
Applied Computer Systems

 61

ISSN 2255-8691 (online)

ISSN 2255-8683 (print)
May 2019, vol. 24, no. 1, pp. 61–68

https://doi.org/10.2478/acss-2019-0008

https://content.sciendo.com

©2019 Vadim Romanuke.
This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

An Improvement of the VDSR Network for Single

Image Super-Resolution by Truncation and

Adjustment of the Learning Rate Parameters

Vadim Romanuke*

Polish Naval Academy, Gdynia, Poland

Abstract – A problem of single image super-resolution is

considered, where the goal is to recover one high-resolution image

from one low-resolution image. Whereas this problem has been

successfully solved so far by the known VDSR network, such an

approach still cannot give an overall beneficial effect compared to

bicubic interpolation. This is so due to the fact that the image

reconstruction quality has been estimated separately by three

subjective factors. Moreover, the original VDSR network

consisting of 20 convolutional layers is apparently not optimal by

its depth. This is why here those factors are aggregated, and the

network performance is deemed by a single estimator. Then the

depth is tried to be decreased (truncation) along with adjusting the

learning rate drop factor. Finally, a plausible improvement of the

VDSR network is confirmed. The best truncated network,

performing by almost 3.2 % better than bicubic interpolation,

occupies less memory space and is about 1.44 times faster than the

original VDSR network for images of a medium size.

Keywords – Bicubic interpolation, image similarity metrics,

learning rate, single image super-resolution, truncated network,

upscaled image, VDSR network.

I. INTRODUCTION

Obtaining a high-resolution image from a low-resolution

image is an open task of the modern computer vision and image

analysis. Properly speaking, this is a process of increasing the

resolution in order to clarify image details. The process itself is

called super-resolution [1], [2]. This task issues from a lot of

real-world applications retrieving information from visual data.

In medicine, biometrics, microscopy, robotics, security

surveillance/control [3], [4], astronomy/astrophysics [5], etc.,

such data are commonly insufficient to produce a desired result.

A high-resolution image can be obtained/recovered from

either a few low-resolution images differing but containing the

same scene, or a single low-resolution image. The first case

refers to geometrical super-resolution reconstruction [4], [6].

An improved resolution image is created by fusing information

from all low-resolution images. The second case is based on

methods reminding interpolation of a function whose discrete

values are tabulated (or presented as a mesh).

II. ANALYSIS OF THE BACKGROUND

Nowadays, there are promising studies on using deep

convolutional networks [7], [8] to perform single image

super-resolution (SISR), where the goal is to recover one

* Corresponding author’s e-mail: romanukevadimv@gmail.com

high-resolution image from one low-resolution image. SISR is

challenging because high-frequency image content typically

cannot be recovered from the low-resolution image. Besides,

SISR is an ill-posed problem because a low-resolution image

can yield several possible high-resolution images. Obviously,

without high-frequency information, the quality of the high-

resolution image is limited [2], [3], [5].

As of 2019, the very deep super-resolution (VDSR) network

is believed to be the best state-of-the-art method to perform SISR

[9]. The original VDSR network consists of 20 convolutional

layers, which are followed with ReLUs except for the last

convolutional layer (Fig. 1). The last layer is a regression layer

instead of a ReLU. The regression layer computes the mean-

squared error between the residual image and network

prediction. The input and output image share the same size that

is achieved by padding with zeros in every convolution. VDSR

employs a residual learning strategy, meaning that the network

learns to estimate a residual image. The residual learning is

applied by adding the input image to the output from the last

convolutional layer. Only the difference between low and high

resolution is learned by the network in this way. It makes sense

because both images share the same low frequencies and thus do

not need to be considered in the training process. As a result,

such a residual network converges much faster [10]. It takes

between 10 to 40 epochs to achieve the top performance [9].

Fig. 1. The architecture of the VDSR network in Matlab. Apart from the first

and last layers, this architecture has 18 identical convolutional layers [9].

