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Abstract – Single cell oil (SCO) is an attractive alternative source of oil, which, 

depending on the fatty acid composition, can be used as a feedstock for biodiesel 

production, as an ingredient for pharmaceuticals or as a source of essential fatty 

acids for human and animal consumption. However, the use of SCO is limited due 

to use of relatively expensive food or feed products in the cultivation of SCO 

producing microorganisms. In order to reduce SCO production costs, the use of 

cheaper feedstock such as biodegradable agro-industrial wastes are necessary. 

At the same time, the microbial treatment of biodegradable wastes ensures the 

neutralization of environmentally harmful compounds and reduces the negative 

impact on the environment. Oleaginous microorganisms are capable of fermenting 

a variety of industrial by-products, waste products and wastewaters, however 

further discussion on properties of the waste materials is necessary to facilitate the 

selection of the most appropriate waste materials for SCO production. Thus, this 

review compares various industrial waste products that can be used as cheap 

feedstock for the cultivation of SCO producing microorganisms. Industrial waste 

products, by-products and wastewaters are compared according to their global 

availability, current use in competing industries, required pre-fermentation 

treatments, oleaginous microorganism cell concentrations and SCO yields. 

Keywords – Animal feed; biodiesel; industrial waste; low-cost substrate; microbial 

oil; oleaginous microorganisms; resource availability   

1. INTRODUCTION  

Waste recycling can significantly reduce the negative impact on the environment and, at 

the same time, reduce the costs associated with waste management. However, most of the 

waste is still being recycled using low-added value solutions [1] such as incineration [2], 

biogas production [3], or bioenergy and biofuel production [4]. In order to increase revenue 

generated by waste management, it is necessary to introduce new technological solutions, 

which would enable the use of biodegradable waste products in production of high added 

value products such as building block chemicals [5], [6] single cell proteins [1], [7], enzymes 

[8] and others. One of these high added value products is single cell oil (SCO).  
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Single cell oils are lipids derived from bacteria, fungi, yeasts, microscopic algae and 

protists. Depending on their fatty acid composition, these lipids have different applications. 

SCOs with high saturated fatty acid contents are suitable for the biodiesel production [9], 

while SCOs rich in polyunsaturated fatty acids are suitable for human and animal nutrition as 

well as for production of pharmaceuticals [10], [11]. These oils are similar in composition to 

those that can be obtained from plants and animals, but SCO has several advantages over 

traditional oil sources:  

− A wide range of microorganisms can be used for SCO production. So far, hundreds of 

microorganisms from more than 60 genera have been identified as suitable for SCO 

production, capable of accumulating at least 20 % oil relative to its biomass dry weight 

[11]–[13];  

− The growth of microorganisms is considerably faster than growth of plants or animals. 

Microscopic algal populations double within 2–6 hours, yeast and microscopic fungi 

populations in 1–3 hours and bacterial populations double within 0.5–2 hours. 

Therefore, microbial reactors require an oil synthesis cycle of 12–72 h for bacteria and 

5–10 days for yeast, fungi and algae, while it is possible to harvest agricultural produce 

only once a season (1–2 times a year);  

− Thanks to the rapid growth of microorganisms, suitable strains of microorganisms can 

be chosen and artificially selected in a few weeks or months, while breeding takes 

years with plants and animals;  

− Microorganisms have several times higher oil content in dry matter than plants and 

animals (20–80 % for microorganisms, 5–35 % for plants, 2–30 % for fish) [11], [14];  

− The composition of SCOs is of higher quality than that of oils derived from plants or 

fish. For example, the concentration of high-quality omega-3 fatty acids (EPA and 

DHA) from the total oil content of SCOs can reach up to 40 %, while for plants and 

fish it is 4.9 % and 3 %, respectively [11];  

− Microorganisms can use different sources of carbon for nutrients. Consequently, it is 

possible to extract oil using different types of biodegradable waste products with high 

carbon or carbohydrate content, thus significantly reducing production costs;  

− Autotrophic microorganisms (microscopic algae, photosynthetic bacteria) are capable 

of growing using CO2 as a carbon source. Thanks to the Wood-Ljungdahl biochemical 

cycle or reverse Krebs cycle, microorganisms are 3 to 10 times more efficient CO 2-

absorbers than plants [15], which generally ensures faster biomass growth and reduced 

negative environmental impacts;  

− The cultivation of microorganisms for oil extraction is independent of seasonal 

weather conditions and climatic changes. The process of cultivation in the reactors is 

protected from extreme weather conditions, which usually destroy plant crops grown 

for oil production. Unlike plants, microorganisms that do not require light for growth, 

can be cultivated around the clock; 

− Cultivation of microorganisms consumes considerably less water than cultivation of 

crops in agricultural areas. Due to the evaporation, transpiration and leakage of water, 

average water consumption per 1 kg of cereal is an average of 1800 litres [16]. 

