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1 INTRODUCTION 

1.1 Novelty and Motivation 

Commonly, structural damage is caused by design faults, construction quality 

shortcomings, or external effects such as improper use, overloading, natural disasters, 

environmental factors, etc. If such damage is not discovered and is allowed to grow, structure’s 

load-bearing capacity deteriorates, which can lead to costly repairs or in extreme cases its 

collapse. Moreover, damage accumulates as a part of a structure’s natural aging process. In 

situations as, for example, in Latvia where 37 % of all bridges are reported as either in poor or 

very poor condition, or in Europe where 35 % of its roughly half a million rail bridges are over 

100 years old, accurate damage detection techniques can extend life of these structures and 

provide measurable economic benefit.  

Modal analysis is widely used to detect structural damage, to control quality in 

manufacturing, to validate numerical models, etc. Modal properties – modal frequencies and 

mode shapes – depend on the object’s mechanical and geometrical properties. When damage, 

such as cracks, is introduced in a structure, its geometrical and/or mechanical properties change. 

In principle, engineers should be able to detect the introduced damage from these changes. In 

practice, damage detection by modal analysis is difficult due to different limitations. 

Additionally, there is a clear need for new and open computational modeling and simulation 

software that has been noted by the European Materials Modeling Council. Moreover, the need 

for new modeling software, particularly for engineering applications such as uncertainty 

quantification, risk analysis and decision in engineering, is recognized by the Council of the 

European Union in its decision that established the Horizon 2020 (H2020) framework 

programme for research and innovation.  

Peridynamic theory or peridynamics (PD) is a non-local reformulation of classical 

continuum mechanics theory. Contrary to classical mechanics theory, the peridynamic theory 

represents forces and displacements using integral equations, which are defined even with 

discontinuous displacement fields. Damage in PD is introduced by breaking a bond according 

to some specified damage law, thus allowing for “spontaneous” crack formation. Meaning that 

they were not present initially, but formed after some damage criterion was exceeded. It follows 

that the crack path doesn’t have to be specified a priori. Therefore, discontinuities are a natural 

part of a PD solution rather than a burden, thus making this theory an attractive option for 

damage modeling. 

The author’s preliminary studies showed that solving PD modal problems poses significant 

challenges. First, peridynamic stiffness matrices are non-symmetric, thus requiring 

non-Hermitian solvers and working with complex numbers. Secondly, PD stiffness matrices 

contain more non-zeros and their bandwidth is wider than finite-element (FE) equivalent. 

Thirdly, PD models usually consist of a large in number of nodes, which means that the matrix 

size is also large. These factors increase the computational cost of PD modal problems and can 

lead to poor solver convergence. Moreover, these simulations are frequently run on computing 

clusters, which require a massively parallel computational implementation. Therefore, a 
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considerable part of the research for this Thesis was devoted to finding and implementing a 

combination of solvers that solve PD modal problems in an efficient manner.  

The scientific novelty of the presented research is the following. 

 The well-known modal analysis has been implemented and studied in a new mechanic’s 

theory – peridynamics – in which it has not been explored in detail before. The 

difference from the previous authors’ work is that 3D rather than 2D problems are 

considered, which means that more than just bending modes are present. The results are 

verified and validated at several crack configurations rather than only at undamaged and 

a single damaged configuration, thereby providing more detailed analysis.  

 This Thesis developed, implemented and optimized the first massively parallel and 

open-source PD modal solver in the world. Since it is open-source, it will be freely 

available to researchers in academia and industry, ensuring the sustainability of the 

research.  

1.2 Aim and Scope 

This Thesis aims to develop a novel massively parallel open-source modal solver for 

peridynamic modal problems, verify its results against finite-element modal analysis results, 

validate them against experimental modal analysis results, and demonstrate how PD modal 

analysis can be used together with PD damage simulations to obtain modal parameters of 

damaged structures.  

This Thesis will not try to show that PD modal analysis is better than FE modal analysis 

and should be used in its place from now on. Rather the goal is to show that PD analysis is a 

viable alternative when considering problems where damage is present. 

1.3 Tasks of the Thesis  

To achieve the aim of the Thesis, the following tasks were set.  

1. Develop and optimize a modal solver that can be efficiently run in a massively-parallel 

computing environment on a computing cluster and can solve a peridynamic modal 

problem. 

2. Choose a test specimen and obtain its modal frequencies and mode shapes at nine 

different crack configurations using PD, FE, and experimental modal analysis. Then to 

verify and validate the PD results against the FE and the experimental results. 

3. Consider several mesh densities and horizon lengths in the PD simulations to study the 

mesh convergence. 

4. Demonstrate the use of PD modal analysis coupled with a fatigue damage simulation. 
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1.4 Practical Value of the Thesis 

The developed computer code will be made freely accessible (open-source) to researchers 

and engineers worldwide. Thereby, ensuring that the results of this research can be practically 

applied and used in further research, rather than left lying on a shelf. Additionally, this will 

ensure the sustainability of the research.  

Peridynamic theory represents forces and displacements using integral equations, which are 

defined even with discontinuous displacement fields, thus making damage modeling easier than 

in the continuum mechanics theory. By combining damage modeling and modal analysis the 

currently used techniques in numerical model validation, product design, manufacturing quality 

assurance, and structural damage detection are improved.  

1.5 Arguments for the Defense of the Thesis 

 The proposed peridynamic modal solver implementation has been optimized for use in 

a massively-parallel computational environment and can solve PD modal problems. 

 The PD modal frequencies are in excellent agreement with the FE and the experimental 

modal frequencies in both undamaged and damaged configurations.  

 The PD mode shapes agree well with and are in the same order as the FE mode shapes 

at a single crack configuration. The PD mode shapes also agree well with the 

experimental mode shapes. Moreover, the change in mode shapes from the introduced 

damage is similar in both analyses. 