 1 'InputLayer' Image Input 41x41x1 images
 2 'Conv1' 64 3x3x1 convolutions with stride [1 1] and padding [1 1 1 1]
 3 'ReLU1' ReLU
 4 'Conv2' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 5 'ReLU2' ReLU
 6 'Conv3' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 7 'ReLU3' ReLU
 8 'Conv4' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
 9 'ReLU4' ReLU
10 'Conv5' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
11 'ReLU5' ReLU
12 'Conv6' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
13 'ReLU6' ReLU
14 'Conv7' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
15 'ReLU7' ReLU
16 'Conv8' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
17 'ReLU8' ReLU
18 'Conv9' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
19 'ReLU9' ReLU
20 'Conv10' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
21 'ReLU10' ReLU
22 'Conv11' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
23 'ReLU11' ReLU
24 'Conv12' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
25 'ReLU12' ReLU
26 'Conv13' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
27 'ReLU13' ReLU
28 'Conv14' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
29 'ReLU14' ReLU
30 'Conv15' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
31 'ReLU15' ReLU
32 'Conv16' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
33 'ReLU16' ReLU
34 'Conv17' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
35 'ReLU17' ReLU
36 'Conv18' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
37 'ReLU18' ReLU
38 'Conv19' 64 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
39 'ReLU19' ReLU
40 'Conv20' 1 3x3x64 convolution with stride [1 1] and padding [1 1 1 1]
41 'FinalRegressionLayer' Regression Output mean-squared-error with response 'residuals'

Applied Computer Systems

__ 2019/24

62

In the VDSR network, the filter size of each convolution,

except the first one, is 3 3 64  . Due to those 20 convolutional

layers, the receptive field (i.e., information used for

reconstruction) of the network is therefore 41 41 pixels.

Owing to this, the training data is decomposed into patches with

size 41 41 . That helps in gaining speed and reducing the size

of the network. Besides, data augmentation via rotation and

flipping is used for training to improve generalization. Owing

to combining several specified scales into one big dataset, the

VDSR network is trained straightforwardly as a multi-scale

model.

The VDSR performance is compared to classic naive

approaches of interpolation: bilinear [11], bicubic [12], and

nearest-neighbour [13]. The nearest neighbour method simply

predicts the pixel values from the value of the nearest neighbour

pixel. This method is pretty rough because the reconstructed

image is too pixelized compared to bilinear interpolation, which

considers 4 surrounding pixels to predict new pixel values.

Bicubic interpolation considering 16 surrounding pixels to

predict new pixel values is a bit better than bilinear

interpolation, but the improvement is not always easy

observable (Fig. 2).

Fig. 2. A comparative example of image reconstruction by 4 times upscaling: pixelization versus blurring. Bilinear and bicubic reconstructions blur the image.

The quality of the upscaling method is described by a metric

to measure the similarity between the predicted (or upscaled)

image and the ground truth image. There are several commonly

used metrics. Traditionally, the peak signal-to-noise ratio

(PSNR) defines the similarity between two images by

calculating a ratio with the mean-square-error (of the respective

pixels of the two images) in the denominator. Greater PNSR

values generally indicate better reconstruction quality [9].

Another metric is the structural similarity index (SSIM),

which assesses the visual impact of luminance, contrast, and

structure of an upscaled image against a reference image [14].

The SSIM index is calculated on various windows of an image.

The closer the SSIM value is to 1, the better the upscaled image

agrees with the reference image.

To measure perceptual image quality, the naturalness image

quality evaluator (NIQE) is used [15]. NIQE operates on a

feature set based on natural scene statistics modelled as multi-

dimensional Gaussian distributions. Lower values of NIQE

reflect better perceptual quality of the image.

Despite the apparent advantages of VDSR, the PSNR, SSIM

index, and NIQE for the VDSR network are not always better

than those for bicubic interpolation. Deeper VDSR networks

having up to 30 convolutional layers do not outperform the

original VDSR much [16]. Indeed, the VDSR network seems

too straightforward by its equal-sized convolutions. Such

straightforwardness has been not proved to be optimal. All the

more, many studies reported that it was more efficient to

increase the number of convolutions throughout the network

Applied Computer Systems

__ 2019/24

63

[7], [10], [17]. Besides, the learning rate drop factor (LRDF),

suggested along with the original network in [9], decreases the

initial learning rate of 0.1 by 10 every 20 epochs. This also

appears weakly substantiated. Therefore, it seems that either

improving the PSNR, SSIM index, and NIQE by the same

operability, or reducing the size of the VDSR network is

plausible.