When cultivating microorganisms in bioreactors, none of these factors have any effect 

on water consumption; 

− The cultivation of microorganisms does not require fertile land, so it does not compete 

with agriculture. Due to low water consumption, SCO production can also be done in 

dry climate regions where the availability of fertile land is limited. 
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All of these advantages have served as a basis for increased use of SCO and SCOs are now 

used in infant formulas, nutritional supplements and production of pharmaceuticals [10], [11]. 

However, the SCOs used in these industries are produced from microbial fermentations o f 

raw materials such as refined sugars. By using so-called food and feed materials, the total 

cost of production is considerably increased [11], [13]. This increase in cost makes SCO 

production unprofitable for sectors with relatively lower added value, such as biofuels and 

animal feeds. Therefore, in order to be able to use SCO in these sectors, it is necessary to use 

cheaper raw materials such as biodegradable by-products, waste products and wastewaters 

from other industries [13], [17]. 

Industrial waste is any industrial residue that is not further used in the relevant systems. 

Industrial waste can come from factories, industries, mills and mining operations [13]. 

Although industrial waste includes residues such as chemical solvents, pigments, dyes, metal 

processing waste, radioactive waste, etc., only biodegradable industrial wastes such as sludge, 

paper waste and production residues, specific industrial and chemical by-products and waste 

gases can be used for microbial fermentation [7]. Spalvins and Blumberga [13] reviewed the 

most suitable agricultural by-products for SCO production. Within the framework of this 

review, the reviewed industrial wastes will be residues suitable for the production of SCO, 

that are not directly related to agriculture or food production. Other reviews which summarize 

the use of suitable waste products for production of SCO [11], [18]–[22], the main focus is 

on the used microorganisms and not so much on the properties of the waste products. Thus, 

in this review, waste products will be categorized, compared and described according to their 

availability, required pre-fermentation treatments, SCO yields, oleaginous microorganism 

biomass concentrations and current use in other industries, to facilitate the selection of the 

most suitable waste products. It is necessary to emphasize that, in order to do a complete 

availability analysis, each potential waste product needs to analysed by taking into account 

its costs, local availability, transportation requirements and necessary logistics  and 

infrastructure systems. Carrying out such an analysis for each of the waste products described 

in the review is beyond the scope of this review, but the subject of the full availability analysis 

for waste products is further discussed by Spalvins and Blumberga [17]. 

2. WASTE TYPES  

Spalvins et al. [7] categorized the most suitable industrial wastes for single cell protein 

(SCP) production in 3 groups: polymer-rich sources; carbon compounds; sources for 

photosynthetic microorganisms. These groups will also be used to categorize waste products 

in this review. Although the waste products described in the previous paper were reviewed in 

regard to SCP production [7], they are also suitable for SCO-producing microorganisms and 

vice versa, since waste products serve mostly as a carbon source in the fermentation medium. 

For example, yeast Yarrowia lipolytica can be cultivated using leaf juice as a substrate, but a 

paper reporting it [23] focused on using this yeast for production of SCP, not SCO. In this 

example it does not matter if leaf juice is used as a carbon source, since the difference between 

turning Yarrowia lipolytica into SCP or SCO producing unit is the difference between C/N 

ratios, while the source of carbon is irrelevant. For this reason, previously reviewed waste 

products such as paper waste, acetic acid and hydrocarbons were not repeatedly described in 

this review, although they were listed in the summary table (Table 1) to compare SCO yields. 

New or additional information in regard to SCO production was provided for previously 

described waste products such as glycerol and sewage sludge. 
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3. COMPARISON OF INDUSTRIAL BY-PRODUCTS 

TABLE 1. INDUSTRIAL WASTES APPLICABLE FOR SCO PRODUCTION 

Polymer-rich sources Microorganisms DCW, g/l LC, % Ref. 