 The PD modal analysis can be coupled with PD damage simulations to simulate damage 

and obtain modal properties of the damaged object. 

1.6 List of Attended Conferences  

 6th European Conference on Computational Mechanics, 7th European Conference on 

Computational Fluid Dynamics ECCM-ECFD 2018, Glasgow, UK, 11-15 June 2018. 

http://www.eccm-ecfd2018.org/frontal/default.asp   

 2018 International Symposium of Rail Infrastructure Systems Engineering (i-RISE 

2018), Brno, Chechia 

 International Modal Analysis Conference IMAC-XXXVI 2018, Orlando, Florida, USA, 

12-15 February 2018 https://semimac.org/event/imac-xxxvi/  

 The 3rd International Conference on Innovative Materials, Structures and Technologies 

IMST 2017, Riga, Latvia, 27-29 September 2017. https://imst.rtu.lv/node/46   

 Modern building materials, structures, and techniques MBMST 2016, Vilnius, 

Lithuania, 26-27 May 2016. http://mbmst.vgtu.lt/ 

http://www.eccm-ecfd2018.org/frontal/default.asp
https://semimac.org/event/imac-xxxvi/
https://imst.rtu.lv/node/46
http://mbmst.vgtu.lt/
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1.7 List of Publications 

The following publications were published during the research for this Thesis. They are 

arranged in chronological order starting with the most recently published papers. Papers marked 

with an asterisk (*) are indexed either in SCOPUS or Web of Science databases. 

1. Freimanis, A., Paeglītis, A. Modal Analysis of Healthy and Cracked Isotropic Plates in 

Peridynamics. Conf. Proc. Soc. Exp. Mech. Ser. 2019, 359–361, doi: 10.1007/978-3-

319-74700-2_41. * 

2. A. Freimanis, S. Kaewunruen, and M. Ishida, “Peridynamic Modeling of Rail Squats,” 

in Sustainable Solutions for Railways and Transportation Engineering: Proceedings of 

the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil 

Infrastructures, 2019, pp. 108–118. 

3. Freimanis, A., Kaewunruen, S. Peridynamic Analysis of Rail Squats. Appl. Sci. 2018, 

8, 2299, doi: 10.3390/app8112299. * 

4. Kaewunruen, S., Janeliukstis, R., Freimanis, A., Goto, K. Normalised curvature square 

ratio for detection of ballast voids and pockets under rail track sleepers. J. Phys. Conf. 

Ser. 2018, 1106, 012002, doi: 10.1088/1742-6596/1106/1/012002. * 

5. S. Kaewunruen, A. Freimanis, and M. Ishida, “EFFECT OF EXTREME CLIMATE ON 

WHEEL-RAIL INTERACTION OVER RAIL SQUATS,” in Proceedings of the 6th. 

European Conference on Computational Mechanics (Solids, Structures and Coupled 

Problems) ECCM 6, 7th. European Conference on Computational Fluid Dynamics 

ECFD 7, 2018, pp. 11–15. 

6. Freimanis, A., Kaewunruen, S., Ishida, M. Peridynamics Modelling of Rail Surface 

Defects in Urban Railway and Metro Systems. Proceedings 2018, 2, 1147, 

doi: 10.3390/proceedings2161147. 

7. Freimanis, A., Paeglitis, A. Mesh Sensitivity in Peridynamic Quasi-static Simulations. 

Procedia Eng. 2017, 172, 284–291, doi: 10.1016/j.proeng.2017.02.116. * 

8. Freimanis, A.; Paeglītis, A. Modal analysis of isotropic beams in peridynamics. IOP 

Conf. Ser. Mater. Sci. Eng. 2017, 251, 012088, doi: 10.1088/1757-

899X/251/1/012088.* 

9. Paeglitis, A., Freimanis, A. Comparision of constant-span and influence line methods 

for long-span bridge load calculations. Balt. J. Road Bridg. Eng. 2016, 11, 84–91, 

doi:10.3846/bjrbe.2016.10. * 

10. Freimanis, A., Paeglı̄tis, A. Analysis of Yearly Traffic Fluctuation on Latvian 

Highways. IOP Conf. Ser. Mater. Sci. Eng. 2015, 96, 012064, doi: 10.1088/1757-

899X/96/1/012064. * 
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2 THEORY BACKGROUND 

2.1 Peridynamic Theory 

A peridynamic body consists of a number of nodes each uniquely described by its volume 

𝑉𝑖, density ρ𝑖 and position vector in the reference configuration 𝒙𝒊. An example of 2D body is 

shown in Figure 2.1. Node 𝒙𝒊 interacts with other nodes 𝒙𝑗 through bonds (relative position 

vectors) 𝛏𝑖𝑗 = 𝒙𝑗 − 𝒙𝑖. These interactions are limited to a range called the horizon δ. Nodes 𝒙𝑗 

that are connected to 𝒙𝑖 are called the family of 𝒙𝑖, 𝑯𝒙𝑖
.  

When a body deforms, node 𝒙𝑖 experiences displacement 𝒖𝑖 and moves to its deformed 

position 𝒚𝑖 = 𝒙𝑖 + 𝒖𝑖. The bond in the deformed configuration is 𝒚𝑗 − 𝒚𝑖. This deformation 

creates a bond force density vector 𝒕𝑖𝑗 that depends on the collective deformation of all nodes 

in 𝑯𝒙𝑖
 and an opposite bond force density vector 𝒕𝑗𝑖 that depends on the collective deformation 

of 𝑯𝒙𝑗
. Bond forces are force densities (force per volume), not stresses (force per area), because 

each node describes some volume. The bond deformation vectors are stored in an array called 

the deformation state 

𝒀𝒙𝑖
= {

𝒚1 − 𝒚𝑖

⋮
𝒚𝑛 − 𝒚𝑖

} , (2.1) 

similarly, the force density vectors are stored in an array called the force state 

𝑻𝒙𝑖
=  {

𝒕𝑖1

⋮
𝒕𝑖𝑛

} . (2.2) 

 

Fig. 2.1. A discretized two-dimensional PD body 𝐵. Only two bonds –  𝛏𝑖𝑗 and 𝛏𝑗𝑖 – are 

showed. Both are showed curved to avoid overlapping. 

