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Abstract – The article shows the relevance of the application of 
discrete models of rod structures of radio-electronic means (REM) 
for the study of their behaviour under transient loading. A discrete 
model of the propagation of harmonic waves in the rod and the 
study of standing waves are proposed. Computational experiments 
using the proposed model are conducted. The results show that the 
model accurately reflects qualitative dynamics of the physical 
processes in the elastic rod while the waves of elastic deformations 
are passing through. The proposed models are used for software 
implementations of systems of mechanical simulation of the 
behaviour of rod structures. 
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I. INTRODUCTION 
In [1], the need to study the dynamics of rod structures of 

radio-electronic means (REM) mounted on mobile carriers is 
noted. The problems of using mathematical modelling techniques 
for research of physical processes in rod elements under the 
influence of a short-term shock pulse are considered. The losses 
of energy in the body of the rod are not taken into account, and it 
is considered that the pulse keeps its shape and amplitude 
unchanged for all the movement along the rod [2], [3]. 

In the present article, we consider the case when not a single 
pulse, but a periodic motion is set at one end of the rod (or both), 
which will be distributed along the rod with a finite velocity. 
Therefore, all other points of the rod will gradually make the 
periodic motion at the same frequency, and as a result of the 
energy losses, oscillation amplitudes of individual points of the 
rod will gradually decrease at the distance from the point, which 
is driven to oscillate. Such oscillatory motions propagating 
along the rod, gradually fading, belong to the class of wave 
motions or waves [2]. 

Article [1] shows the developed discrete model for the study 
of the propagation of a single displacement pulse in the elastic 
rod under the edgewise impact. The energy loss is not taken into 
account. In [2], [4] the model of an “infinitely long” non-fading 
rod is used for the study of wave propagation in the rod. The 
real rod elements of REM structures have finite length, and one 
must take into account all the factors that characterise the 
dynamics of wave processes during the propagation of elastic 
waves in the rod. The appropriate model adequate to these 
processes is needed. 
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II. DEVELOPMENT OF THE DISCRETE PROPAGATION MODEL 
FOR THE ELASTIC WAVE OF DISPLACEMENT IN THE ROD 

Let us consider the equation of the rod motion under the 
forced oscillations. Let us suppose that the left end of the length 
l is fixed, while the right end is free and oscillates according to 
the law tUu ωsin0=  in the direction of the rod length (Fig. 1). 

 
Fig. 1. Geometrical model for the rod. 

These fluctuations (as well as a separate longitudinal pulse) 
will be transmitted along the rod from one layer to another: the 
elastic longitudinal wave will run along the rod. Each point of 
the rod, being at a distance xi from the beginning, will make the 
same harmonic motion, as the starting point, but in this 
movement, it will fall to the time required for the propagation 
of the wave at a distance xi. This time is equal to xi /v, where v 
is the speed of propagation of the wave along the rod [5]. Such 
a harmonic motion of individual points (cross-sections) of the 
rod, extending along the rod with a certain speed, is called a 
harmonic traveling wave. 

Longitudinal vibrations arising in the rod are described by 
the wave equation [6]–[8]: 
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where u(x, t) is the offset of the current cross-section of the rod 
along the axis x; E is  the Young’s modulus; ρ  is the material 
density. 

Since during the propagation of the traveling wave the 
oscillation energy is gradually dissipated as a result of internal 
friction [7], [9]–[11], we will take into account the loss of 
energy in the form of a dissipative force proportional to the rate 
of deformation in (1), and add an external force F(x, t) to the 
right side, exciting vibrations in the end section of the rod  
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(Fig. 1). Then the equation of the forced longitudinal 
oscillations of the rod can be written as follows: 
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where η  is the material viscosity coefficient. 
In accordance with the method of finite differences, we 

construct a geometric discrete model for the rod consisting of N 
nodes, connected by elastic couplings (Fig. 2). 

 
Fig. 2. Discrete model for the rod. 

Replace the first time derivative in the left part (2) by its 

difference analogue and put it in (2) – ( ) 2
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equation (2) can be written as: 
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where τ  is a time sampling rate, and force F(x, t) is taken into 
account in the initial conditions. 