III. GOAL AND STEPS TO ACHIEVE IT

Due to the seeming plausibility to improve the VDSR

network, the goal is to confirm or refute it. For doing this, the

network first will be truncated by decreasing the number of

convolutional layers down off 20. The network performance is

to be estimated by averaging the PSNR, SSIM index, and NIQE

against those ones for bicubic interpolation. Then, the number

of convolutions throughout the network will be increased up off

64. A few laws of the increment are to be tried. For all those

experiments, the same benchmark dataset will be used by

attempting to vary the learning rate and LRDF. On this dataset,

a benchmark VDSR network will be reproduced by the same

training parameters and scale factors (2, 3, 4) as they were

suggested for the original VDSR in [9]. Thus, the performances

of new networks are to be compared to the performance of the

benchmark (original) VDSR network.

IV. THE NETWORK PERFORMANCE ESTIMATOR

Denote the PSNR, SSIM index, and NIQE for the VDSR
network and bicubic interpolation by ()VDSR ,t i s , ()VDSR ,n i s ,

()VDSR ,h i s , ()bicubic ,t i s , ()bicubic ,n i s , ()bicubic ,h i s , respectively,

where i is the index/tag of an image, and s is a scale factor by

 2, 3, 4s . Then a complex gain of reconstructing the

i -th image by s times upscaling it is

 ()
()
()

()
()

()
()

VDSR VDSR bicubic

bicubic bicubic VDSR

, , ,
,

, , ,

t i s n i s h i s
i s

t i s n i s h i s

 
=  
 

G . (1)

Obviously, if all the three elements of vector (1) are greater

than 1, then VDSR is absolutely better than bicubic

interpolation for the i -th image s times upscaled. Sometimes,

however, VDSR loses to bicubic interpolation by at least one of

those elements. Thus, it is admissible to use a generalized gain

for the i -th image:

 ()
()
()

()
()

()
()

4

VDSR VDSR bicubic

bicubic bicubic VDSR2

, , ,1

9 , , ,
s

t i s n i s h i s
g i

t i s n i s h i s
=

 
= + +  

 
 . (2)

The VDSR performance gain for a whole test set of M

images is

 ()
1

1
M

i

g g i
M

=

=  . (3)

Formulae (2) and (3) both define the network performance

estimator, whereas gain (3) allows comparing networks among

themselves by just a point estimate. By using gain (2), it is

possible to find poorly reconstructible images within a test set.

V. THE BENCHMARK DATASET

Unlike datasets for other image analysis tasks deep learning

deals with, a dataset for training to perform SISR cannot contain

tiny images. A remarkable specificity of an SISR dataset is that

it can consist of variously-sized images whose scenes may not

be related. This allows considering a one big dataset as a

benchmark. Training and testing results on other such

benchmarks will not differ significantly.

Thus, a dataset consisting of 616 colour images is chosen for

training (Fig. 3). A test set of 67 colour images is shown in

Fig. 4 (both sets are available at informatik.rwth-aachen.de).

Fig. 3. A dataset for training VDSR networks. It consists of 500 360 480

images, and 116 480 360 images. The image scenes are very heterogeneous.

Fig. 4. A set of 67 images for testing VDSR networks. It consists of
51 320 480 images, and 16 480 320 images. The volume of this set is

about 11 % of the volume of the dataset for training, which is usual in practice.

Applied Computer Systems

__ 2019/24

64

VI. TRUNCATION OF THE ORIGINAL VDSR NETWORK

Authors of the original VDSR network argued [9] that an

increase in the network depth (the number of convolutional

layers) improved the performance rapidly. As a confirmation,

they showed three plots of the depth versus performance

(Fig. 5). However, those plots showed only PSNR, so this

estimation of performance was not complete. The other two

metrics were ignored, whereas they might be contradictory to

the PSNRs in Fig. 5. Besides, some strange peaks and valleys

may be artifacts of insufficient volume of testing. What is the

most important, there is no comparison to bicubic interpolation,

which is much faster than deep learning.