The bond force density vectors are computed using bond deformations: 

𝑻(𝒙𝑖) = 𝑻(𝒀(𝒙𝑖)), (2.3) 
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where function 𝑻(𝒙𝑖) is a material model. It is common to write 𝑻(𝒙𝑖)〈𝒙𝑗 − 𝒙𝑖〉, or 𝑻(𝒙𝑖)〈𝛏𝑖𝑗〉 

when referring to force density vector 𝒕𝑖𝑗 in a bond 𝛏𝑖𝑗 = 𝒙𝑗 − 𝒙𝑖, and similarly for deformation 

state and deformed bond vectors. The peridynamic equation of motion in the integral form is  

ρ(𝒙𝑖)�̈�(𝒙𝑖 , 𝑡) = ∫(𝑻(𝒙𝑖)〈𝒙𝑗 − 𝒙𝑖〉 − 𝑻(𝒙𝑗)〈𝒙𝑖 − 𝒙𝑗〉)d𝑉𝒙𝑗

𝑯𝒙𝑖

+ 𝒃(𝒙𝑖), (2.4) 

where ρ(𝒙𝑖) – density,  

�̈�(𝒙𝑖, 𝑡) – acceleration, 

𝒃(𝒙𝑖) – external force density.  

Contribution of a bond to the force density at a node can be weighed using influence 

function ω(𝒙𝑖). The value of an influence function can depend on the length, direction or other 

bond properties. It can also be used to introduce damage; remove interaction between two nodes 

by setting the influence function to 0 i.e. break the bond, when some damage criterion is 

reached. The simplest damage criterion could be the critical stretch in which a bond breaks 

when it is stretched past some critical value 𝑠c:  

𝜔(𝒙𝑖) = {
1,   if 𝑠𝑖𝑗 <  𝑠c,

0,   if 𝑠𝑖𝑗 ≥ 𝑠c,
     𝑠𝑖𝑗 =

|𝒚𝑗 − 𝒚𝑖| − |𝒙𝑗 − 𝒙𝑖|

|𝒙𝑗 − 𝒙𝑖|
=

|𝒀〈𝛏𝑖𝑗〉| − |𝛏𝑖𝑗|

|𝛏𝑖𝑗|
, (2.5) 

where 𝑠𝑖𝑗 – bond stretch. Then the damage at a node can be defined as a ratio between the 

broken and the initial number of bonds: 

ϕ(𝒙𝑖) = 1 −
∫ ω(𝒙𝑖)𝐻𝒙𝑖

d𝑉𝒙𝑗

∫ d𝑉𝒙𝑗𝐻𝒙𝑖
 

. (2.6) 

2.2 Linear Algebra and Modal Analysis 

When damping of a system is small, it is commonly ignored and the equation of motion 

takes the following form: 

𝑴�̈� + 𝑲𝒖 = 𝑭, (2.7) 

where the mass matrix 𝑴 describes the mass of each node in a body and the stiffness matrix 𝑲 

describes the stiffness that node 𝒙𝑖 exerts on node 𝒙𝑗 and vice versa.  

Free vibrations of a multiple DOF system are initiated by the presence of an initial potential 

or kinetic energy so 𝑭 = 0. Equation (2.7) can be rewritten as  

𝑲𝒙 = λ𝑴𝒙. (2.8) 

In linear algebra Equation (2.8) is called a generalized eigenvalue problem. Values λ and 𝒙 that 

satisfy this equality are called eigenvalues and eigenvectors respectively. Eigenvectors 𝒙 are 

also mode shapes. Eigenvalues λ are related to modal frequencies 𝑓 through (2.13). 
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Methods for solving equations are either direct or iterative and the computer algorithms that 

solve these equations are called solvers. Direct methods will reach an exact solution, if it exists, 

in some finite number of steps. Whereas iterative methods obtain an approximation of 𝒙 that is 

often good enough for practical applications. Iterative methods start from some initial guess 𝒙𝟎 

and in each step produce a new guess 𝒙𝒏+𝟏 that is slightly closer to the exact solution. When 

the difference between 𝒙𝒏 and 𝒙𝒏+𝟏 (the residual) falls below some specified tolerance value, 

the computation is stopped and it is said that the result has converged. Generally, iterative 

methods use less memory because the whole matrix does not need to be stored. 

Preconditioning is a technique used in iterative solvers that modify the original problem 

making it easier to solve. The best known is the so-called shift-invert technique. A generalized 

eigenvalue problem in (2.8) is transformed into 

𝑪𝒙 = θ𝒙, (2.9) 

where both 𝐶 and θ are substitutions  

𝑪 = (𝑨 − σ𝑩)−1𝑩 (2.10) 

and 

θ = (λ − σ2)−1, (2.11) 

where σ – shift value. Now (2.9) is a simple eigenvalue problem. When a shift σ is chosen well, 

eigenvalues of matrix 𝑪 are better separated than those of 𝑲, which leads to faster convergence. 

If a solver converged, then obtained eigenvectors 𝒙 are the same as eigenvectors for the original 

problem, but eigenvalues need to be reinverted and shifted back: 

λ =
1

θ
+ σ2. (2.12) 

Then obtained eigenvectors 𝒙 are the mode shapes of the original problem in (2.8), but 

modal frequencies 𝑓 are calculated from eigenvalues that have to be reinverted and shifted back: 

𝑓 =
+√1

θ + σ2

2π
. (2.13)
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3 COMPUTATIONAL IMPLEMENTATION AND 

OPTIMIZATION 

PD simulations were run on computing cluster Vasara at Riga Technical University. 

