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Abstract – A problem of single image super-resolution is 

considered, where the goal is to recover one high-resolution image 

from one low-resolution image. Whereas this problem has been 

successfully solved so far by the known VDSR network, such an 

approach still cannot give an overall beneficial effect compared to 

bicubic interpolation. This is so due to the fact that the image 

reconstruction quality has been estimated separately by three 

subjective factors. Moreover, the original VDSR network 

consisting of 20 convolutional layers is apparently not optimal by 

its depth. This is why here those factors are aggregated, and the 

network performance is deemed by a single estimator. Then the 

depth is tried to be decreased (truncation) along with adjusting the 

learning rate drop factor. Finally, a plausible improvement of the 

VDSR network is confirmed. The best truncated network, 

performing by almost 3.2 % better than bicubic interpolation, 

occupies less memory space and is about 1.44 times faster than the 

original VDSR network for images of a medium size. 

 

Keywords – Bicubic interpolation, image similarity metrics, 

learning rate, single image super-resolution, truncated network, 
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I. INTRODUCTION 

Obtaining a high-resolution image from a low-resolution 

image is an open task of the modern computer vision and image 

analysis. Properly speaking, this is a process of increasing the 

resolution in order to clarify image details. The process itself is 

called super-resolution [1], [2]. This task issues from a lot of 

real-world applications retrieving information from visual data. 

In medicine, biometrics, microscopy, robotics, security 

surveillance/control [3], [4], astronomy/astrophysics [5], etc., 

such data are commonly insufficient to produce a desired result. 

A high-resolution image can be obtained/recovered from 

either a few low-resolution images differing but containing the 

same scene, or a single low-resolution image. The first case 

refers to geometrical super-resolution reconstruction [4], [6]. 

An improved resolution image is created by fusing information 

from all low-resolution images. The second case is based on 

methods reminding interpolation of a function whose discrete 

values are tabulated (or presented as a mesh). 

II. ANALYSIS OF THE BACKGROUND 

Nowadays, there are promising studies on using deep 

convolutional networks [7], [8] to perform single image  

super-resolution (SISR), where the goal is to recover one  
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high-resolution image from one low-resolution image. SISR is 

challenging because high-frequency image content typically 

cannot be recovered from the low-resolution image. Besides, 

SISR is an ill-posed problem because a low-resolution image 

can yield several possible high-resolution images. Obviously, 

without high-frequency information, the quality of the high-

resolution image is limited [2], [3], [5]. 

As of 2019, the very deep super-resolution (VDSR) network 

is believed to be the best state-of-the-art method to perform SISR 

[9]. The original VDSR network consists of 20 convolutional 

layers, which are followed with ReLUs except for the last 

convolutional layer (Fig. 1). The last layer is a regression layer 

instead of a ReLU. The regression layer computes the mean-

squared error between the residual image and network 

prediction. The input and output image share the same size that 

is achieved by padding with zeros in every convolution. VDSR 

employs a residual learning strategy, meaning that the network 

learns to estimate a residual image. The residual learning is 

applied by adding the input image to the output from the last 

convolutional layer. Only the difference between low and high 

resolution is learned by the network in this way. It makes sense 

because both images share the same low frequencies and thus do 

not need to be considered in the training process. As a result, 

such a residual network converges much faster [10]. It takes 

between 10 to 40 epochs to achieve the top performance [9].  

 

Fig. 1. The architecture of the VDSR network in Matlab. Apart from the first 

and last layers, this architecture has 18 identical convolutional layers [9]. 

 1 'InputLayer' Image Input   41x41x1 images 
 2 'Conv1' 64 3x3x1 convolutions with stride [1  1] and padding [1  1  1  1] 
 3 'ReLU1' ReLU 
 4 'Conv2' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
 5 'ReLU2' ReLU 
 6 'Conv3' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
 7 'ReLU3' ReLU 
 8 'Conv4' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
 9 'ReLU4' ReLU 
10 'Conv5' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
11 'ReLU5' ReLU 
12 'Conv6' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
13 'ReLU6' ReLU 
14 'Conv7' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
15 'ReLU7' ReLU 
16 'Conv8' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
17 'ReLU8' ReLU 
18 'Conv9' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
19 'ReLU9' ReLU 
20 'Conv10' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
21 'ReLU10' ReLU 
22 'Conv11' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
23 'ReLU11' ReLU 
24 'Conv12' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
25 'ReLU12' ReLU 
26 'Conv13' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
27 'ReLU13' ReLU 
28 'Conv14' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
29 'ReLU14' ReLU 
30 'Conv15' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
31 'ReLU15' ReLU 
32 'Conv16' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
33 'ReLU16' ReLU 
34 'Conv17' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
35 'ReLU17' ReLU 
36 'Conv18' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
37 'ReLU18' ReLU 
38 'Conv19' 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
39 'ReLU19' ReLU 
40 'Conv20' 1 3x3x64 convolution with stride [1  1] and padding [1  1  1  1] 
41 'FinalRegressionLayer' Regression Output mean-squared-error with response 'residuals' 



