
Applied Computer Systems

38

ISSN 2255-8691 (online)

ISSN 2255-8683 (print)

May 2019, vol. 24, no. 1, pp. 38–48

https://doi.org/10.2478/acss-2019-0006

https://content.sciendo.com

©2019 Esingbemi Princewill Ebietomere, Godspower Osaretin Ekuobase.

This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

A Semantic Retrieval System for Case Law

Esingbemi Princewill Ebietomere1, Godspower Osaretin Ekuobase2*

1, 2 Department of Computer Science, University of Benin, Benin City, Nigeria

Abstract – Legal reasoning, the core of legal practice in many

countries, is “stare decisis” and its soundness is usually

strengthened by relevant case law consulted. However, the task of

relevant case law access and retrieval is tiring to legal practitioners

and constitutes a serious drain on their productivity. Existing

efforts at addressing this problem are conceptional, restrictive or

unreliable. Specifically, existing semantic retrieval (SR) systems

for case law are desirous of exceptional retrieval precision.

Ontology promises to meet this desire, if introduced to the SR

system. As a consequence, an ontology-based SR system for case

law has been built using the systems analysis and design

methodology. In particular, the component-based software

engineering and the agile methodologies are employed to

implement the system. Finally, the search and retrieval

performance of the resultant SR system has been evaluated using

the heuristics evaluation method. The retrieval system has shown

to have a search and retrieval performance of about 94 %

precision, 80 % recall and 84 % F-measure. Overall, the paper

implements the SR system for case law with excellent precision and

affirms the superiority of ontology approach over other semantic

approaches to SR systems for document retrieval in the legal

domain.

Keywords – Case law, document retrieval, heuristic evaluation,

semantic retrieval.

I. INTRODUCTION

Law has remained an indispensable part of man and every

society, and organisation has not only become a product of law

but is now also intrinsically and intricately operated by it. The

intricate nature of law [1]–[5] has made the administration of

justice, interpretation of law, trial of offenders and adjudication

complex and time consuming [6], [7]. Computational law

attempts to leverage the complexity and inefficiency

bedevilling the legal system using computing [3], [8]; with a

view to complementing or replacing legal experts [8]–[15].

The success achieved in the field of Artificial Intelligence

(AI) particularly in building expert systems in various domains

such as medicine and biotechnology amongst others made it

apparent that human expertise could be substituted with systems

codifying the human expert’s know-how. The legal profession

did not also escape this admiration for experts’ know-how

codification [9] and, as a result, the research efforts in

computational law were geared towards codifying legal

expert’s know-how [1], [11], [13], [16]–[18]. Codifying legal

expert’s know-how is salutary but the adoption of its resultant

systems will be seriously threatened by the nature of law and

the legal practice [5], [19]. Basically, rules and discretions are

two “desiderata” deployed in legal practice [6], [7], [20], [21].

Codifying rules may be easy but that of discretion is herculean

* Corresponding author’s e-mail: godspower.ekuobase@uniben.edu

[5], [22]. Exercising discretion particularly in the legal

profession is not an easy task because it is strongly dependent

on plain wisdom, experience, contextual and socio-political

influences [2]–[6]; and these factors are diverse and vary widely

across people, culture and time in history. This may bring the

systems that codify legal expert’s know-how to infamy.

Furthermore, these systems may receive resistance from

legal experts because of the fear of being replaced by them in

addition to the fear of leaving the legal practice in the custody

of non-legal experts. We may, thus, be faced with a scenario

where systems of codified legal expert’s know-how are

developed with a huge amount of money and effort but never

used; for no matter how beautiful a technology is, if rejected, it

is as good as not being in existence [23]. It behoves

computational law experts, therefore, to pursue building

systems that will complement rather than replace the legal

experts in order to avoid building systems that may never be

used.

This paper though frowns at building systems to replace legal

experts semantically represents an important instance of legal

information – case law; since semantic representation of legal

information is critical to building systems that can complement

or replace legal experts [24]. This is not the first time case law

is semantically represented [1], [11], [16], and [25]. However,

some of these prior semantic representations were geared

towards codifying the case law construction process [1], [14],

and [17]. However, case law as a legal construct is not only a

function of legal rules but also a function of the skill set,

experience and plain wisdom of the legal experts [6], which

make the codification of its construction process demanding

and unreliable. Consequently, this paper does not toe the path

of the likes of [1], [14] and [17].

Legal reasoning, a critical part of legal practice, is strongly

case-based, i.e., “stare decisis” [3], [6], [14], [18], and, thus,

legal reasoning and judicial verdicts are both strengthened but

further complicated by available case law that obviously

increases with time in every judicial system. The study [26]

established that the efficiency and the effectiveness of legal

reasoning processes and judicial verdicts were influenced by

how case law was stored, accessed and retrieved; and

clamoured alongside the likes of [2], [3], [8], [13], [14], [18],

and [24] for a semantic representation of legal information.

These experts showed that only such a representation would

allow for an excellently efficient and effective processing or

handling of legal information by both man and machine.

A typical case law consists of two major parts: the “ratio

decidendi” and the “obiter dicta” [1], [6], [7]. The ratio

Applied Computer Systems

__ 2019/24

39

decidendi encompasses both the principles of law on which a

judicial verdict was based and the verdict itself; while the obiter

dicta hold the facts that were not considered in a case to arrive

at a judicial decision. Some of the existing works that involve

semantic representations of case law [1], [11], [12], [16], [25]

only considered case law in either of its parts – ratio decidendi

or obiter dicta. This paper semantically represents case law

without excluding any of its parts.

The representation mode of case law (or any document

repository) defines the means of retrieving them, i.e., the

retrieval system. In many countries, case law retrieval systems

are predominantly manual, or where electronic, such a system

is syntactic in nature. Manual retrieval system is cumbersome

and tiring to legal practitioners. The problem with syntactic

retrieval system is that most of the search results are irrelevant

and so much man hour is wasted on manually screening the

search result to obtain the relevant documents [26], [27].

Obviously, these retrieval systems constitute a serious drain on

the productivity of legal practitioners. A semantic retrieval

system for case law is therefore imperative for efficient and

more effective legal practise.

The issue of effective and efficient storage, access and

retrieval of information is particularly of great concern to the

domain of law not only because this domain is purely

information driven but also because the domain guarantees the

sanity and sanctity, and hence the survivability of the society or

organisation it operates. Besides, in line with the popular slogan

that “Justice delayed is justice denied”, and for the fact that the

soundness of legal reasoning and judicial verdict in many

countries is a function of the quality of information at the

disposal of legal experts, the efficiency and effectiveness of

legal information retrieval are grave. Moreover, the fact that

legal reasoning and judicial verdict can be based on existing

case law – a critical legal information – which increases with

time, makes an efficient and effective case law retrieval system

of colossal value to legal experts.