Different numbers of Dell EMC PowerEdge R640 nodes, each with 2 × Intel(R) Xeon(R) Gold 

6154 3.00 GHz CPUs with 36 cores, were used. Each node had 348 GB maximum available 

RAM and a 240 GB SSD. They were connected through Infiniband EDR 100 Gb/s connection. 

The cluster ran Centos 7.5 operating system and used Torque 6.1.1.1 resource manager. The 

modal solver was implemented by extending Peridigm 1.5.0, which at the time of writing was 

available at https://github.com/peridigm/peridigm. 

3.1 Peridynamic Implementation 

Modal Solver 

During the research for and the development of this Thesis it became clear that solving PD 

modal problems poses significant challenges. 

 First, peridynamic stiffness matrices are non-symmetric, thus require non-Hermitian 

solvers. Generally, non-symmetric matrices take up more computer memory, because 

the whole matrix rather than only half needs to be stored. Furthermore, the eigenvalues 

of non-symmetric problems need not be real, so solutions involve working with complex 

numbers. 

 Secondly, a node in PD is generally connected to more nodes than a node in FE analyses, 

so the stiffness matrices contain more non-zeros and their bandwidth is wider. As the 

number of non-zero elements increases, the required memory also increases. Moreover, 

more non-zeros lead to poorer convergence, because there are more values to consider. 

 Thirdly, for practical problems, PD models consist of a large number of nodes, possibly 

in the millions. In small models (with large node spacings), the crack tip would advance 

in large jumps, which poorly describe the behavior of a crack. Reasonable mesh 

convergence can be achieved only with large models and, if node spacings are large, the 

boundary conditions can have a disproportionate effect on the behavior of the model, 

thus Saint-Venant’s principle will not be met. 

The modal solver was implemented in open-source peridynamics code Peridigm. Since it is 

an open-source software, the author could later contribute the written code making this analysis 

available to other researchers and engineers. Moreover, several Peridigm’s parts – material 

models, stiffness matrix creation routines, discretization – could be reused, thus reducing the 

time spent on writing the code for a working modal solver.  

A combination of ILU preconditioner, flexible block-GMRES linear solver, and block 

Krylov-Schur eigensolver were implemented. The Trilinos library was used to implement the 

solver due to the following:  

 Peridigm is already built using several packages from Trilinos, so further integration 

was easier; 

https://github.com/peridigm/peridigm
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 Trilinos is designed for massively parallel computations making it well suited for 

running on a computing cluster; 

 All three ‒ linear solvers, eigensolvers and preconditioners – are available in 

Trilinos, therefore only one library needs to be used for implementation. 

Peridynamic Model 

A simple rectangular plate was used. Common real-life structures would have a more 

complex shape, but a simple shape is sufficient to verify and validate results. Also, it was a 

good choice, because different types of modes were present. 

Peridigm uses a meshfree discretization. Its mesh files, which are text files with each line 

describing a single node, must be supplied by the user. Required data are node’s x, y, z 

coordinate, block ID, and volume. A block is a group of nodes to which a material model, 

damage model, and contact model are prescribed. Four models with 40 000, 135 000, 320 000, 

and 625 000 nodes were used. The nodal spacing ℎ was the same in all three directions: 

0.001 m, 0.000667 m, 0.0005 m and 0.0004 m respectively. The model size was 

0.10 m × 0.05 m × 0.008 m. In this Thesis the horizon values √2ℎ, 2ℎ, 3ℎ, 4ℎ are used.  

Simulations used Linear Peridynamic Solid material model, which is the PD equivalent of 

an elastic material model in the continuum mechanics. To create free-free test conditions, no 

boundary conditions were applied. The material properties were: elastic modulus – 5.35 GPa; 

Poisson’s ratio – 0.33; density – 1200 kg/m3.  

Cracks in a model were created by specifying a crack plane and breaking any bond that 

crosses this plane. Crack configurations and locations are presented in Chapter 4. 

The first 12 modes were computed. The first six were the rigid-body-motion modes, so only 

the next six were compared with the FE and the experimental results.  

3.2 Finite-Element Implementation 

Modal analysis in the finite-element method is well understood and widely used in both 

research and engineering, therefore, it was a natural choice for verification of PD results. A 

rectangular plate model with the same measurements as the PD model was created using Ansys 

FE software. An elastic material model was used, and the material properties were the same as 

for the PD simulations. The FE model was meshed using SOLID185 8-node cubic elements 

and contained 664 146 nodes.  

This kind of problem could have been modeled using shell elements, which would have 

been computationally less expensive, however, solid elements were chosen for two reasons: 

 the author wanted FE and PD meshes to have a similar number of nodes; 

 it was possible to create cracks through the depth of the FE model, which would not 

have been possible if the model was created using shell elements; cracks in the FE model 

were created by not connecting the nodes of solid elements on a crack plane.  
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3.3 Solver Parameter Optimization 

Solver parameters influence the solve time, memory use, and whether a simulation will 

converge at all. Mathematical optimization is the selection of the best element with regards to 

some criterion from some set of available alternatives. In this Thesis, maximum memory use 

and computation time are the two objectives that were optimized. The maximum memory used 

was gathered from “tracejob” command that is available in the Torque resource management 

system, but the length of a simulation was measured by Peridigm’s built-in timer. 

Commonly, Pareto optimization is used for multi-objective optimization problems. For the 

present case, a Pareto optimal would be such a solver parameter combination that it is 

impossible to change any single solver parameter without making either the memory use higher 

or the solve speed slower. Usually, a set – called a Pareto frontier – of such Pareto optimal 

points can be found.  

Table 3.1 

Test Cases and Their Parameters 

Case NEV Horizon 
Number of 

experiments 
Converged 

Did not 

converge 

Exceeded 

memory 

A 1 √2ℎ  180 131 15 34 

B 10 √2ℎ  150 105 7 38 

C 1 3ℎ  150 142 0 8 

D 10 3ℎ  150 124 0 26 

 

Model dimensions, material model, material properties and boundary conditions are the 

same as described previously. The model was discretized with 135 000 nodes and the nodal 

spacing was ℎ = 0.000667 m.  

