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Abstract – During the recent years, numerous endeavours have 

been made in the area of software development effort estimation 

for calculating the software costs in the preliminary development 

stages. These studies have resulted in the offering of a great many 

of the models. Despite the large deal of efforts, the substantial 

problems of the offered methods are their dependency on the used 

data collection and, sometimes, their lack of appropriate 

efficiency. The current article attempts to present a model for 

software development effort estimation through making use of 

evolutionary algorithms and neural networks. The distinctive 

characteristic of this model is its lack of dependency on the 

collection of data used as well as its high efficiency. To evaluate the 

proposed model, six different data collections have been used in 

the area of software effort estimation. The reason for the 

application of several data collections is related to the investigation 

of the model performance independence of the data collection 

used. The evaluation scales have been MMRE, MdMRE and 

PRED (0.25). The results have indicated that the proposed model, 

besides delivering high efficiency in contrast to its counterparts, 

produces the best responses for all of the used data collections. 

 

Keywords – Clustering, estimation, feature selection, genetic 

algorithm, imperialist competitive algorithm, neural network, 

regression, software development effort. 

I. INTRODUCTION 

Software development effort estimation is regarded as an 

important stage in software development projects. Therefore, 

many industry specialists and researchers have been devoting 

their attention to this field during recent years [1]. 

Software cost estimation incorporates the process of reaching 

a conclusion regarding the amount of effort required for the 

development of a software system [2]. The most important 

demanding requirement of the software development cost 

estimation is the accuracy of the estimation [3]. That is due to 

the fact that the overestimation of the software development 

cost might cause losing a project in a tender and, on the other 

hand, the underestimation might also cause the software 

company to be incurred by losses and/or it might cause the 

allocation of lower resources, as a result of which the project 

quality cannot be guaranteed [4], [5]. On the contrary, the 

accurate estimation can assist the managers and engineers in 

prioritisation of the project stages and proper allocation of the 
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resources [6], [7]. This is why the accurate estimation of the 

software development effort is deemed both a serious challenge 

for project managers [8] and a major phase in project 

development [9]. 

There are many uncertain variables extant in software 

development effort estimation, for example, development 

method, programming organisation and language that make the 

software size take a fuzzy form [10]; also, a great many of the 

important and influential factors of effort estimation are 

determined during the final phases of software development. 

Therefore, these factors have to be taken into account before 

running an estimation effort [11]. Thus, it is difficult to estimate 

the costs and efforts required for software development during 

the early stages of software development cycle. Many of the 

project researchers and managers have become notoriously 

famous for their underestimation of the real software 

development costs [8]. According to the statistics presented by 

the International Society of Parametric Analysis (ISPA) [12] 

and Standish Group [13], two-thirds of software projects have 

failed before delivery due to being either time consuming or 

costly. There are two substantial reasons behind the software 

project failure: inappropriate project estimation in terms of size, 

costs and personnel required and uncertainty about the software 

and system requirements [8]. 

A majority of the studies in the area of effort estimation have 

been predominantly concentrated on the designing of a good 

estimator [14] and/or new metrics [15] and/or other aspects of 

the software project [16]. 

There are different methods for the estimation of software 

development effort, the most important of which can be 

categorised into two sets of model-based and expert-based [3]. 

The model-based group, as well, is classified into two sets of 

statistical and mathematical methods, such as regression, and 

smart methods, e.g., machine learning [17]. Nowadays, 

increasing attention is paid to machine learning for its high 

competency of modelling the relationships between the project 

effort and its components. Multilayer perceptron neural 

network (MLP) and neural networks drawn on radial basis 

functions (RBF) and metaheuristic algorithms, including 
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genetic algorithm [18] and imperial competitive algorithm, are 

inter alia these methods. 

Although there are various models offered for software 

development estimation, a majority of them, unfortunately, lack 

the required efficiency and a comprehensive model providing 

an acceptable and independent estimation of the data collection 

is yet to be presented [19]; the majority of the models are 

pertinent to a specific dataset, which is why the model 

performance is observed being highly dependent on the dataset 

[20]. Model blending, feature weight determination and model 

weighing for combining the models are amongst the methods 

that have been recently put into practice [19], [21]. 

