Gamma distribution, the Kolmogorov test was performed to 

test the hypothesis about the Gamma distribution. In our view, these tests serve as an 

empirical proof of (3.8). In the majority of cases, the hypothesis about the Gamma 

distribution has not been rejected.  

 

 

Fig. 3.4. Time to convergence to the Gamma distribution for different correlation coefficients. 

As we can see from Fig. 3.4, for the correlation coefficient value of 0.5|z(t)|2 converges to 

a stationary solution with a pre-defined precision of ε < 0.1 faster than for the value of 0.9, 
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however, the convergence has been obtained for all ρ values. This means that Equation (3.7) 

can be used to estimate the price of a financial asset with autocorrelated returns and set the 

respective values for risk measures.  

Summary of the third section 

A continuous time diffusion model for stock returns with serial correlation is developed in 

this work. Next, a formula for European call option pricing is obtained for the case when an 

option contract is written for a stock with autocorrelated returns. It is demonstrated, that even 

a small serial correlation creates partial predictability and leads to substantial deviations from 

the results of the Black-Scholes formula. Furthermore, the formulas are expanded for 

sensitivity parameters of the European call option price, and it is shown that hedging 

parameters widely used in financial risk management are dependent on assumptions about 

return correlations of the underlying asset. This approach can be used also for discrete time 

differential equations in the cases when volatility is stochastic or modelled with a GARCH 

process.  
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4. USE OF AUTOCORRELATION FOR DETERMINING 

OPTION PRICE  

Last year, extensive discussions about an option with a very small execution probability 

(deep out of money) took place [44]. Some experts suggest that insuring some asset prices 

(writing option contracts) and selling lottery tickets provides positive investment returns in 

various investment sectors. There exist plentiful strategies in financial markets that describe 

insurance and lotteries. The main question is whether investors can improve their long-term 

earnings by buying or selling insurance and lottery or, respectively, using financial 

transactions with insurance or lottery return structure. The answer is contingent on market 

price asymmetry or from whether investors evaluate price asymmetry relative to the mean 

value. Price fluctuations both in the left tail (insurance) and the right tail (lottery tickets) 

increase long-term returns. However, insuring low-probability risks of option contracts and 

holding lottery-type investments with high volatility lead to lower long-term returns.  

 Further, we would like to suggest a way [46], [47] of analyzing gains and risks from 

option contracts based on the non-linearity of low-probability regions (GARCH model) using 

stock price dynamic of Tesla Motors Inc. as an example. The main idea is to use 

autocorrelation effect in the stochastic differential equation (expressed through a diffusion 

approximation with stochastic volatility described in GARCH(1, 1) form) approaching 

continuous time.  

                                        Table 4.1 

Repricing of an Option of Tesla Motors, Inc 

Option price Black–Scholes equation Studied  

Maturity 1 year 1 year 

Strike 380 USD 380 USD 

Volatility 57 % 35 % 

%  1 % 1 % 

Price 5.22 USD 1.36 USD; if ρ = 0.2 

  102.5 USD; if ρ = 0.9 

 

A security portfolio manager, risk analyst or any other person selling option contracts can 

use the results of Table 4.1 in the decision-making process. As we see from the table, the new 

estimation of Tesla Motors Inc. stock price with a low autocorrelation coefficient is lower 

than offered in stock market. This result is invalidated if a higher value of the coefficient is 

used. In the case of a small autocorrelation coefficient, Equation (4.7) with volatility 

estimation using GARCH(1, 1) process suggests to sell European call option of Tesla Motors 

Inc., since its price is valued too high by markets.  
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RESULTS AND CONCLUSIONS 

The main purpose of the Thesis was to develop forecasting methods using stochastic 

models with Markov switches. The objective of the method is to construct models accounting 

for residual correlations and considering “heavy tails” and “high peaks” in sample 

distributions. Such non-parametric model construction method using conditional moments of 

copula density function has huge potential for application in forecasting of financial, 

macroeconomic and insurance time series. Isolating correlations in model residuals and their 

further evaluation helps to estimate prices of derivative instruments more accurately. To reach 

the main goal of the promotion work, the following tasks have been proposed: 

 to develop a method of constructing autoregressive model based on copula-type 

relations; 

 to develop a method for incorporating the balance correlation into a stochastic 

differential equation and a transition to continuous time in order to study the stationary 

of this equation; 

 to introduce a correction for correlation in the D. Nelson’s conditional variance risk 

management model in the discrete time; 

 to analyse the impact of correlation of observation errors on the Black-Scholes model 

parameters and recalculate the hedging factors. 

The aim of the promotion work has been achieved and the objectives of the promotion 

work were fulfilled. 

1. A non-parametric Markov model has been defined and a method for finding other 

densities of this model using Archimedes type couplings has been developed. 

2. Using Markov model with a separated correlation coefficient, GARCH(1, 1) model 

balances have been modified and the method of incorporating balance correlation has 

been introduced. 

3.  The Heston model sampling method has been developed. 

4. In addition, to check the practicality of the method used in Point 2, convergence of 

GARCH (1, 1) model has been tested for stationary and Gamma distribution, taking 

into account the correlation coefficient. 

5. Using the autocorrelation correction model (Point 2), the Black-Scholes option-pricing 

model and the Option Greeks associated within it have been transformed. This formula 

allows for more accurate pricing, given the heavily tail asset yields. A summary of the 

autocorrelation method has been considered, based on stock option techniques of 

Tesla Motors Inc. and with Monte Carlo’s simulation of the expected volatility and 

option pricing. The defined system helps to create its own view of the financial market 

situation, option prices and make a reasoned decision regarding the buy/sell decision 

of shares or options. 
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