Test values were selected using Latin-Hypercube sampling technique. Four cases – named 

A through D – were considered. They differed by the number of eigenvalues (NEV) – 1 or 10 – 

and the length of the horizon – either δ = √2ℎ or δ = 3ℎ. Specific values are showed in 

Table 3.1. The solver tolerances were set to 1e–6 and 1e–4 for linear solver and eigensolver 

respectively. 

Table 3.2  

Solver Parameters Used for Peridynamic Modal Analysis 

Parameter Value 

ILU level of fill 1 

ILU Drop tolerance  1e–6 

ILU Overlap level 0 

Linear Solver Max Restarts 10 

Linear Solver Number of Blocks  1000 

Linear Solver Block Size  6 

Eigensolver Max Restarts 10 

Eigensolver Number of Blocks  12 

Eigensolver Block Size  3 
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The total number of simulations, converged and unconverged, and the number of 

simulations that exceeded available memory are shown in Table 3.1. Case A has more tests than 

the rest because a larger part of them exceeded available memory and was, therefore, killed by 

the operating system. 73 %, 70 %, 95 % and 83 % of all simulations converged for cases A 

through D respectively.  

Several relations between the solver parameters, simulation time and memory use were 

found. They are discussed in detail in the full Thesis. Table 3.2 shows parameter values that 

were used for modal simulations in the Thesis. 
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4 SPECIMEN MANUFACTURING AND EXPERIMENTAL 

SETUP 

Two kinds of specimens were used: dog-bone tensile specimens to obtain mechanical 

properties, and rectangular plates to obtain modal properties. All specimens were cut from 

8 mm polymethyl methacrylate (PMMA) sheets using laser cutting. PMMA was chosen, 

because it is isotropic, easy to obtain, cheap, easy to cut into shape, easy to work with (not as 

heavy as concrete, smelly as asphalt, abrasive as glass fiber).  

Tensile tests were done according to ASTM D638 standard. Nine specimens were tested 

and the average values were used as inputs in simulations. The mechanical properties are 

presented in Chapter 3.  

Ten 0.1 m × 0.05 m × 0.008 m large plate specimens were used for modal testing. Their 

average density was 1187.34 kg/m3. Nine different crack configurations and two crack types 

were considered, see Figures 4.1. Five specimens were tested at each crack configuration. 

Configurations were named by crack type and a letter in alphabetical order, e.g. Sd. Letter “a” 

was reserved for the Healthy configuration. 

 Undamaged specimens were called Healthy configuration. 

 Specimens with a crack through their thickness were called T crack configuration. 

 Specimens with a crack on their back face were called S crack configuration. 

 

 

 
 

(a) 

 
(b) 

Fig. 4.1. Crack location, length, and depth. 𝑑c – depth of a crack; 𝑡𝑖 – the thickness of a plate; 

a – T crack configuration; b – S crack configuration. 

Four approaches to crack creation were considered – laser cutting, using a jeweler’s saw, 

using a sharp razor blade, growing a fatigue crack. The method had to be fast, precise, and it 

had to be possible to extend a crack later. Jeweler’s saw, razorblade and fatigue crack growth 

created roughly but not the same crack path in all specimens. Furthermore, the crack length 

when a crack was extended was not sufficiently similar across all five specimens. So only laser 

cutting fit all three criteria.  
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Modal test specimens were suspended from an aluminum frame in two loops made from 

cotton thread to allow specimens to move as free as possible, thus creating free-free boundary 

conditions (BC). Measurements were done using 2D Polytec PSV-400 laser vibrometer. Paper 

tape was applied on the specimen surface, to prevent the laser beam from shining through. 

Specimens were excited using a loudspeaker. Measurement range was between 1000 Hz and 

8000 Hz with measurement step Δ𝑓 = 2.5 Hz.  
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5 VERIFICATION AND VALIDATION OF PERIDYNAMIC 

MODAL ANALYSIS 

Results were grouped by their crack configurations – Healthy, Tb through Te, and Sb 

through Se. The mode order changed between different crack configurations, so it was not 

possible to refer to individual modes by their number in the order of appearance, hence, modes 

will be referred to by their type and number within that type, e.g. 2nd bending mode, 1st torsional 

mode, etc. PD modal analysis was used to compute 864 modes, FE analysis – 54 modes, and 

240 modes were measured using experimental modal analysis. For exact modal frequency 

values please see the full Thesis. 

Only the 1st and the 2nd bending and the 1st and the 2nd torsional modes were computed with 

PD and FE analysis at all T and S crack configurations. Additionally, the 1st transversal bending 

mode was computed at all S configurations. Only these modes will be used for verification and 

validation. Other modes were computed only at some configurations, because the mode order 

changed. Only results computed with the shortest horizon δ = √2ℎ and the longest horizon δ =

4ℎ will be used here. They show a comparison between the most local and the most non-local 

result while keeping figures easy to read.  

Three different computer programs – Paraview, Ansys, and Polytec Scan Viewer – were 

used to visualize the PD, FE and experimental mode shapes respectively. The programs used 

similar, but not completely identical, color schemes. The color distribution in the mode shapes, 

therefore, can appear slightly different.  

Verification and Validation of the PD Modal Frequencies  

The percentage difference between the PD and the FE modal frequencies at Healthy and T 

crack configurations are presented in Figure 5.1. Please see the full Thesis for S configuration 

plots. Differences between the PD and the FE results were expected because the same problem 

was solved by two different mechanics theories, but the results show a very good agreement 

The largest difference between modal frequencies when δ = √2ℎ is 2.37 % at Te crack 

configuration for the 2nd torsional mode. When δ = 4ℎ the largest difference is –3.92 % at Te 

crack configuration for the 2nd torsional mode. For S crack configurations, the results show an 

excellent agreement between the PD and the FE modal analyses. The percentage difference 

between PD and FE results ranged from –2.02 % to +1.47 %. 