Applied Computer Systems 

________________________________________________________________________________________________ 2019/24 

 

62 

In the VDSR network, the filter size of each convolution, 

except the first one, is 3 3 64  . Due to those 20 convolutional 

layers, the receptive field (i.e., information used for 

reconstruction) of the network is therefore 41 41  pixels. 

Owing to this, the training data is decomposed into patches with 

size 41 41 . That helps in gaining speed and reducing the size 

of the network. Besides, data augmentation via rotation and 

flipping is used for training to improve generalization. Owing 

to combining several specified scales into one big dataset, the 

VDSR network is trained straightforwardly as a multi-scale 

model. 

The VDSR performance is compared to classic naive 

approaches of interpolation: bilinear [11], bicubic [12], and  

nearest-neighbour [13]. The nearest neighbour method simply 

predicts the pixel values from the value of the nearest neighbour 

pixel. This method is pretty rough because the reconstructed 

image is too pixelized compared to bilinear interpolation, which 

considers 4 surrounding pixels to predict new pixel values. 

Bicubic interpolation considering 16 surrounding pixels to 

predict new pixel values is a bit better than bilinear 

interpolation, but the improvement is not always easy 

observable (Fig. 2). 

 

Fig. 2. A comparative example of image reconstruction by 4 times upscaling: pixelization versus blurring. Bilinear and bicubic reconstructions blur the image. 

The quality of the upscaling method is described by a metric 

to measure the similarity between the predicted (or upscaled) 

image and the ground truth image. There are several commonly 

used metrics. Traditionally, the peak signal-to-noise ratio 

(PSNR) defines the similarity between two images by 

calculating a ratio with the mean-square-error (of the respective 

pixels of the two images) in the denominator. Greater PNSR 

values generally indicate better reconstruction quality [9]. 

Another metric is the structural similarity index (SSIM), 

which assesses the visual impact of luminance, contrast, and 

structure of an upscaled image against a reference image [14]. 

The SSIM index is calculated on various windows of an image. 

The closer the SSIM value is to 1, the better the upscaled image 

agrees with the reference image. 

To measure perceptual image quality, the naturalness image 

quality evaluator (NIQE) is used [15]. NIQE operates on a 

feature set based on natural scene statistics modelled as multi-

dimensional Gaussian distributions. Lower values of NIQE 

reflect better perceptual quality of the image. 

Despite the apparent advantages of VDSR, the PSNR, SSIM 

index, and NIQE for the VDSR network are not always better 

than those for bicubic interpolation. Deeper VDSR networks 

having up to 30 convolutional layers do not outperform the 

original VDSR much [16]. Indeed, the VDSR network seems 

too straightforward by its equal-sized convolutions. Such 

straightforwardness has been not proved to be optimal. All the 

more, many studies reported that it was more efficient to 

increase the number of convolutions throughout the network 
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[7], [10], [17]. Besides, the learning rate drop factor (LRDF), 

suggested along with the original network in [9], decreases the 

initial learning rate of 0.1 by 10 every 20 epochs. This also 

appears weakly substantiated. Therefore, it seems that either 

improving the PSNR, SSIM index, and NIQE by the same 

operability, or reducing the size of the VDSR network is 

plausible. 

III. GOAL AND STEPS TO ACHIEVE IT 

Due to the seeming plausibility to improve the VDSR 

network, the goal is to confirm or refute it. For doing this, the 

network first will be truncated by decreasing the number of 

convolutional layers down off 20. The network performance is 

to be estimated by averaging the PSNR, SSIM index, and NIQE 

against those ones for bicubic interpolation. Then, the number 

of convolutions throughout the network will be increased up off 

64. A few laws of the increment are to be tried. For all those 

experiments, the same benchmark dataset will be used by 

attempting to vary the learning rate and LRDF. On this dataset, 

a benchmark VDSR network will be reproduced by the same 

training parameters and scale factors (2, 3, 4) as they were 

suggested for the original VDSR in [9]. Thus, the performances 

of new networks are to be compared to the performance of the 

benchmark (original) VDSR network. 