Paper mill sludge Cryptococcus vishniaccii 14.6 53.40 [24] 

Waste paper hydrolysate Cryptococcus curvatus 17.6 52.2 [25] 

 Cryptococcus curvatus 15.20 37.8 [26] 

Sewage sludge Lipomyces starkeyi 9.5 68 [27] 

Carbon compounds     

Glycerol Cryptococcus curvatus 118 25 [31]  

” Schizochytrium sp. 151.40 52.36 [32] 

Glucose and glycerol Schizochytrium limacinum 88.32  83.84 [28] 

” Schizochytrium limacinum 34.43 27.62 [29] 

” Yarrowia lipolytica 17 38 [35] 

” Schizochytrium limacinum 26.4 75 [29] 

Crude glycerol Schizochytrium limacinum 11.78 26 [30] 

” Rhodosporidium babjevae 9.9 34.9 [33] 

” Rhodosporidium diobovatum 14.1 63.7 [33] 

” Kodamaea ohmeri 10.50 32.2 [34] 

” Trichosporonoides spathulata 10.40 44.5 [34] 

” Yarrowia lipolytica 8.1 43 [36] 

” Yarrowia lipolytica 4.92 30.1 [37] 

” Yarrowia lipolytica 8.1 43 [38] 

Sodium gluconate Rhodococcus opacus – 80 [39] 

” Gordonia sp. – 72 [39] 

Butanol wastewater Trichosporon dermatis 7.4 13.5 [40] 

Acetic acid Cryptococcus curvatus – 60 [41] 

Tetradecane Rhodococcus opacus 1.89 62 [39] 

” Gordonia sp. 2.01 60 [39] 

Hexadecane Gordonia sp. 1.89 58 [39] 

Dodecane Rhodococcus opacus 0.70 84 [39] 

Sources for photosynthetic microorganisms    

Carbon dioxide Dunaliella tertiolecta – 44 [42] 

” Chlorella vulgaris 2 38 [43] 

Note: DCW – dry cell weight (grams per litre of medium); LC – lipid content (% of DCW). 

3.1. Polymer-Rich Sources 

Cellulose, hemicellulose and sludge fibres as waste are accumulated from paper industry, 

municipal waste and wastewater treatment systems. Polymers, such as lignocellulosic wastes 

are the most widely available industrial wastes. These polysaccharides require mechanical, 
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chemical or biochemical pre-treatments to break down polymers and make fermentable 

carbohydrates available to oleaginous microorganisms, which in turn increases the cost of 

SCO production [7]. 

3.1.1. Paper Mill Sludge 

Paper mill sludge (PMS) is a waste product generated during paper production. 

Approximately 30–50 kg of PMS is generated per tonne of paper produced [24], [44]. 

Thus, every year, the global paper industry generates around 17 million tonnes of PMS [7], 

[45], from which most of it is dumped in landfills, used in land applications or incinerated 

[46], [47]. Since PMS is available in large amounts and has not been efficiently utilized thus 

far, its use in SCO production would be an appropriate value-added solution. PMS is rich in 

organic compounds and micro and macro nutrients [46], [47]. The composition of PMS varies 

greatly depending on the type of wood used for paper production, the amount and type of 

used recycled paper, applied production technology, the target product and other factors [46], 

[47]. In general, the main components in PMS are cellulose, hemicellulose and lignin, but 

compared to other lignocellulosic waste products, lignin content in PMS is significantly 

reduced due to the pulping process [24]. Reduced lignin concentrations significantly improve 

PMS fermentability and alleviate necessity for extensive pre-treatment processes, which are 

required for other lignocellulosic materials, thus significantly affecting overall cost of 

production [1], [7], [24]. Due to these properties, pre-treatment methods such as 

ultrasonication can be used for preparing PMS for microbial fermentation. Ultrasonication 

ensures break down of cellulose and hemicellulose and release of fermentable carbohydrates 

[24], [27]. The high cellulose content ensures that hydrolysed PMS is rich in glucose, xylose, 

arabinose and other fermentable sugars. 

Spalvins et al. [7] previously described the availability and use of waste paper for 

cultivation of SCP-producing microorganisms. Similar to paper waste, PMS is contaminated 

with unwanted microorganisms and since the aforementioned ultrasonication pre -treatment 

does not sterilize the material, a further sterilization is required to control microbial 

contamination. An interesting solution to this problem would be the use SCO-producing 

extremophiles [48], [49], thus enabling application of selective growth conditions in the PMS 

medium. Thus far, good SCO yields have been reported by using PMS as substrate in 

Cryptococcus vishniaccii culture. Cryptococcus vishniaccii is psychrophilic yeast which is 

capable of growth at temperature ranges from 4 °C to 26 °C [50], although in previously 

mentioned report selective temperatures were not used during fermentation. The use of PMS 

in SCO production has not been extensively studied, but the reported SCO yields indicate that 

this substrate is promising [24] and additional research on PMS as well as on paper waste in 

SCO production are required [7], [25], [26]. 