Expanding the brackets and grouping similar terms in (3), we 
obtain: 
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Given that the second derivative of displacement with respect 
to time is the acceleration a of the node, let us write (4) in the 

form of 2

2

t
ua

∂
∂

= , and by replacing the second derivative with 

respect to time by the difference analogue, we get: 

( ) ( ) ( )τ2ττ2 −+−+= tututua xxx . (5) 

Let us transform (5) in the form of the explicit difference 
equation: 

( ) ( ) ( )ττ2τ2 ++=−−+ tututua xxx , (6) 

which, being complemented by the boundary and initial 
conditions, forms a clear difference scheme, giving the 
calculated rod model in conjunction with the geometric model, 
which is simply realised by a computer. 

The degree of information reliability obtained in discrete 
models must be confirmed by the research materials of models 
after their design and construction of algorithms [12]–[15]. 

The article presents the research results of the rod structure 
model, conducted with the help of computational experiments. 
Numerical solutions obtained by the developed models for a 
number of tasks are compared with the known analytical 
solutions of these problems, and the degree of the model 
accuracy is assessed. 

III. COMPUTATIONAL EXPERIMENTS 
In the computational experiments, the process of passing of 

the displacement harmonic traveling wave along the rod has 
been investigated, and the distribution of the displacement 
amplitudes by length at different frequencies of normal 
vibrations and under different conditions of fixing the ends of 
the rod (a cantilever rod, a rod with fixed ends) has been 
defined. 

We have investigated the formation of standing waves in the 
rod (the link of this fact with the resonance phenomenon is 
described in [2]); the conditions, in which the amplitude of the 
standing wave in the antinode of a given displacement 
amplitude of the rod ends will be maximum, are described. 

Task 1.  We have considered the case when the ends of the 
rod are under different conditions: the left end of the rod of 
l = 1500 mm length is fixed rigidly, the right end is free and 
performs the harmonic motion according to the law u = U0 sinωt 
in the direction of the rod length (Fig. 3). 

 
Fig. 3. The experimental scheme. 

The problem considered in [15] shows that in this case such 
displacement amplitude distribution is only possible, when the 
antinode is formed at the free end, and the node is formed at the 
fixed end. This condition is satisfied only when the rod length 
fits the odd number of the wave quarters, i.e., the wave lengths 
corresponding to different harmonics satisfy the relation 

klk 4λ = , where k = 1, 3, 5 … (2n−1) (n is any integer). 
In modelling, the program evaluates 1, 3 and 5 natural 

frequencies of longitudinal vibrations of a cantilever rod by the 
analytical formula [16]: 
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where I = n. 
Further, fluctuations are defined in series at each frequency 

at the free end of the rod. The solving goes on up to the standing 
wave formation in the rod. As a result, graphics for longitudinal 
vibrations of a cantilever rod are built (Fig. 4) for a single point 
in time. 

The graphs in Fig. 4 show that a standing wave of 
displacements is set at each oscillation frequency of the external 
action in the rod, and the displacement amplitude at the free end 
is equal to the amplitude of the external action, and a 
displacement node is mounted at the fixed end. In general, the 
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distribution of the displacement amplitudes along the length of 
the rod, and the relative position of nodes and antinodes 
correspond to the first (Fig. 4a), the third (Fig. 4b) and the fifth 
(Fig. 4c) harmonica, which fully corresponds to the picture of 
the analytic solution given in [17]. 

 
а)                 b)                   c) 

Fig. 4. Forms of longitudinal vibrations of the rod. 

Task 2. The nature of the normal oscillations of the rod is also 
dependent on its edge conditions [15], [18]. Task 1 considers 
the case when the conditions at the ends of the rod are different. 

Here, we consider the case when both ends of the rod are in 
the same conditions, namely, both are fixed (Fig. 5). 

 
Fig. 5. Scheme for the rod attachment. 

The force acts at the right edge of the rod through the 
fixation, transmitting to it the harmonic motion with a 
predetermined amplitude, frequency and phase. 

The rod length is l = 1500 mm. The second natural frequency 
of the longitudinal oscillations (according to formula [3]) is f2 = 
3459 Hz (taken as an example). The right edge of the rod is 
driven at this frequency through the fastening; the harmonic 
wave will propagate along the rod with the same speed as in the 
rod with free ends. Distribution of displacement amplitudes 

along the rod is given by the expression 
l
xnπsin , where n = 1, 

2, 3…. This expression allows us to establish which distribution 
function corresponds to a harmonic [19]. 