Fig. 5. A screenshot of Fig. 3 in paper [9], wherein the original VDSR was presented. The PSNR is shown versus the network depth. A peak at 15 convolutional
layers is easily observed for the minimal and maximal scale factors. Unexpectedly, there is also a valley at 17 convolutional layers, although both peak and valley

for 3s = are less apparent. After all, the PSNR polyline for the medium upscaling is the least expressive. The most expressive is that for the minimal upscaling.

It should be recalled that due to the lesser number of

convolutional layers (the shallower depth), the receptive field

of the network is smaller. As a result, the training data is

decomposed into smaller patches. This particularly explains

why building a VDSR network of 10 convolutional layers or

less is ineffective. The PSNR maximum at 13 convolutional

layers (without considering the maximum at 20) is nonetheless

unconvincing. Therefore, an impact of smaller depths (which

can be thought of as a truncation with respect to the network

with 20 convolutional layers by Fig. 1) should be revised.

Figure 6 shows gain (3) versus the depth for VDSR networks

trained on the dataset in Fig. 3 and tested on the dataset in

Fig. 4. It is well seen that the factual global maximum is at 14

convolutional layers (let the respective network be called

VDSR-14). Despite the peak at 18 (network VDSR-18) is really

close up to that at 14, operability of VDSR-14 is better owing

to its shallower depth (here, in fact, 4 redundant convolutional

layers are thrown away). Moreover, VDSR-14 occupies

1.58 MB against 2.11 MB of VDSR-18. Nonetheless, the gain

of VDSR-20 (a 10-epoched basis for the original VDSR

network occupying 2.37 MB) loses to that of both VDSR-14

and VDSR-18.

The global minimum of the polyline in Fig. 6 implies that

VDSR-16 not only loses to every other network, but also

directly loses to bicubic interpolation. Although the polyline

resembles the one from the left in Fig. 5, the peaks and valleys

do not coincide. Figure 7 showing gain (2) for all the 67 images

confirms that the top gains (peaks at VDSR-14 and VDSR-18)

and the depth “fails” (valleys at VDSR-16 and VDSR-19) in

Fig. 6 are not a result of randomness.

It should be noted that each of those 11 networks loses to

bicubic interpolation on reconstructing specific images. The

loss of VDSR-14 is the least, constituting 11 images (Fig. 8).

Compared to bicubic interpolation, SISR is performed worst by

VDSR-16, which “spoiled” a half of the test images.

Hence, truncating VDSR-20 to VDSR-14 has two beneficial

effects: gain (3) is improved by 0.74 % (from 1.0113 to 1.0188),

and the size of the network is reduced by one third (from

2.37 MB to 1.58 MB). Obviously, the gain improvement is very

subtle, but it is statistically consistent. Next, we will try to

improve the gain (which being greater than 1 is equivalent to

performance) by increasing the number of convolutions

throughout the network up off 64.

Depth

Fig. 6. Gain (3) versus the number of convolutional layers in the VDSR
network. Each network is trained for 10 epochs, which allow obtaining nearly

the top performance. The gain is averaged over those three scale factors. Unlike

it is in Fig. 5, the factual global maximum now is at 14 convolutional layers.
The peak at 18 is quite close to that maximal gain. The valley at 16 (the gain is

less than 1) does not coincide with the analogous valley in Fig. 5.

Applied Computer Systems

__ 2019/24

65

Depth

Fig. 7. Gain (2) for every image in Fig. 4 versus the number of convolutional layers in the VDSR network. The gains at VDSR-14 appear the best, although the

bunch of gains at VDSR-13 is narrower. The widest bunch of gains is at VDSR-19. The gains at VDSR-14 are badly scattered too, but the scattering at VDSR-19

is “directed” downwards. Anyway, these bunches of gains confirm that VDSR-20 is pretty far from the optimal deep learning architecture for performing SISR.

Depth

Fig. 8. The number of images reconstructed better by bicubic interpolation

versus the number of convolutional layers in the VDSR network. The advantage
is meant by the three metrics considered simultaneously to estimate the image

reconstruction quality. The plotted polyline looks like turned upside down
compared to Fig. 6, except for the right side “tails” of these polylines. Thus, the

global minimum is at 14, and the global maximum is at 16.