IV. THE NETWORK PERFORMANCE ESTIMATOR 

Denote the PSNR, SSIM index, and NIQE for the VDSR 
network and bicubic interpolation by ( )VDSR ,t i s , ( )VDSR ,n i s , 

( )VDSR ,h i s , ( )bicubic ,t i s , ( )bicubic ,n i s , ( )bicubic ,h i s , respectively, 

where i  is the index/tag of an image, and s  is a scale factor by 

 2, 3, 4s . Then a complex gain of reconstructing the  

i -th image by s  times upscaling it is 

 ( )
( )
( )

( )
( )

( )
( )

VDSR VDSR bicubic

bicubic bicubic VDSR

, , ,
,

, , ,

t i s n i s h i s
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 
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Obviously, if all the three elements of vector (1) are greater 

than 1, then VDSR is absolutely better than bicubic 

interpolation for the i -th image s  times upscaled. Sometimes, 

however, VDSR loses to bicubic interpolation by at least one of 

those elements. Thus, it is admissible to use a generalized gain 

for the i -th image: 
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The VDSR performance gain for a whole test set of M   

images is 

 ( )
1

1
M

i

g g i
M

=

=  . (3) 

Formulae (2) and (3) both define the network performance 

estimator, whereas gain (3) allows comparing networks among 

themselves by just a point estimate. By using gain (2), it is 

possible to find poorly reconstructible images within a test set. 

V. THE BENCHMARK DATASET 

Unlike datasets for other image analysis tasks deep learning 

deals with, a dataset for training to perform SISR cannot contain 

tiny images. A remarkable specificity of an SISR dataset is that 

it can consist of variously-sized images whose scenes may not 

be related. This allows considering a one big dataset as a 

benchmark. Training and testing results on other such 

benchmarks will not differ significantly. 

Thus, a dataset consisting of 616 colour images is chosen for 

training (Fig. 3). A test set of 67 colour images is shown in 

Fig. 4 (both sets are available at informatik.rwth-aachen.de). 

 

Fig. 3. A dataset for training VDSR networks. It consists of 500 360 480  

images, and 116 480 360  images. The image scenes are very heterogeneous. 

 

Fig. 4. A set of 67 images for testing VDSR networks. It consists of  
51 320 480  images, and 16 480 320  images. The volume of this set is 

about 11 % of the volume of the dataset for training, which is usual in practice. 
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VI. TRUNCATION OF THE ORIGINAL VDSR NETWORK 

Authors of the original VDSR network argued [9] that an 

increase in the network depth (the number of convolutional 

layers) improved the performance rapidly. As a confirmation, 

they showed three plots of the depth versus performance 

(Fig. 5). However, those plots showed only PSNR, so this 

estimation of performance was not complete. The other two 

metrics were ignored, whereas they might be contradictory to 

the PSNRs in Fig. 5. Besides, some strange peaks and valleys 

may be artifacts of insufficient volume of testing. What is the 

most important, there is no comparison to bicubic interpolation, 

which is much faster than deep learning.  

 

Fig. 5. A screenshot of Fig. 3 in paper [9], wherein the original VDSR was presented. The PSNR is shown versus the network depth. A peak at 15 convolutional 
layers is easily observed for the minimal and maximal scale factors. Unexpectedly, there is also a valley at 17 convolutional layers, although both peak and valley 

for 3s =  are less apparent. After all, the PSNR polyline for the medium upscaling is the least expressive. The most expressive is that for the minimal upscaling. 

 

It should be recalled that due to the lesser number of 

convolutional layers (the shallower depth), the receptive field 

of the network is smaller. As a result, the training data is 

decomposed into smaller patches. This particularly explains 

why building a VDSR network of 10 convolutional layers or 

less is ineffective. The PSNR maximum at 13 convolutional 

layers (without considering the maximum at 20) is nonetheless 

unconvincing. Therefore, an impact of smaller depths (which 

can be thought of as a truncation with respect to the network 

with 20 convolutional layers by Fig. 1) should be revised. 