3.1.2. Sewage Sludge 

Sewage sludge is a waste product generated by wastewater treatment plants. In European Union 

alone about 33 million tonnes of sewage sludge are generated annually [51]–[54]. The use of 

sewage sludge in land applications is limited due to risk of contaminating soil and water with 

heavy metals and toxic organic compounds. For these reasons, sewage sludge is mainly disposed 

in landfills or dried and then burned [27]. Value added and environmentally friendly alternatives 

to sewage sludge management include: use in biogas production, as well as aerobic fermentation 

for SCO production, where the produced oil could be used for biofuel production [27]. 

Another interesting alternative is the use of oleaginous microorganisms directly in aerobic 



Environmental and Climate Technologies 

 ____________________________________________________________________________ 2019 / 23 

 

330 

wastewater treatment systems [55]. In this way, the sludge’s lipid content would be significantly 

increased and it would enable the use of the sewage sludge as a direct feedstock for the production 

of biodiesel, without the need to separately treat sewage sludge afterwards. 

Usually, sewage sludge is rich in proteins, carbohydrates, fats, fibres, nitrogen compounds and 

also contains phosphorus and sulphur compounds and many other micro and macro elements [56], 

[57]. Sewage sludge have high organic carbon concentrations, which are mainly found in the form 

of fibres, thus hydrolysis of the sludge can ensure the breakdown of fibres and release of 

fermentable carbohydrates [27]. Sewage sludge has high nitrogen concentrations and the average 

C/N ratios are around 6 [56], [57], which means that in order to efficiently use sewage sludge in 

SCO production, it is necessary to significantly increase carbon concentrations by additionally 

adding other carbohydrate-rich by-products. Thus far, good SCO yields have been reported by [27] 

when Lipomyces starkeyi was cultivated in treated sewage sludge enriched with glucose to reach 

appropriate C/N values [27]. Due to the high concentrations of nitrogen, proteins, fatty acids and 

micro and macronutrients, sewage sludge can serve as cheap and efficient feedstock which, when 

combined with additional carbon source, can deliver high SCO yields while maintaining low 

production costs. 

3.2. Carbon Compounds 

Butyric acid, acetic acid, glycerol and other organic compounds are generated in various 

industries as products, by-products or residues. These compounds can be directly used as 

carbon and amino acid sources for SCO production, while at the same time enabling the 

treating of industrial effluents. 

3.2.1. Glycerol 

In the last 15 years the production volumes of biodiesel have increased significantly, due 

to the compatibility of biodiesel and its production technology with the already existing fuel 

industry infrastructure, the relatively simple production process, the possibility of using 

various raw materials in the production process and subsidies to producers [58]. Global 

biodiesel production in 2014 reached 26.5 million tonnes a year, which is more than a 4-fold 

increase, when compared with the production volumes in 2006 [58], [59]. Even though this 

increase is a good example of greenhouse gas emission level reduction and an example of 

renewable energy sector development [60], biodiesel production creates 100 kg of crude 

glycerol per each tone of biodiesel [2]. It means that each year more than 2 million tons of 

glycerol is being produced as a biodiesel production by-product [61]. 

Crude glycerol, which is being created during the biodiesel production process, contains 

such impurities as alcohols, heavy metals, water and various salts, which is the reason why it 

is necessary to treat industrial glycerol prior to its utilization in other sectors [2], [61]. Due to 

the impurities, transportation costs and low market prices, market for untreated glycerol is 

limited. As a result, biodiesel producers often sell glycerol as a fuel, which is a solution 

associated with low profit margins. New and innovative technological solutions and an 

introduction of more effective glycerol utilization solutions could help in further development 

of the whole biodiesel industry. In SCO production both treated and untreated glycerol can be 

used [62], resulting in overall reduction of production costs, since the untreated glycerol has 

a very low market price (2–5 EUR per kilogram) [63] and a relatively small amount of glycerol 

must be added into the medium (20–100 g/L). Glycerol utilization in SCO production offers 

an opportunity to produce a product with high added value and enables more profitable 
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utilization of glycerol. Utilization of glycerol in SCO production is widely described in 

numerous publications [28]–[38] with extremely high SCO yield reported when using 

Schizochytrium sp. (Table 1). 