VII. CONVOLUTION INCREMENT

First of all, we should try a slight increment without touching

training parameters of the original VDSR network (remember

it differs from VDSR-20 in being trained 8 times longer). For

this purpose, let every next convolutional layer, starting from

the second one, have by 2 convolutions more than the previous

layer has. By the same depth of the network (20 convolutional

layers), the convolutions are 64, 66, 68, 70, ..., 96, 98, 100

(instead of 64, 64, 64, ..., 64, 64, 64), where the last

convolutional layer is still of a single 3 3 100  convolution

(this is why the convolution in the 20-th layer is not listed).

However, the corresponding experiments show that such an

architecture does not outperform the original one in Fig. 1. The

truncation of such slightly incremented convolutions gives no

effect as it is for VDSR-14. Decreasing the learning rate to 0.01

or/and setting LRDF to 0.95 for every 10 epochs (unlike the

original LRDF of 0.1 for every 20 epochs) may even worsen the

performance.

Meanwhile, it would be interesting to see what happens when

the number of the starting convolutions is less than 64. Thus,

trying this number at 8, 16, 32 with the subsequent increment

of convolutions by

Applied Computer Systems

__ 2019/24

66

 1 2d dc c −= + , 2,19d = ,  1 8,16, 32c  , (4)

where d is the index of the convolutional layer with
dc

convolutions, has no effect. Training for longer periods does not

help at all. Therefore, a local conclusion here is that 64

convolutions in the start (1 64c =) are close to optimal.

Since the slight progression

 1 2d dc c −= + , 2,d D= , 10,19D = , 1 64c = , (5)

does not fit for SISR, nor fits scheme (4), it is normal to try

more “aggressive” increments. One of such incremental

schemes is

 ()1 4 2 2d dc c d−= + + − , 2,19d = , 1 64c = , (6)

which still gives us adjacent convolutional layers with different

convolutions. However, the number of convolutions spans here

from 64 to 442 (64, 68, 74, 82, 92, ..., 334, 368, 404, 442) that

makes such a network occupy almost 30 MB. Moreover, the

network performance is not improved, so scheme (6) does not

fit as well. Other incremental schemes, in which every next

convolutional layer always has a greater number of

convolutions (and this difference increases from layer to layer),

do not work either.

In spite of the negative result for convolution increment by

(6), the performance for networks with the “aggressive”

increments is nonetheless increasing as LRDF is defined

greater (up to 0.95) for every 10 epochs. Some networks

occasionally achieve roughly the same performance as the

original network has. Eventually, another incremental scheme,

which is

 1 64c = , 2 2 1d dc c −= , ()2 1 2 4 4 1d dc c d+ = + + − , 1, 7d = (7)

allows outperforming both the VDSR-14 and original VDSR

network: after 100 epochs of training, gain (3) now is 1.0316

against those 1.0188 (Fig. 6; trained for 10 epochs) and 1.0182

(originally, the VDSR network was trained for 80 epochs [9]),

respectively. Nevertheless, the network whose architecture is

built by scheme (7) occupies 4.91 MB, which is more than

twice “heavier” than VDSR-20. For further references, let this

network be called VDSR-16p4 inasmuch it has 16

convolutional layers, and figure “4” is a significant part of

progression (letter “p”) in scheme (7).

An interesting fact is that if the network by the original

architecture (Fig. 1) is trained identically to VDSR-16p4 (i.e.,

throughout 100 epochs with the learning rate of 0.1 and LRDF

of 0.95 for every 10 epochs), then it achieves almost the same

performance (Fig. 9). For further references, let this network be

called VDSR-20/0.95.

It is well seen in Fig. 9 that both polylines for VDSR-16p4

and VDSR-20/0.95 increase similarly. The best gain of

VDSR-20/0.95 is 1.0302, which is statistically very close to the

best gain of VDSR-16p4 (1.0316). Therefore, VDSR-16p4 and

VDSR-20/0.95 have the same performance. In this way, a

version of VDSR with 14 convolutional layers (the VDSR-14

architecture) should be tried similarly to VDSR-20/0.95

(dropping the learning rate more frequently but far less

intensively). Eventually, VDSR-14/0.95 achieves the

performance of the VDSR-16p4 and VDSR-20/0.95 (Fig. 10),

although it takes more epochs.