Figure 6 shows gain (3) versus the depth for VDSR networks 

trained on the dataset in Fig. 3 and tested on the dataset in 

Fig. 4. It is well seen that the factual global maximum is at 14 

convolutional layers (let the respective network be called 

VDSR-14). Despite the peak at 18 (network VDSR-18) is really 

close up to that at 14, operability of VDSR-14 is better owing 

to its shallower depth (here, in fact, 4 redundant convolutional 

layers are thrown away). Moreover, VDSR-14 occupies 

1.58 MB against 2.11 MB of VDSR-18. Nonetheless, the gain 

of VDSR-20 (a 10-epoched basis for the original VDSR 

network occupying 2.37 MB) loses to that of both VDSR-14 

and VDSR-18. 

The global minimum of the polyline in Fig. 6 implies that 

VDSR-16 not only loses to every other network, but also 

directly loses to bicubic interpolation. Although the polyline 

resembles the one from the left in Fig. 5, the peaks and valleys 

do not coincide. Figure 7 showing gain (2) for all the 67 images 

confirms that the top gains (peaks at VDSR-14 and VDSR-18) 

and the depth “fails” (valleys at VDSR-16 and VDSR-19) in 

Fig. 6 are not a result of randomness. 

It should be noted that each of those 11 networks loses to 

bicubic interpolation on reconstructing specific images. The 

loss of VDSR-14 is the least, constituting 11 images (Fig. 8). 

Compared to bicubic interpolation, SISR is performed worst by 

VDSR-16, which “spoiled” a half of the test images. 

Hence, truncating VDSR-20 to VDSR-14 has two beneficial 

effects: gain (3) is improved by 0.74 % (from 1.0113 to 1.0188), 

and the size of the network is reduced by one third (from 

2.37 MB to 1.58 MB). Obviously, the gain improvement is very 

subtle, but it is statistically consistent. Next, we will try to 

improve the gain (which being greater than 1 is equivalent to 

performance) by increasing the number of convolutions 

throughout the network up off 64. 

 

Depth 

Fig. 6. Gain (3) versus the number of convolutional layers in the VDSR 
network. Each network is trained for 10 epochs, which allow obtaining nearly 

the top performance. The gain is averaged over those three scale factors. Unlike 

it is in Fig. 5, the factual global maximum now is at 14 convolutional layers. 
The peak at 18 is quite close to that maximal gain. The valley at 16 (the gain is 

less than 1) does not coincide with the analogous valley in Fig. 5. 
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Depth 

Fig. 7. Gain (2) for every image in Fig. 4 versus the number of convolutional layers in the VDSR network. The gains at VDSR-14 appear the best, although the 

bunch of gains at VDSR-13 is narrower. The widest bunch of gains is at VDSR-19. The gains at VDSR-14 are badly scattered too, but the scattering at VDSR-19 

is “directed” downwards. Anyway, these bunches of gains confirm that VDSR-20 is pretty far from the optimal deep learning architecture for performing SISR. 

 

Depth 

Fig. 8. The number of images reconstructed better by bicubic interpolation 

versus the number of convolutional layers in the VDSR network. The advantage 
is meant by the three metrics considered simultaneously to estimate the image 

reconstruction quality. The plotted polyline looks like turned upside down 
compared to Fig. 6, except for the right side “tails” of these polylines. Thus, the 

global minimum is at 14, and the global maximum is at 16.  

 

VII. CONVOLUTION INCREMENT 

First of all, we should try a slight increment without touching 

training parameters of the original VDSR network (remember 

it differs from VDSR-20 in being trained 8 times longer). For 

this purpose, let every next convolutional layer, starting from 

the second one, have by 2 convolutions more than the previous 

layer has. By the same depth of the network (20 convolutional 

layers), the convolutions are 64, 66, 68, 70, ..., 96, 98, 100 

(instead of 64, 64, 64, ..., 64, 64, 64), where the last 

convolutional layer is still of a single 3 3 100   convolution 

(this is why the convolution in the 20-th layer is not listed). 

However, the corresponding experiments show that such an 

architecture does not outperform the original one in Fig. 1. The 

truncation of such slightly incremented convolutions gives no 

effect as it is for VDSR-14. Decreasing the learning rate to 0.01 

or/and setting LRDF to 0.95 for every 10 epochs (unlike the 

original LRDF of 0.1 for every 20 epochs) may even worsen the 

performance. 