The present article intends to combine machine learning 

methods during several phases in order to offer a software 

development effort estimation model that, besides having a high 

efficiency in estimating the software estimation, is maximally 

independent of the dataset used. To verify the model 

independence, six datasets, comprised of general and publicly 

available information featuring various sizes, will be used in 

effort estimation. The proposed method is composed of three 

general phases. During the first phase, the genetic algorithm and 

neural network are combined to perform the feature selection 

operation. During the next phase, the genetic algorithm and 

imperial competitive algorithm are employed to perform a 

clustering operation. During the final phase, the neural network 

is used to perform modelling and test the clusters. In the end, 

the obtained results are compared with the results of some other 

models to evaluate the efficiency of the proposed model. 

The present article is organised in six sections. Prior research 

will be presented in Section II. Section III explains the proposed 

method requirements and Section IV gives details of the 

method. In Section V, the results are discussed and the analysis 

of research findings is performed in Section VI. Sections VII 

and VIII also discuss the validity and credibility of the method 

and its relevant results, and present the conclusions and 

suggestions for further research, respectively. 

II.  RELATED WORKS 

Soft computation technique is a novel idea that has been 

around since 1994 [22]. Its domain has been speedily expanded 

in such a way that it is now covering such techniques as genetic 

algorithm and swarm intelligence. The software project effort 

estimation models using constructive cost model (COCOMO) 

and genetic algorithm are provided in [23]. The presented 

models were tested on NASA software projects. 

In [24], the author runs a thorough study of using genetic 

style of programming (GP) and neural network (NN) and linear 

regression in problem-solving of software projects. Moreover, 

there are other studies offered about the use of soft computation 

techniques for software effort estimation in [25]. 

A glance at the prior studies makes it clear that a substantial 

fraction of the models focuses on combining various estimation 

strategies [26]. According to the simplicity and flexibility of 

analogy, comparison is the basis of the proposed models in the 

majority of studies. Combining analogy with genetic algorithm 

[27], analytics [28], particle swarm optimisation algorithm [29] 

and artificial neural network [30] has also been a method of 

choice. 

Recently, the localisation idea has been introduced in 

software development projects and promising results have also 

been acquired. Khatibi in [19] offers a model using model 

combination and localization. 

In [8], a complete analysis of various types of neural 

networks has been undertaken based on radial basis function, 

multilayer perceptron, general regression neural network and 

cascade correlation neural network. 

III. THE PROPOSED METHOD 

In this section, we deal with the explication of the proposed 

method. First, the independent variables are normalised by 

mapping to [0, 1] interval using (1). 

 𝑥𝑖
′ =

𝑥max − 𝑥𝑖

𝑥max − 𝑥min
, (1) 

where, 𝑥𝑖 is the i-th data item and 𝑥max and 𝑥min are the highest 

and the lowest values for each independent variable. 

After normalisation, the dataset is randomly divided into two 

parts of training data and test data (for a ratio of 70 % to 30 %). 

Since the results obtained from the model performance should 

be compared with the results of the other studies, the data 

assigned to two classes of the proposed model and compared 

reference models will be used. Therefore, the randomised 

division of the data will not exert a considerable effect on the 

comparison results. 

The model consists of three general phases as stated below: 

• GA and NN are used for feature selection; 

• GA and ICA are used for clustering; 

• MLP neural network used for modelling. 

After the modelling phase, the test data are employed to 

perform model testing operation. At the end of this phase, such 

efficiency scales as MMRE, MdMRE, PRED (0.25) [31] are 

applied to compare the efficiency of the proposed model  with 

that of the others. Figure 1 demonstrates the generalities of the 

proposed method. 

A. Phase One: Feature Selection 

The selection of a subset of features is one of the most 

important steps in enhancing the efficiency of the majority of 

software development effort estimation [20]. The proper 

selection of a subset of the most effective features, besides 

increasing the model speed, can considerably influence its 

efficiency. 
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Fig. 1. Generalities of the proposed method.

During this phase, the collection of the selected data is fed as 

input to the genetic algorithm. The cost function of the genetic 

algorithm is named FeatureSelectionCost (FSC). The 

chromosome length is determined according to the number of 

the selected dataset features. Each chromosome is a bit-thread 

composed of “0s” and “1s” that, respectively, denote the 

selection and/or rejection of the corresponding feature. After 

the preliminary population is created, each member of the 

population is evaluated by FSC function. The cost function is 

calculated using neural networks created by the fitnn() function 

in the MATLAB neural network toolbox. To render results 

more reliable, five neural networks are evaluated and the mean 

value of the results is returned. 