Fig. 9. Gains (3) for VDSR-16p4 and VDSR-20/0.95 against the original VDSR network. At the starting 20 epochs the original VDSR network acquires some
advantage over VDSR-16p4 and VDSR-20/0.95. After the 30-th epoch, the performance of VDSR-16p4 and VDSR-20/0.95 is significantly better than that of the

original VDSR network. The latter after the 30-th epoch worsens and since the 50-th epoch it stays almost at the same rate (even decreasing a little bit).

epochs

Applied Computer Systems

__ 2019/24

 67

Fig. 10. Gain (3) for VDSR-14/0.95 that achieves the top rate of

VDSR-16p4 and VDSR-20/0.95. During the first 40 epochs, the performance
of VDSR-14/0.95 is worse than that of the original VDSR. Then the gain grows

similarly to VDSR-16p4 and VDSR-20/0.95 achieving its top of 1.0311 (twice).

Unlike the gain for VDSR-16p4 and VDSR-20/0.95, the gain for VDSR-
14/0.95 is more unstable: there are four distinct valleys that are badly deeper

than those for VDSR-16p4 and VDSR-20/0.95.

It must be noted that while VDSR-14 is better that

VDSR-20 (by the gain in Fig. 6 and losses to bicubic

interpolation in Fig. 8), it is so just after 10 epochs. Having

varied LRDF and reduced the drop period twice,

VDSR-14/0.95 acquires its advantage over VDSR-20/0.95

slower. The “tardiness” of the advantage of VDSR-16p4 and

VDSR-20/0.95 can be seen during the first 15 epochs as well.

VIII. DISCUSSION

Considering the performance/gain alone, truncation of the

original VDSR network has a weak overall beneficial effect.

Adding the network’s “weight”, where a “lighter” network is

faster operable than a “heavier” one, the truncation benefit is far

more substantial. For example, in reconstructing images of a

medium size (320 480) for SISR, VDSR-14/0.95 is about

1.44 times faster than the original VDSR network. In its turn,

VDSR-16p4 is about 2.39 times slower than the original VDSR

network, so application of VDSR-16p4 is only reasonable on

very fast-operating computational systems.

Accuracy of SISR is too dependent on subjective factors. It

is plausible that for images of definite categories averaging the

PSNR, SSIM index, and NIQE by no weighting them, using

formulae (1)–(3), may be biased. Visual perception (just by

human eye) plays a very important role as well, sometimes

contradicting with gains (1) and (2) for a fragment of an image.

For example, the result of SISR shown in Fig. 11 is apparently

better for VDSR-14/0.95, but in this case PSNR and NIQE are

better for bicubic interpolation. The SSIM index for estimating

SISR of such images should be perhaps taken with a greater

weight.

Fig. 11. A comparative result of SISR for a 101 211 fragment of an image from the test set (Fig. 4). The fragment is 3 times downscaled. The outcome by

VDSR-14/0.95 appears better than that by bicubic interpolation. Amazingly enough, gain (2) here is less than 1. It is another example of the metrics subjectivity.

The crucial obstacle with VDSR networks truncated to 16 or

14 convolutional layers is their instability while they are

trained. To cope with it, the number of epochs must be

increased. Therefore, the faster network “pays the price”, which

is a longer training.

epochs

Applied Computer Systems

__ 2019/24

68

As to VDSR-14/0.95, LRDF set to 0.95 may be not optimal.

The same concerns the initial learning rate of 0.1 and the drop

period (re-set to 10). It is hard to claim which of these three the

most sensitive is. They are not embarrassingly parallel –

somehow or other, additional optimization of those training

options is not believed to lead to significant improvement of the

VDSR-14/0.95 performance.