3.2.2. Sodium Gluconate 

Sodium gluconate is a sodium salt of gluconic acid, which is very soluble in water and is 

therefore found in industrial wastewaters where it is produced and used. Sodium gluconate is 

widely used in the textile industry, dyeing, printing, metal surface treatment as well as a cleaning 

agent and as a chelating agent. Gouda et al. reported that sodium gluconate can be used as a carbon 

source for oleaginous bacteria Gordonia sp. and Rhodococcus opacus cultivation [39]. 

3.2.3. Butanol Wastewaters 

In order to replace the production of butanol from petroleum, it can be produced using an 

acetone-butanol-ethanol fermentation process in which anaerobic bacteria ferment 

carbohydrates and synthesize acetone, butanol and ethanol. This process is environmentally 

friendly, uses renewable resources such as starch or glucose and eliminates the need for fossil 

resources. After fermentation, more than 99 % of the produced acetone, butanol and ethanol 

are recovered from the fermented culture medium, but the used medium (butanol wastewater) 

is characterized by high chemical oxygen demand (COD) values (23560 ppm) due to residual 

carbohydrates and organic acids such as acetic and butyric acid [40]. In order to treat butanol 

wastewater and reduce the negative environmental impact that these residues would have if 

they entered the environment previously untreated, they can be used as a medium base for 

cultivating oleaginous microorganisms. Without addition of additional nutrients Peng et al. 

[40] cultivated Trihosporon dermatis in butanol wastewater and reported relatively low SCO 

yield, while significantly reducing COD levels in the wastewater. In the future, combination 

of butanol wastewater with other carbon-rich waste products could ensure significant increase 

in SCO yields. 

3.3. Sources for Photosynthetic Microorganisms 

3.3.1. CO2 as Carbon Source 

Today it is well known as CO2 becomes more potent in atmosphere, overall temperatures 

keep rising. Due to CO2 effects on climate change, there are more and more attempts to 

remove CO2 from the atmosphere. Hence carbon capture and storage (CCS) technologies have 

been developed in recent years [64], technologies like CO2 capture by ionic solvents and its 

storage deep in the ground, so that it cannot re-escape into the atmosphere [65]. On the 

downside, these technologies require a lot of energy. Alternatively, autotrophic organisms, 

such as plants and microorganisms can be used to assimilate CO2 into biomass by 

photosynthesis [66]. As mentioned above, microorganisms are more effective for CO 2 

capture. In line with this review, we analysed the potential of CO2 usage as a carbon source 

for SCO production. Industries such as steel and oil refining, coal and natural gas, as well as 

fertiliser production are the main producers of CO2 [65], [67].  

There have been attempts to develop an economically feasible system for CO2 assimilation 

by using algae simultaneously for effluent wastewater treatment from steel production plants. 

[68] Due to the low C/N ratio of wastewater [69], autotrophic microorganism cultivation 

would be suitable in such case. As mentioned above, one of the main carbon dioxide 

producing industries is the fertiliser production industry [70]. According to the Centre for 
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European Policy Studies report from 2014, more than 130 million tonnes of ammonium were 

produced globally in 2012, with the main producers being China with 44 million tonnes, India 

12 million tonnes and Russia with 10 million tonnes [71]. The Intergovernmental Panel on 

Climate Change (IPCC) in 2006 published Guidelines for National Greenhouse Gas 

Inventories, in these guidelines IPCC states that 2.104 tonnes of CO2 are produced from every 

ton of ammonium produced [72]. Although IPCC calculations are derived from European 

average values for specific energy consumption (mix of modern and older plants), assuming 

this emission factor is applicable on the global scale, we can calculate that 274 million tonnes 

of CO2 are produced every year from ammonia production alone. This is an untapped resource 

for SCO production autotrophically. 