After creating and evaluating the preliminary responses, the 

main loop of the genetic algorithm is initiated. The loop, 

repeated for a hundred times, includes the following steps: 

a) Performing crossover: the parents are selected by the use 

of RoulettWheelSelection function to randomly undergo 

one of the single-point, two-point and/or even crossover 

operations with probability values of 0.2, 0.3 and 0.5, 

respectively, selected by RoulettWheelSelection function 

resulting in the generation of the offspring; 

b) Response Evaluation: immediately after the generation 

of responses resulting from the cross-over, the responses 

are evaluated by FSC functions; 

c) Mutation: at this stage, a number of responses are selected 

based on a given rate and subjected to mutation; 

d) Evaluation of Offspring Resulting from Mutation: the 

action is also carried out by FSC function; 

e) Blending of the three population groups: (initial 

population, population resulting from crossover and the 

population resulting from mutation) it is followed by 

ordering and selecting the best as the next generation 

population.  

The output of the algorithm forms the training and test 

dataset with the selected features that are sent to the 

forthcoming phase. 

B. Phase Two: Clustering 

Generally, a clustering operation is an unsupervised 

classification. Since our objective in the current research paper 

is to create a model with no dependency on any specific set of 

data, a total number of six datasets are selected from the effort 

estimation study field. Considering the difference these datasets 

have in terms of the nature and size, a different number of 

clusters is produced for each dataset. Therefore, clustering is 

accomplished in two stages. At the first stage, the genetic 

algorithm [32] is used for each dataset to calculate the number 

of clusters. During this stage, the genetic algorithm carries out 
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the cluster number determination assisted by DB [33] and CS 

[34] indices. 

Conceptually, DB index can be considered as intending to 

minimise the intra-cluster distance and maximise the inter-

cluster distance, which correspond to the two principles of 

cohesion inside the cluster and separation between the clusters, 

respectively. Relations (2), (3), (4) and (5) show the index 

calculation method. 

 𝑆𝑖.𝑞 = √
1

𝑁𝑖
∑ 𝑑𝑥∈𝑐𝑖

𝑞
(𝑥, 𝑚𝑖)

𝑞; (2) 

 𝑑𝑖.𝑗.𝑡 = √∑ |𝑚𝑖.𝑝 − 𝑚𝑗.𝑝|
𝑡𝑑

𝑝=1

𝑡

; (3) 

 𝑅𝑖.𝑞.𝑡 = max
𝑗∈𝑘.𝑗≠𝑖

(
𝑠𝑖.𝑞+𝑠𝑗.𝑞

𝑑𝑖.𝑗.𝑡
) ; (4) 

 𝐷𝐵 =
1

𝑘
∑ 𝑅𝑖.𝑞.𝑡

𝑘
𝑖=1 . (5) 

Let us suppose that xp is a member to cluster 𝑐𝑖. In this case, 

CS index can be defined according to relations (6), (7) and (8) 

 𝑑𝑝
max = max   𝑑

𝑥𝑞∈𝑐𝑖

(𝑥𝑝 , 𝑥𝑞) ; (6) 

 mean(𝑑𝑖) =
1

𝑁𝑖
∑ 𝑑𝑝

max
𝑥𝑝∈𝑐𝑖

; (7) 

 𝐶𝑆 =
1

𝑘
∑ mean(𝑑𝑖)𝑘

𝑖=1
1

𝑘
∑ min

𝑗𝜖𝑘.𝑗≠𝑖
𝑑(𝑚𝑖,𝑚𝑗)𝑘

𝑖=1
 (8) 

in such a way that k is the number of clusters and 𝑚𝑖 and 𝑚𝑗 are 

the centres of clusters i and j, respectively. 

The lesser values of CS indices are indicative of the idea that 

the distance between the cluster centres is larger and the 

distance between the members of a cluster is smaller, i.e., the 

cluster cohesion and separation principles have been met. 

 The reason why a genetic algorithm has been applied during 

this stage is its speed and binary nature. Moreover, the 

calculation of the DB and CS indices takes a lot of operation to 

accomplish. At the second stage, having the number of clusters 

at hand, the imperialist competitive algorithm is used to perform 

clustering for offering good cohesion and good capability of 

setting the parameters. The phase outputs are the clusters and 

their centres. 