As a consequence, this study has designed, implemented and

evaluated a semantic retrieval system for case law. The

semantic retrieval system is a desktop application and hence

does not concern itself with the security, reliability and

scalability issues associated with large-scale distributed

systems. This paper also restricts itself to textual information

since law is basically text-based.

The remaining part of the paper is organised as follows. The

next section holds the review of related semantic information

retrieval systems in the domain of law. While Section 3 holds

the proposed system’s architecture, specification and design,

Section 4 describes the materials and methods of

implementation. Section 5 provides the evaluation of the

resultant semantic retrieval system. Section 6 holds the

conclusion and suggestion for further studies.

II. RELATED WORK

The study [1] designed a conceptual retrieval system for case

law with the objective of semantically retrieving arguments

(ratio decidendi) and parts of argument from case law. The

author employed Toulmin pattern of argument (a Toulmin

model for argument representation) and was able to

demonstrate the feasibility of conceptual retrieval of argument

from case law. The system was however not implemented and

thus its search and retrieval performance could not be

ascertained. The information retrieval (IR) system, though

semantic, only considered the ratio part of case law, which

limited the information need of case law searchers.

The authors of the research [28] developed a system for

managing case law. The objective of their work was to provide

the user with the previous case law similar to a particular case

law – the search item. They employed Case Retrieval Nets (a

case-based reasoning technology) to index cases and used a

combination of information extraction techniques with

ontology to conceptualise the domain for knowledge sharing.

This work, however, restricted the search need of case law

searchers to history of known case law. The retrieval

performance of the system was not evaluated.

The authors of the study [11] developed a History Assistance

System. Their objective was to extract information such as

named entities and judges’ ruling in a case law from a citator

database and to determine which cases in the same appellate

chain were immediately impacted by the rulings. They

employed a natural language approach (grammar and lexicon)

and a machine learning technique (Support Vector Machine).

This work also restricted the search need of case law searchers

to history of known case law.

The studies [12] and [25] (both works appear technically

equivalent) developed a system for the retrieval of tort/liability

case law for the Netherlands using thesaurus. Thesaurus is a

weak conceptualisation of domain concept and this obviously

accounts for the poor correctness or reliability of the retrieval

system.

The authors of the research [27] proposed a legal ontology

framework. The objective of the work was to make available a

robust ontology for legal information (normative documents

and judicial cases) retrieval. They posited that ontology

framework could enhance the retrieval precision of legal

information though did not put this into practice or use.

Overall, the existing Semantic Information Retrieval

Systems for case law are, on the one hand, conceptional and, on

the other hand, unreliable or restrict user search needs. This

paper uniquely designed and implemented a reliable Semantic

Information Retrieval System for case law with no restriction

on user search needs. This system will hereafter be referred to

as “Law-Torch”.

III. THE SYSTEM ARCHITECTURE AND DESIGN

The necessity of prompt and accurate retrieval of case law by

legal practitioners coupled with the limitations of existing case

law retrieval architectures – restricted user need, imprecise and

incomplete retrieval of case law birthed the Semantic

Information Retrieval (SIR) architecture named “Torch”. The

proposed Torch architecture depicted in Fig. 1 is generic

semantic retrieval architecture.

Applied Computer Systems

__ 2019/24

40

Fig. 1. The proposed Torch architecture.

The proposed Torch architecture consists of the five main

parts – User Interface, Natural Language Processor (NLP),

Search Engine, Knowledge Base (Ontology and Lexicon) and

Corpus – highlighted as follows:

i) User Interface: the user interface allows the user to

enter his or her information need in natural language

and allow the user to view the search result. The

information need supplied by the user is sent to the

search engine as a character string.

ii) Search Engine: the Torch search engine is the hub

of the architecture. The search engine sends the user

information need to the NLP for processing and

query generation, collects the query and matches

them with the knowledge base and thereafter

retrieves from the corpus the case law returned by

the matching process. This retrieved case law is then

returned as the search result for display on the user

interface.

iii) NLP: NLP handles the transformation of the user

information need to query in Torch. The output of

this process is returned to the search engine as

query – a set of concepts.

iv) Knowledge Base: the knowledge base here is

composed of ontology and lexicon. The role of

ontology in Torch is that of an index to the Corpus

while the lexicon is used for disambiguation

(handles polysemy and synonymy) of concepts in

the ontology.

v) Corpus: this is simply the electronic repository of

case law usually in a particular format.

In particular, the functionality of the search engine – the

architecture’s hub – was specified using pseudocode as

captured in Algorithm 1.

A. The Law-Torch System’s Specification

Algorithm 1 specifies the implementation of the proposed

Torch architecture. The pseudocode was semantically spiced

using comments. For example, the 13th line of the pseudocode

is used to track the number of concepts in query returned by the

NLP.

1. need: String

2. sentence, result, query, case: <String>;

3. min, minInt, i, j, querySize: int;

4. countMatches: <int>;

5. caseName: <String<String>>;

6. need=getUserNeed();

7. invoke(NLP); //A natural language processor component

8. Do using NLP {

9. sentence = annotate(need);

10. sentence = tokenize(sentence);

11. query = lemmatize(sentence);

12. }

13. querySize = query.size(); // get number of concepts in query

14. loop i = 1 to querySize:: //get number of matches for each concept

15. match(query[i] with ontologyDir) →countMatches[i];

16. loop i = 1 to querySize:: //search for concept in ontology and retrieve matches

17. loop j = 1 to countMatches[i] ::

18. match(query[i] with ontologyDir)

→caseName[i].addMatches();

19. min = countMatches[1]; minInt = 1;

20. loop i = 1 to querySize:: // get concept with the least set of matches

21. if (countMatches[i]< min){

22. min = countMatches[i];

23. minInt =i;

24. }

25. case = caseName[minInt]; //least set of case names

26. j=0;

27. while (++j<=countMatches[minInt])::

28. foreach case[j]: caseName[i]:: //case[j] is a case name instance in

case

29. loop i = 1 to querySize::

30. result.addCase(); //result= ⋂ 𝑐𝑎𝑠𝑒𝑁𝑎𝑚𝑒[𝑖]
𝑞𝑢𝑒𝑟𝑦𝑆𝑖𝑧𝑒
𝑖=1 ;

31. display(result);

Algorithm 1: A pseudocode for implementing the proposed Torch architecture.

Details of the implementation of the proposed Torch

architecture for semantic retrieval of case law was exposed

using the Unified Modelling Language (UML) on the four basic

design views of software systems, namely: (i) functional view,

e.g., use case diagram, (ii) static structural view, e.g., class

diagram, (iii) behavioural (dynamic structural) view, e.g.,

sequence and activity diagrams, (iv) architectural view, e.g.,

component and deployment diagrams, which are captured in the

following sub-sections.