Meanwhile, it would be interesting to see what happens when 

the number of the starting convolutions is less than 64. Thus, 

trying this number at 8, 16, 32 with the subsequent increment 

of convolutions by 
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 1 2d dc c −= + , 2,19d = ,  1 8,16, 32c  , (4) 

where d  is the index of the convolutional layer with 
dc  

convolutions, has no effect. Training for longer periods does not 

help at all. Therefore, a local conclusion here is that 64 

convolutions in the start ( 1 64c = ) are close to optimal. 

Since the slight progression 

 1 2d dc c −= + , 2,d D= , 10,19D = , 1 64c = , (5) 

does not fit for SISR, nor fits scheme (4), it is normal to try 

more “aggressive” increments. One of such incremental 

schemes is 

 ( )1 4 2 2d dc c d−= + + − , 2,19d = , 1 64c = , (6) 

which still gives us adjacent convolutional layers with different 

convolutions. However, the number of convolutions spans here 

from 64 to 442 (64, 68, 74, 82, 92, ..., 334, 368, 404, 442) that 

makes such a network occupy almost 30 MB. Moreover, the 

network performance is not improved, so scheme (6) does not 

fit as well. Other incremental schemes, in which every next 

convolutional layer always has a greater number of 

convolutions (and this difference increases from layer to layer), 

do not work either. 

In spite of the negative result for convolution increment by 

(6), the performance for networks with the “aggressive” 

increments is nonetheless increasing as LRDF is defined  

greater (up to 0.95) for every 10 epochs. Some networks 

occasionally achieve roughly the same performance as the 

original network has. Eventually, another incremental scheme, 

which is 

 1 64c = , 2 2 1d dc c −= , ( )2 1 2 4 4 1d dc c d+ = + + − , 1, 7d =  (7) 

allows outperforming both the VDSR-14 and original VDSR 

network: after 100 epochs of training, gain (3) now is 1.0316 

against those 1.0188 (Fig. 6; trained for 10 epochs) and 1.0182 

(originally, the VDSR network was trained for 80 epochs [9]), 

respectively. Nevertheless, the network whose architecture is 

built by scheme (7) occupies 4.91 MB, which is more than 

twice “heavier” than VDSR-20. For further references, let this 

network be called VDSR-16p4 inasmuch it has 16 

convolutional layers, and figure “4” is a significant part of 

progression (letter “p”) in scheme (7). 

An interesting fact is that if the network by the original 

architecture (Fig. 1) is trained identically to VDSR-16p4 (i.e., 

throughout 100 epochs with the learning rate of 0.1 and LRDF 

of 0.95 for every 10 epochs), then it achieves almost the same 

performance (Fig. 9). For further references, let this network be 

called VDSR-20/0.95.  

It is well seen in Fig. 9 that both polylines for VDSR-16p4 

and VDSR-20/0.95 increase similarly. The best gain of  

VDSR-20/0.95 is 1.0302, which is statistically very close to the 

best gain of VDSR-16p4 (1.0316). Therefore, VDSR-16p4 and 

VDSR-20/0.95 have the same performance. In this way, a 

version of VDSR with 14 convolutional layers (the VDSR-14 

architecture) should be tried similarly to VDSR-20/0.95 

(dropping the learning rate more frequently but far less 

intensively). Eventually, VDSR-14/0.95 achieves the 

performance of the VDSR-16p4 and VDSR-20/0.95 (Fig. 10), 

although it takes more epochs. 

 

Fig. 9. Gains (3) for VDSR-16p4 and VDSR-20/0.95 against the original VDSR network. At the starting 20 epochs the original VDSR network acquires some 
advantage over VDSR-16p4 and VDSR-20/0.95. After the 30-th epoch, the performance of VDSR-16p4 and VDSR-20/0.95 is significantly better than that of the 

original VDSR network. The latter after the 30-th epoch worsens and since the 50-th epoch it stays almost at the same rate (even decreasing a little bit). 

epochs 
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Fig. 10. Gain (3) for VDSR-14/0.95 that achieves the top rate of  

VDSR-16p4 and VDSR-20/0.95. During the first 40 epochs, the performance 
of VDSR-14/0.95 is worse than that of the original VDSR. Then the gain grows 

similarly to VDSR-16p4 and VDSR-20/0.95 achieving its top of 1.0311 (twice). 

Unlike the gain for VDSR-16p4 and VDSR-20/0.95, the gain for VDSR-
14/0.95 is more unstable: there are four distinct valleys that are badly deeper 

than those for VDSR-16p4 and VDSR-20/0.95. 