Imperial competitive algorithm was introduced in 2007 by 

Atashpaz and Lucas [35]. The algorithm that is inspired by the 

imperialist-colony phenomenon in the real world is laid on the 

foundation of the assumption that there are at first a number of 

entities called countries, which are ranked based on certain 

scales. The algorithm consists of two general phases: 

• competition in an empire; 

• competition between the empires. 

In intra-empire competition, the colonies try to achieve a 

stage of growth so that they can take the position of the 

imperialist of the empire; such a growth is carried out based on 

such operators as attraction and revolution. In the intra-empire 

competition, the empires do their best to occupy the colonies of 

the other empires. To do so, a colony from the weakest empire 

is taken away by the operator “omission” and given to one of 

the other empires in each repetition. 

C. Phase Three: Modelling and Testing 

During this phase, the MLP neural network [8] is first 

employed to run modelling on the training data in such a 

manner that a network will be constructed for every cluster. The 

test data are assigned to the nearest cluster based on the cluster 

centres computed from the previous phase. Now, the network 

calculates the predicted effort for each cluster of the test data 

assisted by the network corresponding to that cluster. In the end, 

the predicted effort is compared for the data sets of all clusters 

with the real values followed by the calculation of the efficiency 

scales. 

IV. EXPERIMENTAL DESIGN 

We deal, in this section, with the introduction of the used 

datasets, preliminary settings of the algorithms and efficiency 

scales. The present article has endeavoured to compare the 

obtained results with the results acquired from the other 

common effort estimation models so as to better validate the 

proposed model. The compared models can be divided into one 

of the following classes: 

• Regression methods: they encompass the multiple linear 

regression (MLR), stepwise regression (SWR) and 

classification and regression tree (CART); 

• Metaheuristic algorithm methods: they embrace genetic 

algorithm, particle swarm algorithm and imperialist 

competitive algorithm; 

• Neural network methods: they incorporate multilayer 

perceptron (MLP) neural network and the neural network 

based on radial basis functions (RBF). 

A. Introducing the Datasets 

To evaluate the proposed model, we use the following 

commonly used public datasets: 

• COCOMO81 dataset: this dataset contains information 

of NASA software projects [36]; 

• Albrecht dataset: it includes the information of IBM 

software projects made in the 1970s [37]; 

• Desharnais dataset: in this dataset, there is information 

of some software projects accomplished in Canada [38]; 

• Maxwell dataset: it contains information on several 

projects pertinent to the trade banks in Finland [39];  

• ISBSG dataset: this collection of data incorporates 

information of a large number of industrial software 

projects from all around the globe that have been collected 

and offered by ISBSG group [40]; 

• China dataset: This data collection that is the newest 

dataset in the area of effort estimation contains 

information on 499 software projects with 18 features 

belonging to various software companies and firms [2]. 
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TABLE I 

THE SIX SELECTED DATASETS CONSISTING OF 792 SOFTWARE PROJECT CASES 

Max Median Mean Min Unit Num SS F-cat F Data set 

11400.0 98.0 683.5 5.9 months 63 1 1 17 Cocomo81 

105.2 11.5 21.9 0.5 months 24 2 0 7 Albrecht 

23940.0 3542.0 4833.9 546.0 hours 81 2 1 11 Desharnais 

63694.0 5190.0 822.0 583.0 hours 62 1 6 27 Maxwell 

60826.0 3216.0 5588.65 64.0 hours 63 2 0 7 ISBSG 

54620.0 1829.0 3921.1 26.0 hours 499 1 0 18 China 

F – number of features, F-cat – number of categorical variables, 

SS – number of software size variables, Num – number of projects. 

 

According to the existence of some missing data, various 

kinds of features and different measurement metrics, the present 

study, after implementing a preparatory operation, has made use 

of the information of 63 projects with seven features. A 

summary of the information from these data sets is provided in 

Table I. 

B. Efficiency Scales 

Numerous and diverse efficiency scales have been employed 

in various articles. The objective of the majority of these scales 

is the assessment of the model estimation accuracy. 

A majority of the articles have made use of relative error size 

scale in lieu of the relative error that can be defined as shown in 

relation (9). 