B. The Law-Torch System’s Use Case Diagram

The use case diagram shown in Fig. 2 is used to describe the

functionality of the proposed Torch architecture for

implementation from the user’s perspective.

Applied Computer Systems

__ 2019/24

41

Fig. 2. Use case diagram for the Law-Torch system.

The use case diagram consists of three actors represented by

stick persons: “Case Law Searcher”, “Ontology Engineer” and

“Case Law Manager”. The use case diagram also consists of

several operations represented by use cases (use Torch, display

search result, query processing, searching, search ontology

index, disambiguation, update ontology, update ontology index

and update case law corpus).

The Case Law Searcher triggers the “use Torch” operation,

which consists of “display search result” and “searching”

operations. The “display search result” operation extends

“searching” operation indicating that the search result cannot be

displayed until “searching” operation is completed. The

“searching” operation is made up of the “query processing” and

the “search ontology index” operations and returns the result

from these operations to the “display search result” operation.

The “searching” operation implicitly gets the user need as a

string of character, transfers it to the “query processing”

operation, which in turn returns a set of concepts, which is then

used to search the ontology index.

As a maintenance user, the Ontology Engineer updates the

ontology as more case law is generated. The “update ontology”

operation includes “disambiguation” and “update ontology

index” operations. Since the ontology is case law corpus

dependent, the “update ontology” operation depends on an

updated case law corpus; hence, “update ontology” operation

extends the “update case law” operation. The case law corpus

update is performed by the case law corpus manager.

C. The Law-Torch System’s Class Diagram

Figure 3 depicts the class diagram of the Law-Torch

system – a static view of the system in terms of its constituent

classes and their relationships (e.g., association and

generalisation). Five major classes as shown in Fig. 3 constitute

the system. The “GUI class” is responsible for the entering of

information need and displaying of the search result. This class

communicates with the “SearchEngine” class in two ways –

sends the user information need to the SearchEngine and

receives the result from the SearchEngine for display. The

“SearchEngine” class aggregates the “Searcher”,

“LuceneConstants”, and the “TestFileFilter” class to carry-out

its function. The role of the “Searcher” is to match query with

an ontology index and return documents in order of relevance.

The “LuceneConstant” class defines the retrieved document file

name and path name. The TestFileFilter ensures that the

retrieved documents are of type text (.txt).

Fig. 3. Class diagram for the Law-Torch system.

D. The Law-Torch System’s Sequence Diagram

As exposed in Fig. 2, two basic external operations – the

search and ontology update operations – can be performed with

the system at execution. Thus, two sequence diagrams are used

to describe the Torch system as shown in Figs. 4 and 5. While

Fig. 4 describes the behaviour of the system when used by the

Case Law Searcher for search, Fig. 5 describes its behaviour

when used by the Ontology Engineer for ontology update.

Fig. 4. Sequence diagram for the Law-Torch system’s search use.

As shown in Fig. 4, the Case Law Searcher launches the

“Torch Editor” and enters his/her information need in natural

language. When he/she hits the search button on the editor, the

search need is sent by the “Search Engine” to the “NLP” object

to process the information need. Once this process is completed

by the NLP, the processed information need (query) is sent back

to the Search Engine which activates the “Ontology” to check

for matches between the query elements and the ontology index.

The matches returned are then used by the Search Engine to

fetch the relevant case law from corpus, which is returned to the

Torch Editor for display.

Applied Computer Systems

__ 2019/24

42

Fig. 5. Sequence diagram for the Law-Torch system’s ontology update use.

As shown in Fig. 5, the “Ontology Engineer” launches the

“Ontology Editor” and requests new concepts to perform

update. These concepts are extracted from the “Updated

Corpus”. These concepts are then added to the “Ontology”.

Once the ontology update is complete, a “Lexicon” is invoked

to disambiguate the newly added concepts. On completion of

the disambiguation process, the ontology index is updated and

thereafter the ontology editor is closed by the “Ontology

Engineer”.

E. The Law-Torch System’s Component Diagram

The component diagram is used to show the various

components that make up a system, their interactions, and

dependency. Figure 6 shows various components of the Law-

Torch system.

Fig. 6. Component diagram for the Law-Torch system.

The “Torch GUI” component is the interface via which a user

enters information need and views the displayed results. The

“Search Engine” component uses the Stanford CoreNLP,

Lucene and Ontology components. The Stanford CoreNLP

component is used to transform the user information need to

query. The Stanford CoreNLP is chosen among other open

source NLP tools, such as Open NLP and NLTK, because it is

a light-weight Java-based simple annotation pipeline, platform

independent and integrates seamlessly with Eclipse (our IDE of

choice). Lucene is used by the SearchEngine to match the user

query to the ontology index for the retrieval of relevant case

law. Lucene engine is opted for among other engines like

Terrier and Nutch because it is platform independent, popular

with strong community support and more importantly it

supports ontology indexing. The “Ontology” component

provides the index to be searched for retrieval of case law. The

“Ontology” component uses another component called

WordNet (lexicon) for concept disambiguation. WordNet is

chosen among other lexicons like dictionaries because it can

handle disambiguation better than dictionaries for the fact that

it has its words arranged as synset (synonyms) – the reason why

WordNet is sometimes referred to as a lexical ontology.

IV. MATERIALS AND METHOD OF SYSTEM IMPLEMENTATION

After the specification and design of the Torch architecture,

the next step is to translate these artefacts into a working

system. The Torch architecture is component based, hence the

Component Based Software Engineering (CBSE) – a sub-

discipline of Software Engineering that provides methods,

models and guidelines for the developers of component-based

systems [29], [30] – has been used in the implementation of the

Torch architecture. CBSE emphasises the Component-based

Development (CBD) that deals with developing systems by

making use of pre-existing components [31], [32]. The primary

goal of the CBD is to create a complex architecture by reusing

a smaller and more manageable software element [33]. This

approach in many cases has proven to simplify software design;

it reduces time-to-market, lowers cost of development, allows

for effective management of complexity, increases

productivity, improves quality, brings about a greater degree of

consistency, eases maintenance, and widens the range of

usability [29], [33].

Using a CBD approach, it is important to note that much

implementation effort in system development is no longer

necessary, but effort is shifted to dealing with components,

locating the components, selecting the components that are

most appropriate for a specific task, integrating and testing the

components [31]. The CBD approach can be used with either of

the two main categories of software development process

model, i.e., the sequential model of which a classical example

is the waterfall model; and the evolutionary (iterative and

incremental) model of which an example is the agile model

[31], [34]. Though no software development process is a failure

and none is a silver bullet – each has its strengths and

weaknesses as well as project domain or nature of software

project it can best handle [29], [35]. The agile model has been

selected because it is best suited for visible systems, low-risk

projects, projects with blurred and unstable requirements,

small-to-medium sized projects and projects that are time-to-

market driven as shown in Table I [35] – these attributes are

inherent in the Law-Torch system’s project.