 

 

    
(a) (b) (c) (d) 

Fig. 5.1. The percentage difference between PD modal frequencies and FE modal frequencies 

at T crack configurations. a – 1st bending mode; b – 1st torsional mode; c – 2nd torsional mode; 

d – 2nd bending mode. 
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PD modal frequencies were lower than FE modal frequencies at Healthy and all T crack 

configurations. The differences in computed modal frequencies most likely occurred due to 

different stiffness matrices. The PD computational stiffness must have been lower than the FE 

computational stiffness. PD results with the horizon δ = √2ℎ agreed better with the FE results 

than simulations with the horizon δ = 4ℎ at most crack configurations. This was expected, 

because the non-local PD solution approaches the local solution when the horizon shrinks to 

zero. 

The percentage difference between PD, experimental and FE modal frequencies at Healthy 

and T crack configurations are presented in Figure 5.2. S crack configuration results are 

presented in the full Thesis. PD modal analysis is at least just as accurate as FE modal analysis 

for the used test conditions. Additionally, the differences between the PD results and the 

experimental results are very low, which shows that PD modal analysis closely reflects the 

modal behavior of the test specimens. At T crack configurations, the difference between PD 

and experimental results were within –3.20 % to 2.59 %, but between FE and experimental 

results within –1.20 % to 3.57 %. At S crack configurations, the difference between the PD and 

the experimental results ranged between –1.81 % and 3.06 %, but between FE and experimental 

results between –1.26 % and 2.96 %. 

 

    
(a) (b) (c) (d) 

Fig. 5.2. The percentage difference between PD, experimental, and FE modal frequencies at T 

crack configurations. a – 1st bending mode; b – 1st torsional mode; c – 2nd torsional mode; d – 

2nd bending mode. 

Frequency Shift 

The frequency shift is the change in modal frequencies when an object’s stiffness changes 

due to the introduction of damage or other influences. Modal frequencies vary between 1000 Hz 

and 7000 Hz, so relative frequency shifts will be presented.  

 

    
(a) (b) (c) (d) 

Fig. 5.3. Relative frequency shift in T crack configuration specimens. a – 1st bending mode;b 

– 1st torsional mode; c – 2nd torsional mode; d – 2nd bending mode. 

See Figure 5.3 for T configuration shifts, but for S configuration plots see the full Thesis. 

At Te crack configuration the largest shift is –40.46 %, but the smallest shift –25.61 %, but at 

Se configuration the largest shift is –7.82 %, but the smallest was –0.24 %. The results show 
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14.85 and 7.58 percentage point difference between the largest and the smallest shift at Te and 

Se configuration respectively. This means that crack influence on the stiffness of PD models 

differs considerably depending on the mode considered. 

The agreement between the PD, the FE, and the experimental frequency shift was excellent. 

At Te crack configuration the differences between PD and FE frequency shifts ranged between 

–1.38 and –0.04 percentage points, but between the PD and the experimental relative frequency 

shifts between –1.47 and +0.34 percentage points. At Se crack configuration, the difference in 

PD and FE shifts ranged between –0.19 and 1.30 percentage points, but between the PD and 

the experimental shifts between –0.70 and +1.95 percentage points.  

Verification of PD Mode Shapes  

Mode shapes for Te, and Se crack configurations will be presented in Figures 5.5 and 5.6 

respectively. Other modes are presented in the full Thesis. A color legend with numerical values 

cannot be provided, because a mode shape is a dimensionless representation of a structure 

vibrating at a modal frequency. The whole color scheme is shown in Figure 5.4. 

 

Fig. 5.4. The color scheme used in figures 5.5 and 5.6. 

      
(a) (b) (c) (d) (e) (f) 

      
(g) (h) (i) (j) (k) (l) 

Fig. 5.5. PD and FE mode shapes at Te configuration. Top – PD mode shapes, bottom – FE 

mode shapes. a, g – 1st bending mode; b, h – 1st torsional mode; c, i – 2nd torsional mode; d, 

j – 1st in-plane bending mode; e, k – 2nd bending mode; f, l – 2nd in-plane bending mode. 

      
(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Fig. 5.6. PD and FE mode shapes at Se configuration. Top – PD mode shapes, bottom – FE 

mode shapes. a, g – 1st bending mode; b, h – 1st torsional mode; c, i – 2nd bending mode; d, j –

2nd torsional mode; e, k – 1st transversal bending mode; f, l – 1st in-plane bending mode. 
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PD modal analysis and FE modal analysis yielded the same mode shapes at every single 

crack configuration. At Te crack configuration, Figure 5.5, the mode order was: the 1st bending, 

the 1st torsional, the 2nd torsional, the 1st in-plane bending, the 2nd bending, the 2nd in-plane 

bending mode. At Se crack configuration, Figure 5.6, the mode order was: the 1st bending mode, 

the 1st torsional mode, the 2nd bending mode, the 2nd torsional mode, the 1st transversal bending 

mode, the 1st in-plane bending mode. 

The introduced cracks created a sudden discontinuity in the displacement field and the 

displacement field shifted in response. This can be seen in both T and S crack configuration 

mode shapes. For example, for the 1st torsional mode at Te configuration – Figures 5.5b and 

5.5h – maximum displacements are located at the two top corners and also at the whole bottom 

side to the left from the left crack and to the right from the right crack. At Se configurations, 

there are no visible changes for the 1st bending, torsional, transversal bending, and in-plane 

bending modes shapes. For the 2nd torsional mode, the zero displacement area to the left has 

visibly shifted downwards. But for the 2nd bending mode the three blue zero displacement areas 

are no longer parallel to the short edges. Cracks were visible in all PD and FE mode shapes at 

T crack configurations, but not at S configurations, because the cracks were located on the back 

face of the model. 