In addition to light, source of nitrogen and carbon dioxide, algae need phosphorus and 

potassium. Recommendations of N/P/K proportions vary from equal amounts of nitrogen, 

phosphorous and potassium for C. vulgaris cultivation [73] to a N/P/K ratio of 6/1/1 for 

Dunaliella tertiolecta cultivation [74]. Standard mediums, like Soil extract [75] and Bold’s 

Basal Medium [76] for laboratory cultivation give ratios of 1/1/2, leaving phosphorus as 

limiting. The amount of potential biomass yield from certain amounts of CO2 are described 

by two stoichiometric equations, depending on nitrogen source used [77], [78]: 

0.81 CO2 + 0.73 H2O + 0.12 NH3 + minerals 
ℎ𝑣
→  0.81 C-mole + O2,  (1) 

0.71 CO2 + 0.59 H2O + 0.101 NO3
– + minerals 

ℎ𝑣
→  0.71 C-mole + O2.  (2) 

These equations can give a rough estimate of the required amount of nitrogen, other 

essential elements are excluded from these equations due to negligible amounts of these 

elements as seen in the elemental composition of green algae C. vulgaris C60H9O21N6.5 

P0.8S0.08 [79], as according C-mole of C. vulgaris is CH0.15O0.35 N1.08P0.01S0. This leads to 

nitrogen and phosphorus being the main nutrients causing algae blooms and eutrophication 

by wastewaters flushing into natural bodies of water. So it makes perfect sense that 

microscopic algae have already been used for tertiary wastewater treatment [80]. In this case, 

inorganic nitrogen and phosphates are used as valuable nutrients for algal growth. Tertiary 

treatment of wastewater is often skipped due to high expenses [81], though if oleaginous algae 

as C. vulgaris is chosen for this treatment, financial gains could be potentially made after 

biomass collection and oil extraction. As C. vulgaris in autotrophic growth conditions can 

yield 38 % lipids of its dry cell weight [82]. In addition, similar to algal single cell protein 

production, costs of SCO production from algae can be lower due to the fact that at least part 

of the required nutrients are provided by waste [83] – wastewater and CO2 emissions. 

According to a 2016 study looking into Barcelona’s (Spain) wastewater treatment plant 

(WWTP), after secondary treatment a considerable amount of potassium, phosphates, nitrates, 

and ammonium are present in the effluent – 36, 14, 51 and 30 mgL–1 accordingly [84]. This 

gives a rough N/P/K ratio of 9/1/9. As mentioned above, N/P/K ratios vary considerably, in 

Collet et al. study C. vulgaris was cultivated [85] in open raceways with N/P/K ratios being 

closer to 8/2/1, N/P ratio in this case is close to abovementioned effluent from secondary 

wastewater treatment plant in Barcelona [84]. This would leave excess potassium in the 

effluent from tertiary treatment. This would leave SCO producers with choice – to supplement 

secondary wastewater effluent with additional nitrogen and phosphorus source or let the extra 

potassium go to waste and avoid extra costs. According to Yakushev et al. research , 229 hm3 

of wastewater is treated in the same Barcelona WWTP in a single year, roughly  

0.627 hm3∙day–1 [86]. By using two abovementioned Eq. (1) and Eq. (2) for biomass 
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production from NH3 and NO3
– accordingly, required CO2 can be calculated. As a result, 

504.8 g L–1 of CO2 is needed for complete removal of NO3
– from medium, and an additional 

494.2 g L–1 of CO2 for complete NH3 removal. Assuming there is no deficit of other nutrients, 

229 kilo tonnes of CO2 could be assimilated in a course of a year from the abovementioned 

WWTP, in these conditions 445 g of C. vulgaris biomass could be produced from every 1 kg 

of carbon dioxide. 

4. CONCLUSIONS  

In the scope of this review only a few industrial by-products were considered for SCO 

production. As shown in this review, every waste or by-product could be used for higher 

value-added product production, as well as for reduction of an industry’s burden on the 

environment as in case with wastewaters, carbon dioxide and butanol wastewaters.  

When considering waste and by-product usage for SCO production, a couple of things 

should be taken into account:  

− Oil quality and purity requirements;  

− Desired fatty acid profile and the respective microorganisms and their requirements 

for growth and oil production conditions;  

− Additional expenses for substrate pre-treatment and transportation;  

− Concentration of potential inhibitors. 

There is no defined answer to what would be the best substrate for SCO production, as all 

abovementioned criteria should be considered. For example, carbon dioxide would require 

the least pre-treatment, but for economic reasons it should be coupled with effluents from 

secondary wastewater treatment, and only photosynthetic microorganisms could be cultivated 

this way – this leads to demand of vast land areas, as with today’s technologies net energy 

ratio is greater than one only in open pond cultivation systems [87]. When considering PMS 

hydrolysate, not only additional costs of pre-fermentations should be taken into account, but 

also inhibitor presence [88] and effects on chosen microorganisms. As mentioned in previous 

studies [1], [7], [13], [17] each waste material must be evaluated not only in regard to its 

economic feasibility, but should be compared to already existing or potentially emerging 

competing sectors. 
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