TABLE I
 SOFTWARE PROJECTS AND THE BASIC SOFTWARE

DEVELOPMENT APPROACHES [35]

Agile Software Development

Approach

Traditional Software Development

Approach

Visible systems Legacy/Embedded systems

Low risk projects High risk projects

Blurred and unstable requirements Explicit and fairly stable
requirements

Small-to-medium sized projects Large and complex projects

Time-to-market driven Product quality driven

Applied Computer Systems

__ 2019/24

43

The tailored agile approach, in Fig. 7 adapted from [35], is

the software development process for the Law-Torch system,

which explained as follows:

Fig. 7. An agile implementation model.

The design phase in Fig. 7 is labelled “Fluid Design” because

it is non-static and as such can be easily adjusted if a need arises.

Fluid design is followed by component (software component)

selection. Though there are different definitions adduced to the

concept “component”, this work aligns itself with the widely

accepted definition of the concept, which sees a software

component as a unit of composition with contractually specified

interfaces (has defined API and all assumptions in which the

component can work) and explicit context dependencies [29],

[30]. After selecting the necessary components, implementation

is carried out by gluing all the components selected into a single

working unit. Should there be issues as regards getting the

selected components to work together, the components are

reviewed and this could lead to adjusting the design to portray

the new stance. After a successful integration (implementation),

it is necessary to test the system to ensure all the components

glued together are working as expected. Issues arising at the

testing phase could lead to reviewing the implementation,

which in turn could lead to reviewing the selected components

that could result in adjusting the design. The process is

performed iteratively until a satisfactorily working system is

implemented. The afore-described agile process has been

judiciously followed in building the Law-Torch system.

In the development of the Law-Torch system, hardware and

software tools have been employed. These tools and the roles

they played in the system’s implementation are discussed as

follows.

• Hardware tools: the hardware is basically a personal

computer (PC), which serves as the host to all the

software tools used in the research. The PC is a Lenovo

notebook with the following specification:

Processor: Intel(R) Pentium(R) CPU N3540 @

2.16 GHz 2.16 GHz

Installed Memory (RAM): 4.00 GB

System Type: 64-bit Operating System, x64-based

Processor

Hard Disk space: 1 TB

• Software Tools: the software tools used for building the

Law-Torch system are discussed under the Operating

Systems, Development Platform, Language, Integrated

Development Environment (IDE), Editors and

Component as follows:

i) Operating System: Microsoft Windows 8 Pro edition

has been used. The Operating System enables the

Torch application and other software tools to interact

with the computer hardware devices.

ii) Development Platform: Java and .NET are two

outstanding development platforms for enterprise

application ([35], [36]). Java EE has been opted for

because of prior Java programming skill.

iii) Language: language here includes programming

language and modelling language. Java has been used

for knitting all the components of the Law-Torch

system together. Java has been opted for by virtue of

the fact that the development platform of choice for the

Law-Torch system is Java EE.

iv) Integrated Development Environment (IDE): IDE

makes programming easy, lithe and interesting [35],

[36]. There are several IDEs that support Java; these

include Eclipse, Netbeans, IntelliJ IDEA. The Eclipse

IDE has been chosen among other free IDEs like

NetBean, and IntelliJ IDEA because of its cross-

platform capability, extensible tool support, extensive

help and documentation, support for desktop Java

application and, most importantly, seamless

interaction among the selected components for the

implementation of the Law-Torch system.

v) Components: The software components used by the

Law-Torch system include: Natural Language

Processor, Lexicon and Search Engine. The natural

language processor has been used to transform the case

law searcher need to query, and it is popular among the

Natural Language Processing tools such as OpenNLP,

NLTK, UIMA, Stanford CoreNLP and GATE [37].

Stanford CoreNLP has been settled for because it is

Java-based, simple to use and light-weight [37].

Moreover, the Stanford CoreNLP is open source with

rich documentation and viable user support

community. Lexicons are linguistic resources that

contain words and their meanings. Lexicon is used in

the Law-Torch system for ontology disambiguation

and enrichment. Examples of lexicons are dictionaries

and WordNet. WordNet has been chosen among other

lexicons like dictionaries because it can handle

disambiguation better than dictionaries for its words

are arranged as synset (synonyms) – the reason why

WordNet is sometimes referred to as a lexical

ontology.

vi) Search Engine: There is a myriad of search engines

[38], [39]. The role of the search engine in the Law-

Torch system is to enable the search capability of the

system. The choice of search engine component for the

Law-Torch system has been incident on high

performance, light-weight, platform independent, ease

of use, strong community support and ability to handle

ontology indices. Apache Lucene – a powerful Java-

based search engine framework – has been chosen

among its rivals such as Nutch and Solr ([38]) because

it is best suited for adding search functionality to

desktop applications and far more light-weight as

compared to its rivals, which are full-fledge search

Applied Computer Systems

__ 2019/24

44

applications built on Lucene. Moreover, the Apache

Lucene search engine works seamlessly with the

platform of choice for the Law-Torch system. Apache

Lucene has been employed to enable the search of

query in the ontology index.

vii) Ontology: The ontology selected for the Law-Torch

system is topic ontology for case law – TONCL [40].

This ontology has been selected because of its

ontological commitment of case law retrieval.

A. Building the Law-Torch System

The components used in the Law-Torch system include pre-

existing reusable components and a self-tailored component

(ontology). The pre-existing reusable components are Apache

Lucene 3.6.2, Stanford CoreNLP 3.6.0 and WordNet 2.0. To

make the system work as a single unit, Eclipse IDE 4.5 has been

downloaded and installed. The Eclipse IDE requires an

appropriate Java Run-time Environment (JRE)/Java

Development tool-Kit (JDK), which has also been downloaded

and installed. JRE consists of libraries and files used by Java

Virtual Machine (JVM) – an abstract machine; at run-time. JDK

consists of JRE, compiler and tools (JavaDoc and Java

Debugger) to create and compile programs written in Java.

JRE/JDK 8 has specifically been used.

To use Apache Lucene version 3.6.2 in Eclipse IDE, several

necessary Java Archive (jar) files such as the lucene-core-

3.6.2.jar and lucene-queryparser-3.6.2.jar have been imported

for configuration in Eclipse IDE. A case of the configuration

build path of Apache Lucene 3.6.2 is shown in Fig. 8.

Fig. 8. Lucene configuration build path in Eclipse.