 

It must be noted that while VDSR-14 is better that  

VDSR-20 (by the gain in Fig. 6 and losses to bicubic 

interpolation in Fig. 8), it is so just after 10 epochs. Having  

varied LRDF and reduced the drop period twice,  

VDSR-14/0.95 acquires its advantage over VDSR-20/0.95 

slower. The “tardiness” of the advantage of VDSR-16p4 and 

VDSR-20/0.95 can be seen during the first 15 epochs as well.  

VIII. DISCUSSION 

Considering the performance/gain alone, truncation of the 

original VDSR network has a weak overall beneficial effect. 

Adding the network’s “weight”, where a “lighter” network is 

faster operable than a “heavier” one, the truncation benefit is far 

more substantial. For example, in reconstructing images of a 

medium size ( 320 480 ) for SISR, VDSR-14/0.95 is about 

1.44 times faster than the original VDSR network. In its turn, 

VDSR-16p4 is about 2.39 times slower than the original VDSR 

network, so application of VDSR-16p4 is only reasonable on 

very fast-operating computational systems. 

Accuracy of SISR is too dependent on subjective factors. It 

is plausible that for images of definite categories averaging the 

PSNR, SSIM index, and NIQE by no weighting them, using 

formulae (1)–(3), may be biased. Visual perception (just by 

human eye) plays a very important role as well, sometimes 

contradicting with gains (1) and (2) for a fragment of an image. 

For example, the result of SISR shown in Fig. 11 is apparently 

better for VDSR-14/0.95, but in this case PSNR and NIQE are 

better for bicubic interpolation. The SSIM index for estimating 

SISR of such images should be perhaps taken with a greater 

weight.  

 

Fig. 11. A comparative result of SISR for a 101 211  fragment of an image from the test set (Fig. 4). The fragment is 3 times downscaled. The outcome by  

VDSR-14/0.95 appears better than that by bicubic interpolation. Amazingly enough, gain (2) here is less than 1. It is another example of the metrics subjectivity. 

The crucial obstacle with VDSR networks truncated to 16 or 

14 convolutional layers is their instability while they are 

trained. To cope with it, the number of epochs must be 

increased. Therefore, the faster network “pays the price”, which 

is a longer training.  

epochs 
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As to VDSR-14/0.95, LRDF set to 0.95 may be not optimal. 

The same concerns the initial learning rate of 0.1 and the drop 

period (re-set to 10). It is hard to claim which of these three the 

most sensitive is. They are not embarrassingly parallel – 

somehow or other, additional optimization of those training 

options is not believed to lead to significant improvement of the 

VDSR-14/0.95 performance. 

Finally, we have seen that principle “the deeper, the better” 

does not work for VDSR. The depth of efficient VDSR 

networks has its limit. In general, this limit is 20. However, for 

some special categories of images (or their fragments) the limit 

may vary violating the results in Fig. 6 or/and Fig. 8 (just like 

the contradictory result in Fig. 11 violates the rule of the 

greater-than-1 gain). 

IX. CONCLUSION 

Based on the experiments carried out, the improvement of the 

VDSR network is confirmed. There are four networks  

(VDSR-14, VDSR-14/0.95, VDSR-20/0.95, VDSR-16p4, 

which are sorted in ascending order of the memory space 

occupied) whose relative performance is slightly better than that 

of the original VDSR network. The relative performance is 

estimated by averaging the PSNR, SSIM index, and NIQE, 

using formulae (1)–(3), against those ones for bicubic 

interpolation. The ratios in (1) and this averaging allows 

catching a real advantage of VDSR for SISR, rather than just 

improving the performance of VDSR networks without 

concerning other techniques for SISR (like bicubic 

interpolation), which may occasionally happen to be more 

accurate.  

At the moment, the best VDSR network performs by  

almost 3.2 % better than bicubic interpolation. Each of  

VDSR-14/0.95, VDSR-20/0.95, and VDSR-16p4 networks 

outperforms it by 3 % at least. These networks are practically 

equivalent by the performance. Despite VDSR-14/0.95 is 

trained faster, the performance (along with the advantage over 

bicubic interpolation) of VDSR-20/0.95 and VDSR-16p4 is 

more stable as training progresses. VDSR-14 is trained the 

fastest and still has a little advantage. Being trained on a 

heterogeneous dataset (like that in Fig. 3; for bigger datasets, 

training should be for a few hundred epochs), those networks 

acquire good generalization properties for SISR and thus can be 

regarded as a close-to-universal SISR technique. 
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