Finally, we have seen that principle “the deeper, the better”

does not work for VDSR. The depth of efficient VDSR

networks has its limit. In general, this limit is 20. However, for

some special categories of images (or their fragments) the limit

may vary violating the results in Fig. 6 or/and Fig. 8 (just like

the contradictory result in Fig. 11 violates the rule of the

greater-than-1 gain).

IX. CONCLUSION

Based on the experiments carried out, the improvement of the

VDSR network is confirmed. There are four networks

(VDSR-14, VDSR-14/0.95, VDSR-20/0.95, VDSR-16p4,

which are sorted in ascending order of the memory space

occupied) whose relative performance is slightly better than that

of the original VDSR network. The relative performance is

estimated by averaging the PSNR, SSIM index, and NIQE,

using formulae (1)–(3), against those ones for bicubic

interpolation. The ratios in (1) and this averaging allows

catching a real advantage of VDSR for SISR, rather than just

improving the performance of VDSR networks without

concerning other techniques for SISR (like bicubic

interpolation), which may occasionally happen to be more

accurate.

At the moment, the best VDSR network performs by

almost 3.2 % better than bicubic interpolation. Each of

VDSR-14/0.95, VDSR-20/0.95, and VDSR-16p4 networks

outperforms it by 3 % at least. These networks are practically

equivalent by the performance. Despite VDSR-14/0.95 is

trained faster, the performance (along with the advantage over

bicubic interpolation) of VDSR-20/0.95 and VDSR-16p4 is

more stable as training progresses. VDSR-14 is trained the

fastest and still has a little advantage. Being trained on a

heterogeneous dataset (like that in Fig. 3; for bigger datasets,

training should be for a few hundred epochs), those networks

acquire good generalization properties for SISR and thus can be

regarded as a close-to-universal SISR technique.

REFERENCES

[1] J. Salvador, Example-Based Super Resolution. Academic Press, 2017,
162 p. https://doi.org/10.1016/C2015-0-06719-3

[2] V. Bannore, Iterative-Interpolation Super-Resolution Image Reconst-

ruction. A Computationally Efficient Technique. Springer-Verlag Berlin
Heidelberg, 2009, 113 p. https://doi.org/10.1007/978-3-642-00385-1

[3] A. Small and S. Stahlheber, “The Role of Image Analysis Algorithms in

Super-resolution Localization Microscopy,” in: Fluorescence Micro-
scopy, Cornea A., Conn P. M. (eds.). Academic Press, 2014,

pp. 227–242. https://doi.org/10.1016/B978-0-12-409513-7.00016-6

[4] M. Amiri, A. Ahmadyfard, and V. Abolghasemi, “A fast video super
resolution for facial image,” Signal Processing: Image Communication,

vol. 70, 2019, pp. 259–270.

https://doi.org/10.1016/j.image.2018.10.008

[5] R. Guo, X. Shi, Y. Zhu, and T. Yu, “Super-resolution reconstruction

of astronomical images using time-scale adaptive normalized

convolution,” Chinese Journal of Aeronautics, vol. 31, no. 8,
pp. 1752–1763, 2018. https://doi.org/10.1016/j.cja.2018.06.002

[6] I. Haq and A. A. Mudassar, “Geometric super-resolution using negative

rect mask,” Optik, vol. 168, pp. 323–341, 2018.
https://doi.org/10.1016/j.ijleo.2018.04.033

[7] K. Hayat, “Multimedia super-resolution via deep learning: A survey,”

Digital Signal Processing, vol. 81, pp. 198–217, 2018.
https://doi.org/10.1016/j.dsp.2018.07.005

[8] J. Lu, W. Hu, and Y. Sun, “A deep learning method for image super-

resolution based on geometric similarity,” Signal Processing: Image
Communication, vol. 70, pp. 210–219, 2019.

https://doi.org/10.1016/j.image.2018.10.003

[9] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using
very deep convolutional networks,” 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 1646–1654, 2016.

https://doi.org/10.1109/CVPR.2016.182
[10] W. Xie, Y. Li, and X. Jia, “Deep convolutional networks with residual

learning for accurate spectral-spatial denoising,” Neurocomputing,

vol. 312, pp. 372–381, 2018.
https://doi.org/10.1016/j.neucom.2018.05.115

[11] R. Kress, “Interpolation,” in: Numerical Analysis, Kress R. (ed.).