To use the Stanford CoreNLP version 3.6.0 component in the

Eclipse IDE, files like stanford-corenlp-3.6.0.jar and stanford-

corenlp-3.6.0-models.jar have been required for configuration.

A case of the configuration build path of Stanford CoreNLP

3.6.0 via the Eclipse IDE is shown in Fig. 9.

Fig. 9. Stanford Corenlp configuration build path in Eclipse.

The ontology component, a very important component of the

Law-Torch system employed, has been the TONCL [40].

Though there are other several ontologies in existence for the

legal domain [24], [26], [41] and [42], no one could be reused

because none was in alignment with our ontological

commitment of case law retrieval.

After successful configurations, the components for the Law-

Torch system have been knitted together through their

Application Programming Interface (API) as specified in

Algorithm 1, using the Java programming language. The

knitting has implemented the Law-Torch system; and has been

successful as shown in Fig. 10. Figure 10 depicts the successful

integration of the components of the Law-Torch system.

Fig. 10. Law-Torch component integration build path.

Several challenges have been faced in the course of making

all the components of the system work as a unit. The questions

as to what component tool to use to perform a particular task,

how well the component tool can perform the task (maturity of

the tool, documentation of the tool and popularity of the tool

etc.), how to configure the component tool to work with other

component tools and the compatibility (in terms of version,

operating system, and language etc.) of the component tool with

others have been a menace. There have been cases where some

component tools have been jettisoned after considerable effort

and success because they have not been performing well

enough, the desired format of input/output has been lacking in

the tool, poor documentation for conflict resolution, heavy

weight (tools with multiple scale-out may have unused part

interfering with the running of the system) thereby weighing the

system down, outdated, i.e., not currently maintained, files for

configuration are not readily available, or compatibility issues.

Painfully, some of these component tools have to be mastered

before you can ascertain if they are used or discarded.

V. SYSTEM EVALUATION AND RESULT

It has been pertinent to evaluate the Law-Torch system to

ascertain its retrieval performance. To do this, the Heuristic

Evaluation Method has been employed because it is reliable

though expensive [43], [44]. Three evaluators – legal

practitioners with less experienced practitioners called to the

Nigerian Bar in 2011 evaluated the system for relevance of

retrieved case law for the same set of structured search needs

covering topics in the area of land dispute, ownership, tenancy,

and damage amongst others as shown in Table II. The search

needs or queries have been jointly formulated by the evaluators

to sufficiently capture varying search needs of legal experts in

Nigeria. We then have made available hard copies of 280

Nigeria Supreme Court case law randomly selected from the

pool of corpus used to create TONCL for the system’s

evaluation experiment, to each of the evaluators to manually

and separately study and establish appropriateness of the given

Applied Computer Systems

__ 2019/24

45

case law to each of the search needs. Thereafter, the evaluators

were exposed to the Law-Torch in a training session. Each

evaluator then did their individual evaluation using the Law-

Torch system and recorded their results between 24 February

and 3 March 2017 and thereafter met as a team on 4 March 2017

to reconcile verdicts in consensus. The consensus verdict is

reported in Table II.
TABLE II

CONSENSUS VERDICT FROM THE HEURISTIC EVALUATION

Search need Case retrieved Relevant case

retrieved

No. of

releva
nt case

in the

corpus

Cases on land

dispute

Ogunmola v Eiyekole

Olagbemiro v

Ajagungbade Nwosu v
Chukwumanjo

Umeojiako v

Ezenamuo Idundun v
Okumagba Adomba v

Odiese

Are v Ipaye
Adelaja v Fanoiki

Ogunmola v

Eiyekole

Olagbemiro v
Ajagungbade

Nwosu v

Chukwumanjo
Umeojiako v

Ezenamuo Idundun

v Okumagba
Adomba v Odiese

Are v Ipaye

Adelaja v Fanoiki

11

Cases on
damage paid

on libel

Williams v
DailyTimesNigeria

Williams v
DailyTimesNigeria

1

Cases on

general

damages

AGO v Fairlakes

Amaye v ARE

Dumez v Ogboli

AGB v Aideyan

AGO v Fairlakes

Amaye v ARE

Dumez v Ogboli

AGB v Aideyan

4

Cases on land

tenancy

Ogunmola v Eiyekole

Olagbemiro v

Ajagungbade
Are v Ipaye

Ogunmola v

Eiyekole

Olagbemiro v
Ajagungbade

Are v Ipaye

4

Cases heard

under justice
Adolphus

Godwin

Karibi-Whyte

Animashaun v Olojo

Aruna v State

Animashaun v

Olojo
Aruna v State

6

Cases on

customary

tenancy

Ogunmola v Eiyekole

Olagbemiro v

Ajagungbade
Are v Ipaye

Ogunmola v

Eiyekole

Olagbemiro v
Ajagungbade

Are v Ipaye

3

Cases on land

and
ownership

Olagbemiro v

Ajagungbade
Nwosu v

Chukwumanjo

Umeojiako v
Ezenamuo

Tijani v Secretary
Idundun v Okumagba

Adomba v Odiese

Are v Ipaye

Olagbemiro v

Ajagungbade
Nwosu v

Chukwumanjo

Umeojiako v
Ezenamuo

Tijani v Secretary
Idundun v

Okumagba

Are v Ipaye

8

Cases that
border on the

constitution

of Nigeria

AGA v AGF
Tukur v State

AGF v AGA

Ogunmola v Eiyekole

AGA v AGF
Tukur v State

AGF v AGA

5

Cases on stay

of execution

Agbaje v Adeoti

Okoya v Santilli

Mohammed v Lasisi
Shodehinde v Islam

Agbaje v Adeoti

Okoya v Santilli

Shodehinde v Islam

3

Criminal

cases that are

on murder

Akilu v Fawehinmi

Nkanu v State

Adekunle v State
Ukwunnenyi v State

Ndu v State

Akilu v Fawehinmi

Nkanu v State

Adekunle v State
Ukwunnenyi v State

Ndu v State

6

Table II has four columns with the headings, “search need”,

“case retrieved”, “relevant case retrieved” and “number of

relevant cases in the corpus”; described as follows: for example,

for the first user search need stated as “cases on land dispute”,

a total of eight cases have been retrieved, all the eight cases have

been adjudged relevant by the evaluators, but there are a total

of eleven cases in the corpus that border on this subject

requested by the searcher according to the evaluators. Similar

explanation follows for the other search needs.

The consensus verdict from Table II has been subsequently

used to compute the system’s search and retrieval performance

using the system-based evaluation metrics [45]–[48] given in

Equations (1)–(3).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑
 ; (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠
 ; (2)

𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 . (3)

The results obtained after computation using the evaluation

metrics defined by Equation (1)–(3) are shown in Table III.