Validation of the PD Mode Shapes 

The results for the 1st bending mode at both crack configurations will be presented in Figures 

5.8 and 5.9. Please see the full Thesis for other mode shapes. Only 2D modes could be obtained 

from the experimental analysis due to limitations of the available equipment. The author chose 

to present also the PD modes in 2D so that they can be compared with the experimental data 

more easily. The color scheme used in this chapter is presented in Figure 5.7.  

 

Fig. 5.7. The color scheme used in figures 5.8 and 5.9. 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Fig. 5.8. Mode shapes of the 1st bending mode. Top row – PD, bottom row – experimental 

modes shapes. a, f – Healthy; b, g – Tb; c, h – Tc; d, i – Td; e, j – Te configuration  



22 

The PD and the experimental mode shapes are in excellent agreement. For T configuration, 

the extreme displacements are located in the middle and at both ends. When cracks are 

introduced, displacement shift in response and the introduced cracks are clearly visible in all 

PD mode shapes, but not in all experimental mode shapes. Cracks in S configurations were 

manufactured into the back face of a specimen, not through specimen thickness. Therefore, they 

did not appear on the specimen surface, also the 1st bending mode’s displacement field did not 

visibly shift when cracks were introduced.  

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Fig. 5.9. Mode shapes of the 1st bending mode. Top – PD, bottom – experimental modes 

shapes. a, f – Healthy; b, g –  Sb; c, h – Sc; d, i – Sd; e, j – Se configuration. 
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6 CONVERGENCE STUDIES 

Every acceptable numerical method should converge or at least tend to the exact local or 

non-local solution, thus meshes with a higher number of nodes, i.e. a smaller node spacing, 

should produce more accurate results at an increased computational cost. Mesh or grid 

convergence is, therefore, studied to determine the lowest number of nodes in a model with an 

acceptable discretization error.  

A model has some number of nodes 𝑚 and the inverse property – mesh spacing – is ℎ. 

Discretization error is an error that arises when a function of a continuous variable is 

represented by a finite number of evaluations. As the mesh spacing decreases, i.e. ℎ → 0, the 

discretization error should asymptotically approach zero and only computer round-off errors 

should remain.  

In PD three types of convergence can be defined: 

 The δ𝑚-convergence where δ → 0 and 𝑚 increases as δ decreases, with m increasing 

faster than 𝛿 decreases. The numerical PD solution will converge to the analytical PD 

solution and converge to the local continuum mechanics solution. 

 The 𝑚-convergence where δ is fixed and 𝑚 → ∞. In this case, the PD solution 

converges to the exact non-local PD solution for a given δ. 

 The δ-convergence where δ → 0 and 𝑚 is fixed or increases with decreasing δ. In this 

case, the PD solution converges to and approximation of the continuum mechanics 

solution. 

It must be noted that in a computational model the horizon δ is required to cover more than its 

own node, so it cannot shrink to zero. In these Thesis the shortest horizon used is δ = √2ℎ.  

Two convergence studies – δ and δ𝑚 – were done. In the δ-convergence study, mesh 

density was held constant at either 40 000, 135 000, 320 000 or 625 000 nodes while the horizon 

shrank from δ = 4ℎ to δ = √2ℎ. But in the 𝛿𝑚-convergence study the horizon was held 

constant at either δ = √2ℎ, δ = 2ℎ, δ = 3ℎ or δ = 4ℎ while the mesh density increased from 

40 000 to 625 000 nodes.  

Convergence studies are presented for simulations at Healthy configuration δ𝑚-

convergence plots and for the first six modes are presented in Figure 6.1. All presented plots 

show that the computed modal frequencies approach the continuum value asymptotically as the 

mesh density increases.  
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 6.1. δ𝑚-convergence at Healthy configuration. a – 1st bending mode; b – 1st torsional 

mode; c – 2nd torsional mode; d – 2nd bending mode; e – 1st transversal bending mode; f – 1st 

in-plane bending mode. 

The computed δ𝑚-convergence orders showed that in all cases convergence is not linear 

but of some higher order 𝑝 > 1, which means that even little increase in mesh density gives a 

large gain in accuracy. Generally, it is between 1 and 2 so it does not reach quadratic 

convergence. 

δ-convergence plots are presented only in the full Thesis. It is noted that since mesh spacing 

does not shrink in δ-convergence, it need not be asymptotic. For the first two bending modes 

and the 1st transversal bending mode in values converged rapidly till δ = 2ℎ and did not change 

significantly when horizon decreased to δ = √2ℎ. The 1st and the 2nd torsional mode’s results 

tend to a single value at δ = √2ℎ with no exceptions. Lastly, the results of the 1st in-plane 

bending mode converge in the same way as the results for other modes.  
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7 DEMONSTRATION OF APPLICATION OF 

PERIDYNAMIC MODAL ANALYSIS  

Modal analysis was combined with the PD fatigue simulation. First, modal analysis was 

performed using an undamaged specimen, then fatigue simulation was run, followed by another 

modal analysis. The first 12 modes were computed and no boundary conditions were applied 

in both modal analyses. The first six were rigid-body motion modes that will not be used 

hereafter.  

A dog-bone tensile test specimen was used for demonstration. Its dimensions are presented 

in Figure 7.1a. The horizon was set to 0.0015001 m and there were 204 000 nodes in the model. 

Simulations were run using an elastic material model. The material parameters were: density – 

7850.0 kg/m3; Poisson’s ratio – 0.30; and Young’s modulus – 189.9 GPa. In the fatigue 

simulation, constant displacement of 9e–5 m was applied at both ends in the opposite y 

directions. Boundary conditions were applied to groups of nodes within one horizon from either 

end. Additionally, the damage was disabled for any node within 3δ from both ends to avoid 

any unphysical behavior close to the BCs. Parameters for the fatigue model are presented in 

Table 7.1. The fatigue simulation ran for 870 000 cycles and the model at the end of the 

simulation is shown in Figure 7.1b. Two cracks on the opposite sides of the narrowest part of 

the specimen grew towards each other and then each crack split into two.  