There is 
2
λnn  of the wavelength for such an attachment to 

fit the length of the rod, where nλ  is the wavelength 
corresponding to a given value n. In [2]–[6] it is shown that 
n = k, where k is a wave number, and if n = k = 2 (the second 
natural frequency), the wavelength is l=2λ , and lπυ2ω2 =  
is the angular frequency, i.e., it corresponds to the second 
harmonic. This means that k of half-waves of the k-th harmonic 
is placed over the length of the rod. 

The solution is obtained by the model, and the displacement 
amplitude distribution graph is plotted, which corresponds to 
the second harmonic of vibrations (Fig. 6): two half-waves are 
placed along the length of the rod. 

 
 
 
 

There is a displacement node at the left fixed end, and at the 
right end, where the disturbance is given, the node of the formed 
wave is shifted inside (towards the left edge) by the grid length 
of only 0.0625, i.e., close to the right end of the rod, and when 
it falls in the right wing node of the model under fluctuations, 
the second harmonic form is obtained (Fig. 6). Since there are 
displacement nodes at both ends of the model, the amplitude at 
the wave antinode is as large as possible, namely, it is 10 µm in 
comparison with 0.3 µm amplitude of external disturbance  
(Fig. 6). 

 
Fig. 6. The shape of the rod oscillations with fixed ends. 

The modelling results of the study are fully confirmed by the 
analytical solution of this problem given in [2], [5]. 

Task 3. The formation of standing waves under longitudinal 
vibrations in the rod has been studied. We have used the model 
of the rod with rigidly fixed edges (Fig. 5). Sinusoidal 
oscillations have been given to the extreme left and right model 
nodes, either in phase or in antiphase, with the same amplitude. 

Two harmonic traveling waves will extend towards each 
other under this impact on the rod, and the vibrations of each 
cross-section of the rod (or the model node) can be regarded as 
the composition of two traveling waves. By attaching 
conditions, each traveling wave forms the form node at the 
opposite end (Fig. 6), so the addition of two waves gives a 
standing wave. The amplitudes of the standing waves in the 
antinodes reach a maximum, when the conditions at the ends of 
the rod are the same, and the frequencies of the rod normal 
vibrations and the frequency of external force acting on the rod 
coincide. 

According to analytical formula [3], the first four natural 
fluctuation frequencies of the rod fixed at the ends of  
l = 1500 mm length, are identified: f1 = 1729 Hz, f2 = 3459 Hz, 
f3 = 5188 Hz, f4 = 6198 Hz. 

Fluctuations with these frequencies have been set 
consistently on both ends of the rod in phase and in antiphase. 
Figure 7 shows a picture of the standing wave formation for all 
cases of external action. 
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a) 

 
b) 

 
c) 

 
d)

Fig. 7. Distribution of displacement amplitudes during the standing wave formation in the rod.

  



Applied Computer Systems 

________________________________________________________________________________________________ 2018/23 
 

139 
 

Fluctuations with these frequencies have been set 
consistently on both ends of the rod in phase and in antiphase. 
Figure 7 shows a picture of the standing wave formation for all 
cases of external action. 

As seen from Fig. 7, a standing wave with large amplitude in 
the antinodes is formed in odd harmonics under the same 
conditions at the end of the rod: fluctuations in the phase (Fig.7a 
and Fig. 7c). During vibrations of the ends in antiphase 
(different conditions at the ends) odd harmonics are absent, and 
the amplitude of the formed waves does not exceed the 
amplitude of external force (Fig. 7c). 

Even harmonics (f2, f4) form a standing wave of significant 
amplitude when the ends of the rod vibrate in antiphase  
(Fig. 7b, d), and if the ends vibrate in phase, then the amplitude 
of the resulting oscillation is not more than the external force 
amplitude (Fig. 7b and Fig. 7d). 

The modelling results are consistent with the results of 
analytical studies and indicate under what conditions the forced 
oscillations can be obtained in the rod, which frequency and 
amplitude distribution will be close to the frequency and 
amplitude distribution of one of the normal vibrations of the 
rod. These normal oscillations are identical with the standing 
waves that can occur in a continuous system. 

The emergence of the standing waves of significant 
amplitude in the rod under the action of a harmonic external 
force is the resonance phenomenon, the analysis of which in rod 
structures of REM is an urgent task. 

IV. CONCLUSION 
The conducted research of the suggested model of the rod 

structure has shown that the model reflects qualitatively 
correctly the dynamics of the physical processes occurring in 
the elastic rod under the forced oscillations. The proposed 
models are used for software implementation of systems of 
mechanical simulation of the behaviour of rod structures. 
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