TABLE III

COMPUTED RESULT

Search Need No. Precision Recall F-measure

1. 1 0.73 0.843931

2. 1 1 1

3. 1 1 1

4. 1 0.75 0.857143

5. 1 0.3 0.461538

6. 1 1 1

7. 0.86 0.75 0.801242

8. 0.75 0.6 0.666667

9. 0.75 1 0.857143

10. 1 0.83 0.907104

Average 0.936 0.796 0.839477

For better appreciation, the Precision, Recall, Precision vs.

Recall and Recall vs. Precision graphs have been plotted as

shown in Figs. 11–14, respectively.

Fig. 11. Precision line graph of Law-Torch.

Figure 11 shows the line graph of precision over the ten

search needs presented to the Law-Torch system by the case law

searcher. The least precision values obtained are at points 8 and

Applied Computer Systems

__ 2019/24

46

9 with precision being around 0.75. While the maximum

precision of one occurs most often, the worst case precision of

about 75 % occurs less often. Figure 12 gives a clearer picture

of the precision performance of the Law-Torch system by

giving the line of best fit precision of the system.

Fig. 12. Precision vs. recall scatter graph for Law-Torch.

Figure 12 is the scatter graph of linear precision for the Law-

Torch. From the graph, it is evident that the average precision

of the Law-Torch system is about 0.94 irrespective of the recall.

Figure 13 shows the recall line graph for the Law-Torch over

the ten search needs presented to the Law-Torch system by the

case law searcher.

Fig. 13. Recall line graph of Law-Torch.

From Fig. 13, it is obvious that the recall at some points are

as high as 1 and at a point as low as 0.3. This recall result is

irregular and could be a possible source of improvement for the

Law-Torch system. With this graph, the recall performance of

the Law-Torch system could not be predicted; and we had to

plot a scatter graph of precision vs. recall as shown in Fig. 14.

Fig. 14. Recall vs. precision scatter graph of Law-Torch.

Figure 14 is the scatter graph of recall on the vertical axis and

precision on the horizontal axis. It is obvious from the graph

that the recall performance of the Law-Torch system is about

0.8; an indication that the recall performance of Law-Torch

system is about 80 %.

Thereafter, a linear graph of both precision and recall for the

Law-Torch is plotted as shown in Fig. 15.

Fig. 15. Linear graph of precision and recall of Law-Torch.

It is evident from Fig. 15 that the precision of the Law-Torch

system is consistently higher than its recall; a necessary

attribute of semantic search systems.

The linear graph of precision, recall and F-measure has been

plotted over the set of user need as shown in Fig. 16.

Fig. 16. Linear graph of precision, recall and F-measure for Law-Torch.

Figure 16 gives a complete description of the retrieval

performance of the Law-Torch system with the introduction of

F-measure, which leverages on the result of precision and recall

to give the overall performance of the system. The F-measure

is the harmonic mean of the precision and the recall of the

Law-Torch system. The harmonic mean has been chosen in this

case over other types of mean like the arithmetic mean and the

geometric mean because it helps mitigate the effect of outlier.

The bar graph of recall, precision and F-measure is also given

in Fig. 17 to aid the comprehension of how the Law-Torch

system performs relatively with the three basic retrieval

metrics.

Fig. 17. A Bar graph of recall, precision and F-measure.

A. Result Interpretation

From Table III, it is easy to appreciate that the precision or

retrieval reliability of Law-Torch is capable of 100 % precision,

70 % of the time with an average of about 94 %. For the recall,

which is expectedly lower than precision, the Law-Torch

retrieval system has a recall of 100 %, 40 % of the time with an

average recall of about 80 %. This clearly out-performed the

Applied Computer Systems

__ 2019/24

47

semantic retrieval system in [11], which made use of natural

language and machine learning approaches. In [11], a restricted

case law retrieval system – history assistant system – had a

maximum precision and recall of 94 % and 90 % respectively;

which rarely occurred. Their average precision and recall were

89 % and 78 % respectively. Similar analysis holds for [12],

[25], which used a thesaurus-based approach. We affirm,

therefore, that an ontology-based approach is most appropriate

for implementing a semantic retrieval system for case law.

It is also clear from Table III and Fig. 12 that the average

precision of the Law-Torch system is about 0.94 – meaning for

every search need posed to the system, 94 % of the retrieved

case law is always relevant. The recall of about 0.80 means for

every search need posed to the Law-Torch system, 80 % of the

total relevant cases in the corpus are always retrieved. The F-

measure of the system being about 0.84 means the average

retrieval performance of the system is about 84 %. Again, it is

evident that the system guarantees a search precision of 100 %

most of the time (see Fig. 11). The implication of the above

results is that the Law-Torch system is an excellent search and

retrieval system for case law.

VI. CONCLUSION AND SUGGESTION

FOR FURTHER STUDIES

Case law access and retrieval task constitutes a serious drain

on the productivity of legal practitioners. However, existing

efforts at relieving legal practitioner of this task are

conceptional, restrictive or unreliable. We have shown that an

ontology-based SR system is most appropriate to precisely meet

the unrestricted search needs of case law searchers. Ontology-

based semantic retrieval system for case law has been built. The

system named Law-Torch has shown to have a search and

retrieval performance of about 94 % precision, 80 % recall and

84 % F-measure – an indication that the Law-Torch is an

excellent (case law) search system capable of boosting the

productivity of legal practitioners. Furthermore, the research

affirms the superiority of ontology over other semantic

approaches for implementing document retrieval systems.

For real life deployment and use, the Law-Torch can be re-

engineered into a secured and robust digital library of case law

with its information base – case law corpus – expanded (and

regularly updated) to include available case law. Productivity

assessment of the use of the Law-Torch on legal practitioners

should be carried out to gauge its impact on the productivity of

legal practitioners.

REFERENCES

[1] J. P. Dick, “Conceptual Retrieval and Case Law,” ACM, pp. 106–115,
1991.

[2] J. Breuker, and R. Winkels, “Use and Reuse of Legal Ontologies in

Knowledge Engineering and Information Management,” ICAIL
Workshop on Legal Ontologies and Web Based Legal Information

Management. pp. 1–35, 2003.

[3] N. Love, and M. Genesereth, “Computational Law,” Proc. International
Conference on Artificial Intelligence and Law (ICAIL’05), Bologna, Italy,

pp. 205–209, 2005. https://doi.org/10.1145/1165485.1165517

[4] G. Lame, “Using NLP techniques to Identity Legal Ontology
Components: Concepts and Relations,” Artificial Intelligence and Law,

vol. 12, no. 4, pp. 379–396, 2006. https://doi.org/10.1007/s10506-005-

4160-3

[5] C. Stevens, V. Barot, and J. Carter, “The Next Generation of Legal Expert

Systems: New Dawn or False Dawn?, ” in M. Bramer, M. Petridis, and A.