Springer, 1998, pp. 151–188.
https://doi.org/10.1007/978-1-4612-0599-9_8

[12] F. Aràndiga, “A nonlinear algorithm for monotone piecewise bicubic

interpolation,” Applied Mathematics and Computation, vol. 272, no. 1,
pp. 100–113, 2016. https://doi.org/10.1016/j.amc.2015.08.027

[13] A. M. Bayen and T. Siauw, “Interpolation,” in: An Introduction to

MATLAB® Programming and Numerical Methods for Engineers, Bayen
A. M., Siauw T. (eds.). Academic Press, 2015, pp. 211–223.

https://doi.org/10.1016/B978-0-12-420228-3.00014-2

[14] D. Brunet, J. Vass, E. R. Vrscay, and Z. Wang, “Geodesics of the

structural similarity index,” Applied Mathematics Letters, vol. 25, no. 11,

pp. 1921–1925, 2012. https://doi.org/10.1016/j.aml.2012.03.001

[15] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20,

no. 3, pp. 209–212, 2013. https://doi.org/10.1109/LSP.2012.2227726

[16] L. Zhou, Z. Wang, S. Wang, and Y. Luo, “Coarse-to-Fine Image
Super-Resolution Using Convolutional Neural Networks,” in:

MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science,

Schoeffmann K. et al. (eds.). Springer, 2018, pp. 73–81.
https://doi.org/10.1007/978-3-319-73600-6_7

[17] V. V. Romanuke, “Appropriateness of numbers of receptive fields in

convolutional neural networks based on classifying CIFAR-10 and
EEACL26 datasets,” Electrical, Control and Communication

Engineering, vol. 14, no. 2, pp. 157–163, 2018.
https://doi.org/10.2478/ecce-2018-0019

Vadim Romanuke was born in 1979. He graduated from the Technological

University of Podillya in 2001. The higher education was received in 2001. In
2006, he received the Degree of Candidate of Technical Sciences in

Mathematical Modelling and Computational Methods. The degree of Doctor of

Technical Sciences in Mathematical Modelling and Computational Methods
was received in 2014. In 2016, Vadim Romanuke received the academic status

of Full Professor.

He is a Professor of the Faculty of Navigation and Naval Weapons at the Polish
Naval Academy. His current research interests concern decision making, game

theory, statistical approximation, and control engineering based on statistical

correspondence. He has written 333 scientific articles, one monograph, one
tutorial, and three methodical guidelines in Functional Analysis, Development

of Master Theses in Mathematical and Computer Modelling, Conflict-

Controlled Systems. Before January 2018, Vadim Romanuke was the scientific
supervisor of a Ukrainian budget grant work concerning minimization of water

heat transfer and consumption. He also directs a branch of fitting statistical

approximators at the Center of Parallel Computations in Khmelnitskiy, Ukraine.
Address for correspondence: Śmidowicza Str. 69, Gdynia, Poland, 81-127.

E-mail: romanukevadimv@gmail.com

ORCID iD: https://orcid.org/0000-0003-3543-3087

https://doi.org/10.1016/C2015-0-06719-3
https://doi.org/10.1007/978-3-642-00385-1
https://doi.org/10.1016/B978-0-12-409513-7.00016-6
https://doi.org/10.1016/j.image.2018.10.008
https://doi.org/10.1016/j.cja.2018.06.002
https://doi.org/10.1016/j.ijleo.2018.04.033
https://doi.org/10.1016/j.dsp.2018.07.005
https://doi.org/10.1016/j.image.2018.10.003
https://doi.org/10.1109/CVPR.2016.182
https://doi.org/10.1016/j.neucom.2018.05.115
https://doi.org/10.1007/978-1-4612-0599-9_8
https://doi.org/10.1016/j.amc.2015.08.027
https://doi.org/10.1016/B978-0-12-420228-3.00014-2
https://doi.org/10.1016/j.aml.2012.03.001
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.1007/978-3-319-73600-6_7
https://doi.org/10.2478/ecce-2018-0019
mailto:romanukevadimv@gmail.com
https://orcid.org/0000-0003-3543-3087