 

  
(a) (b) 

Fig. 7.1. The model used for demonstration. a – the model with its dimensions; b – damage 

after 870 000 fatigue cycles. 

Table 7.1 

Parameters of Fatigue Damage Model  

Parameter Value 

AI 426.00 

mI 2.77 

AII 25237.48 

mII 4.00 

ε∞ 0.00186 

ΦC 0.385 
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Modal frequencies are presented in Table 7.2, color scheme for the mode shapes in Figure 

7.2 and the first three mode shapes in figure 7.3, other shapes can be seen in the full Thesis. All 

modal frequencies experienced frequency shift when the fatigue cracks were introduced. The 

largest frequency shift was –2.91 % for the 1st bending mode, and it was smaller for other modes 

in absolute and relative values. This shows that the peridynamic theory allows for realistic and 

naturally evolving damage simulations coupled together with modal analysis for damage 

assessment. Introduced fatigue damage has not visibly changed mode shapes. However, 

quantitative rather than qualitative assessment should be done to assess the difference between 

mode shapes before and after fatigue damage. Such a study is outside the scope of this Thesis. 

 

Fig. 7.2. The color scheme used in Figure 7.3. 

Table 7.2 

Modal Frequencies of  Undamaged Model and  Damaged Model After 870 000 Cycles 

Mode 
Undamaged model (0 cycles) Damaged model (870 000 cycles) 

 𝛥𝑓 % 
Mode type 𝑓, Hz Mode type  𝑓, Hz 

1st  1st bending 2446.38 1st bending 2377.17 –2.91 % 

2nd  1st torsional 2949.17 1st torsional 2911.42 –1.30 % 

3rd  2nd bending 6855.98 2nd bending 6820.82 –0.52 % 

4th  2nd torsional 7608.84 2nd torsional 7547.12 –0.82 % 

5th  1st transversal bending 11 092.60 1st transversal bending 11 042.50 –0.45 % 

6th  3rd torsional  11 883.34 1st in-plane bending 11 533.59 – 

 

 

  

 

  

 

  

(a)  (b)  (c) 

Fig. 7.3. Mode shapes of an undamaged specimen (left) and damaged specimen (right). a –the 

1st bending mode; b – the 1st torsional mode; c – the 2nd bending mode. 
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8 CONCLUSIONS 

This Thesis is an original research project that considered a novel approach to modal 

analysis in the peridynamic theory. A modal solver capable of solving peridynamic modal 

problems was implemented and optimized for a massively parallel computing environment. 

Further peridynamic modal simulations of models at nine different crack configurations were 

performed. Finite-element modal analyses were run for models at the same nine crack 

configurations. Then experimental test specimens were manufactured and tested to obtain both 

mechanical and modal properties. Next, the PD modal frequencies and mode shapes were 

verified against the FE results and validated against the experimental results. Lastly, an 

application of PD modal analysis was demonstrated by coupling it together with a fatigue 

damage simulation. Several conclusions can be drawn from this research. 

1. The developed modal solver was optimized for and is capable of running in a massively 

parallel computing environment and solving peridynamic modal problems. Optimal 

parameter selection depends on the considered problem. However, optimization 

revealed several relations between the eigensolver, linear solver and preconditioner 

parameters and the simulation speed and memory use. These can be used as a starting 

point to determine optimal parameters in other cases. 

2. The agreement between the peridynamic results and the FE results was excellent at all 

crack configurations. The differences in the computed modal frequencies ranged 

between 0.00 % and –4.00 %. The peridynamic modal frequencies were lower as the 

horizon increased. This behavior is explained by the increasing “surface effect”. 

Additionally, PD results also agreed well with the experimental results. The modal 

frequencies were within ±3.2 % of the experimental results. Moreover, the PD 

frequency shift is similar to frequency shifts in FE and experimental analyses. The 

largest difference between the PD and the FE frequency shifts was –1.38 and 1.30 

percentage points for T and S crack configurations respectively, but between the PD and 

the experimental frequency shifts –1.47 and 1.95 for T and S configurations 

respectively. The PD and the FE mode shapes agreed well and were in the same order 

at each crack configuration. The agreement between the PD and the experimental mode 

shapes was also good, furthermore, the change in the mode shapes from the introduced 

damage was similar in both analyses. 

3. Two convergences – δ𝑚 and δ – were considered. In the 𝛿𝑚 convergence study, results 

asymptotically approached a single value as the mesh density increased. The 

convergence is faster than linear, but slower than quadratic. Generally, the convergence 

order is between 1 and 2. Moreover, it was shown that the asymptotic range of 

convergence is reached with the 625 000-node model. Additionally, longer horizon 

results in lower computed frequencies, however, there are few exceptions in models 

with low mesh density. The δ-convergence plots were not asymptotic and showed that 

the difference between the non-local and the local solution does not shrink smoothly as 

the horizon decreases. 
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4. An example of a practical application of the current implementation of PD modal 

analysis was shown. The modal solver was coupled with a peridynamic fatigue damage 

simulation to demonstrate how the change in modal parameters due to fatigue damage 

can be assessed. First, the modal analysis was run. Next, 870 000 fatigue cycles were 

simulated. Lastly, modal analysis was run again. Mode shapes displayed no visible 

difference before and after the fatigue simulation, however, only qualitative assessment 

was done, but quantitative assessment is beyond the scope of this Thesis. The difference 

in modal frequencies for the same modes ranged between –2.91 % to –0.45 %. Showing 

that the damage created by a fatigue simulation can be measured using modal analysis. 

Such measurements can be applied in model validation, manufacturing quality 

assurance, and structural damage detection.  