Hopgood (Eds.) Research and Development in Intelligent Systems XXVII.
SGAI 2010, Springer-Verlag London, 2010. https://doi.org/10.1007/978-

0-85729-130-1_33

[6] N. I. Aniekwu, Legal Methodology and Research in Nigeria: An
Introduction. Mindex Publishing, 2001.

[7] O. Aigbovo, Introduction to Nigerian Legal system. Sylva Publishing Inc.

2009.
[8] H. Andersson, “Computational Law: Law That Works Like Software,” In

R. H. Lee (Ed), CodeX- The Stanford Center for Legal Informatics.

codex.stanford.edu. p. 25, 2014.
[9] R. Gruner, “Thinking Like a Lawyer: Expert Systems for Legal Analysis,”

Berkeley Technology Law Journal, vol. 1, no. 2, pp. 259–328, 1986.

[10] D. H. Berman, and C. D. Hafner, “The Potential of artificial intelligence
to help solve the crisis in our legal system,” Communications of the ACM,

vol. 32, no. 8, pp. 928–938, 1989. https://doi.org/10.1145/65971.65972

[11] P. Jackson, K. Al-Kofahi, A. Tyrrell, and A Vachher, “Information
Extraction from Case Law and Retrieval of Prior Cases,” Artificial

Intelligence Journal, vol. 150, no. 1–2, pp. 239–290, 2003.

https://doi.org/10.1016/S0004-3702(03)00106-1
[12] E. M. Uijttenbroek, A. R. Lodder, M. C. A. Klein, W. G. Rildeboer, W.

V. Steenbergen, R. L. L. Sie, P. E. M. Huygen, and F. van Harmelen,

“Retrieval of Case Law to Provide Layman with Information about
Liability: Preliminary Results of the BEST-Project ,” Computable Models

of the Law, LNCS, vol. 4884, pp. 291–311, 2008.

https://doi.org/10.1007/978-3-540-85569-9_19
[13] A. Wyner, and R. Hoekstra, “A Legal Case OWL Ontology with an

Instantiation of Popov v. Hayashi,” The Knowledge Engineering Review,

vol. 14, no. 2, pp. 1–24, 2010.
[14] A. Wyner, R. M. Palau, M. F. Moens, and D. Milward, “Approaches to

Text Mining Arguments from Legal Cases”, in Lecture Notes in Computer

Science LNCS, vol. 6036, pp. 60–79, 2010. https://doi.org/10.1007/978-

3-642-12837-0_4

[15] V. M. Naik, and S. Lokhanday, “Building a Legal Expert System for Legal

Reasoning in Specific Domain- A Survey,” International Journal of
Computer Science & Information Technology (IJCSIT), vol. 4, no. 5,

pp. 175–184, 2012. https://doi.org/10.5121/ijcsit.2012.4514

[16] E. L. Rissland, D. B. Skalak, and M. T. Friedman, “Case Retrieval
through Multiple Indexing and Heuristic Search,” IJCAI, vol. 2,

no. 901–908, 2003.

[17] E. L. Rissland., K. Ashley, and K. Branting, “Case Based Reasoning and
Law,” The Knowledge Engineering Review, vol. 20, no. 3, pp. 293–298,

2006. https://doi.org/10.1017/S0269888906000701

[18] P. Condliffe, B. Abrahams, and J. Zeleznikow, “An OWL Ontology and
Bayesian Network to Support Legal Reasoning in the Owners

Cooperation Domain,” 2010. Available from: http://www.abs.gov.au,
[Accessed 14 August 2013]

[19] R. L. Marcus, “The Impact of Computers on the Legal Profession:

Evolution or Revolution?” Northern University Law Review. vol. 102,

no. 4, pp. 1827–1865, 2008.

[20] K. B. Mensah, “Legal Control of Discretionary Powers in Ghana: Lessons

from English Administrative Law Theory”, Africa Focus, vol. 14, no. 2,
pp. 119–140, 1998. https://doi.org/10.21825/af.v14i2.5549

[21] W. Lacey, “Judicial Discretion and Human Rights: Expanding the Role of

International Law in the Domestic Sphere,” Melbourne Journal of
International Law, vol. 5, no. 25, 2004.

[22] J. Franklin, “Discussion paper: how much of commonsense and legal

reasoning is formalizable? A review of conceptual obstacles,” Law,
Probability and Risk, vol. 11, no. 2-3, pp. 225–245, 2012.

https://doi.org/10.1093/lpr/mgs007

[23] E. P. Ebietomere, and G. O. Ekuobase, “Issues on Mobile Agent
Technology Adoption,” African Journal of Computing and ICT, vol. 7,

no. 1, pp. 21–32, 2014.

[24] C. N. Caralt, “Modelling Legal Knowledge through Ontologies. OPKJ:
the Ontology of Professional Judicial Knowledge,” Ph.D. Thesis,

Departament de Ciencia Polıtica i Dret Public, Universitat Autonoma De

Bercelona, p. 527, 2008.
[25] M. C. A. Klein, W. V. Steenbergen, E. M. Uijttenbroek, A. R. Lodder,

and F. van Harmelen, “Thesaurus-based Retrieval of Case Law,” In the

Proceedings of Jurix2006, pp. 61–70, 2006.
[26] G. O. Ekuobase, and E. P. Ebietomere, “Ontology for Nigerian Case

Laws,” African Journal of Computing and ICT, vol. 6, no. 2, pp. 177–194,

2013.

https://doi.org/10.1145/1165485.1165517
https://doi.org/10.1007/s10506-005-4160-3
https://doi.org/10.1007/s10506-005-4160-3
https://doi.org/10.1007/978-0-85729-130-1_33
https://doi.org/10.1007/978-0-85729-130-1_33
https://doi.org/10.1145/65971.65972
https://doi.org/10.1016/S0004-3702(03)00106-1
https://doi.org/10.1007/978-3-540-85569-9_19
https://doi.org/10.1007/978-3-642-12837-0_4
https://doi.org/10.1007/978-3-642-12837-0_4
https://doi.org/10.5121/ijcsit.2012.4514
https://doi.org/10.1017/S0269888906000701
http://www.abs.gov.au/
https://doi.org/10.21825/af.v14i2.5549
https://doi.org/10.1093/lpr/mgs007

Applied Computer Systems

__ 2019/24

48

[27] N. Zhang, Y. Pu, and P. Wang, “An Ontology-based Approach for

Chinese Legal Information Retrieval,” In the Proceedings of Science,

CENet2015, Shanghai, China, vol. 259, 2015.
https://doi.org/10.22323/1.259.0076

[28] M. Costa, O. Sousa, and J. Neves, “Managing Legal Precedents with Case

Retrieval Nets,” The Twelfth Conference on Legal Knowledge Based
Systems, JURIX 1999, Nijmegen, pp. 13–22, 1999.

[29] I. Crnkovic, “Component-based Software Engineering – New Challenges

in Software Development,” Software Focus, vol. 2, no. 4, pp. 127–133,
2001. https://doi.org/10.1002/swf.45

[30] I. Crnkovic, , and M. Larsson, “ Component-based Software Engineering

– New Paradigm of Software Development,” MIPRO, 13pp, 2001..
[31] I. Crnkovic, S. Larsson, and N. Chaudron, “Component-based

Development Process and Component Lifecycle,” Journal of Computing

and Information Technology, vol. 13, no. 4, pp. 321–327, 2005.
https://doi.org/10.2498/cit.2005.04.10

[32] I. Sommerville, Software Engineering Eight Edition. Pearson Education,

p. 868, 2007.
[33] M. Novak, and I. Svogor, “Current Usage of Component Based Principles

for Developing Web Applications with Frameworks: A Literature

Review,” Interdisciplinary Description of Complex Systems, vol. 14,
no. 2, pp. 253–276, 2016. https://doi.org/10.7906/indecs.14.2.14

[34] V. Szalvay, “An Introduction to Agile Software Development,” Danube

Technologies, p. 11, 2004.
[35] G. O. Ekuobase, and E. A. Onibere, “Scalability of Web Services

Solutions Built on ROA,” Canadian Journal of Pure and Applied Science.

SENRA: British Columbia, vol. 7, no. 1, pp. 2251–2270, 2013.
[36] G. O. Ekuobase, and I. Anyaorah, “Tail Tolerance of Web Services

Solution Built on Replication Oriented Architecture (ROA),” Canadian

Journal of Pure and Applied Science. SENRA: British Columbia, vol. 8,
no. 2, pp. 2943–2954, 2014.

[37] C. D. Manning, M. Surdeanu, , J. Bauer, J. Finkel, J. B. Steven and D.

McClosky, “The Stanford CoreNLP Natural Language Processing

Toolkit,” Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstrations, pp. 55–60, 2014.

https://doi.org/10.3115/v1/P14-5010
[38] M. Khabsa, S. Carman, S. R Choudhury, and C. L. Giles, “A Framework

for Bridging the Gap between Open Source Search Tools,” In SIGIR 2012

Workshop on Open Source Information Retrieval, pp. 32–39, 2012.
[39] A. Trotman, C. L. A. Clarke, I. Ounis, S. Culpepper, M. Cartright, and S.

Geva, “Open Source Information Retrieval: A Report on the SIGIR 2012

Workshop,” ACM, vol. 46, no. 2, pp. 95–101, 2012.
https://doi.org/10.1145/2422256.2422269

[40] E. P. Ebietomere, “A Semantic Retrieval System for Nigerian Case Law,”

Ph.D. Thesis, University of Benin, Benin City, p. 260, 2018.
[41] J. Breuker, R. Hoekstra, A. Boer, K. Berg, G. Sartor, R. Rubino, A.

Wyner, and T. Bench-Capon, “OWL Ontology of Basic Legal Concepts
(LKIF-Core)”, ESTRALLA, p. 138, 2007.

[42] G. Venturi, and S. Montemagni, ”Ontology Learning in Legal Domain:

An Introduction,” p. 80, 2012. Available from:

http://summerschoollex.cirsfid.unibo.it/wp-

content/uploads/2012/09/Ontology_Learning_in_the_legal_domain_an_i

ntroduction.pdf. [Accessed 17 July 2014]
[43] L. Hassan, “Usability Evaluation Framework for E-commerce Websites

in Developing Countries,” Doctoral Thesis, Loughborough University,

p. 372, 2009.
[44] D. I. Zahran, H. A. Al-Nualm, M. J. Rutter, and D. Benyon, “A

Comparative Approach to Web Evaluation and Website Evaluation

Methods,” International Journal of Public Information Systems, vol. 1,
pp. 20–39, 2014.

[45] C. Paz-Trillo, R. Wassermann, and P. P. Braga, “An Information Retrieval

Application Using Ontology” Journal of Brazilian Computer Society,
vol. 11, no. 2, 2005. https://doi.org/10.1007/BF03192373

[46] C. D. Manning, P. Raghavan, and H. Schutze, An Introduction to

Information Retrieval. Cambridge University Press, Cambridge, England,
p. 581, 2009.

[47] M. F. Sanchez, “Semantically Enhanced Information Retrieval: An

Ontology-based Approach” Ph.D. Thesis, Escuela Politécnica Superior,
Universidad Autonoma De Madrid, p. 254, 2009.

[48] P. Quaresma, and T. Goncalves, “Using Linguistic Information and

Machine Learning Techniques to Identify Entities from Juridical
Document,” Semantic Processing of Legal Texts, LNCS, vol. 6036,

Springer-Verlag, Berlin Heidelberg, pp. 44–59, 2010.

https://doi.org/10.1007/978-3-642-12837-0_3

Esingbemi Princewill Ebietomere is currently a

Lecturer, and Researcher at Services Science

Laboratory of the Department of Computer Science,
University of Benin, Nigeria. He obtained a Diploma

certificate in Data Processing (2003), B. Sc. (2008),

M. Sc. (2013) and Ph. D. (2018) in Computer Science
from the University of Benin, Nigeria. His research

interests include semantic web, legal informatics,

ontology engineering, and information retrieval.
E-mail: princewill.ebietomere@uniben.edu

Godspower Osaretin Ekuobase is a Professor of
services computing, and the Director of Services

Science Laboratory at the Department of Computer

Science, University of Benin, Nigeria. His research
interests include web services, legal informatics,

services science, and semantic web. Prof. Ekuobase

obtained his B. Sc. (1998), M. Sc. (2003) and
Ph. D. (2008) in Computer Science from the

prestigious University of Benin, Nigeria. He has

successfully supervised three Doctoral Theses, has several publications and
serves as a reviewer for some reputable journals in his areas of research.

E-mail: godspower.ekuobase@uniben.edu

ORCID iD: https://orcid.org/0000-0003-3037-2529

https://doi.org/10.22323/1.259.0076
https://doi.org/10.1002/swf.45
https://doi.org/10.2498/cit.2005.04.10
https://doi.org/10.7906/indecs.14.2.14
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.1145/2422256.2422269
https://doi.org/10.1007/BF03192373
https://doi.org/10.1007/978-3-642-12837-0_3
mailto:godspower.ekuobase@uniben.edu
https://orcid.org/0000-0003-3037-2529