 𝑀𝑅𝐸𝑖 =
| Estimated𝑖−Actual𝑖 |

Actual𝑖
. (9) 

A majority of the extant efficiency scales measure the 

estimation accuracy so they have been formed based on the 

same scale. The present article makes use of MMRE, MdMRE 

and PRED(0.25) efficiency scales defined corresponding to 

relations (10), (11) and (12): 

 MMRE = mean(𝑀𝑅𝐸); (10) 

 MdMRE = median(𝑀𝑅𝐸); (11) 

 PRED(0.25) =
𝐴

𝑁
, (12) 

where A is the number of observations in which their MRE 

values are below 0.25 and N is the total number of observations. 

C. Preliminary Settings 

The present article makes use of genetic algorithm and 

multilayer perceptron neural network for feature selection; also, 

the genetic algorithm and imperialist competitive algorithm are 

applied to perform clustering and, finally, the neural network is 

utilised to carry out the modelling operation. The preliminary 

settings and the parameter values of genetic algorithm and 

imperialist competitive algorithm have been obtained based on 

trial and error as well as according to an observation of the prior 

and similar works as summarised in Tables II and III. 

The neural network used herein is a two-layer perceptron in 

the first layer of which the number of neurons is determined 

according to the intended dataset based on trial and error. The 

first input layer is the values of the features selected from every 

dataset. Thus, the number of the neural network inputs is 

different in every dataset. Trainscg function (conjugate 

gradient) has been used to train the neural network and the test 

data; training data and validation data have been divided in 

ratios of 70 %, 15 % and 15 %, respectively. 

 

TABLE II 

THE INITIAL SETTINGS AND THE VALUES OF PARAMETERS OF GENETIC 

ALGORITHMS 

Value Description Name 

100 Maximum of iteration MaxIt 

30 Num of initial population Npop 

0.8 Crossover percentage Pc 

0.3 Mutation percentage Pm 

0.1 Mutation rate Mu 

 

TABLE III 

THE INITIAL SETTINGS AND THE VALUES OF PARAMETERS OF ICA 
Value Description Name 

1000 Maximum of iteration MaxIt 

Num. of dataset 
records 

Num. of initial population Npop 

10 Num. of empires Nemp 

3 Selection pressure Alpha 

1 Assimilation coefficient Beta 

0.2 Revolution probability Prevolution 

0.3 Revolution rate Mu 

0.5 
Effect coefficient of the colony 

value on the empire value Zeta 

V.  EXPERIMENTAL RESULTS 

The COCOMO dataset is usually applied in the evaluation 

process of software project effort estimation models. Table IV, 

Figs. 2 and 3 summarise the effort estimation values for each of 

the aforesaid models. 

The Albrecht dataset includes information pertaining to 24 

projects with eight features, all of which have been applied in 

the effort estimation process. The results obtained from the 

various models based on this dataset for three parameters of 
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MMRE, MdMRE and PRED(0.25) have been given in Table V, 

Figs. 4 and 5. 

The Desharnais dataset is one of the most widely used dataset 

in studies on effort estimation area. The dataset was presented 

in 1997 by Desharnais et al. The results of various models using 

this dataset for three parameters of MMRE, MdMRE and PRED 

(0.25) have been summarised in Table VI, Figs. 6 and 7. 

The Maxwell dataset is one of the most well-known and 

frequently applied datasets in the area of effort estimation. The 

results of various models using this dataset for three parameters 

of MMRE, MdMRE and PRED(0.25) are summarised in 

Table VII, Figs. 8 and 9. 

The ISBSG dataset has been offered by the International 

Software Benchmarking Standards Group (ISBSG) and it is 

continuously updated. The results of various models using this 

dataset for three parameters of MMRE, MdMRE and 

PRED(0.25) are summarised in Table VIII, Figs. 10 and 11. 

The results of various models using the China dataset for 

three parameters of MMRE, MdMRE and PRED(0.25) are 

summarised in Table IX, Figs. 12 and 13. 

 

TABLE IV 

THE RESULTS ON COCOMO DATASET 

  MetaHeuristic Methods Neural Networks Regression Methods 
 

  GA ICA PSO MLP RBF CART MLR SWR Proposed 

MMRE 4.7227 5.8391 4.6650 2.7064 2.2826 1.0592 4.5950 3.2778 0.86011 

MdMRE 0.9475 0.9297 0.9478 1.0367 0.9245 0.8846 0.8104 0.8106 0.645129 

PRED(%) 5.263 15.789 5.263 10.526 15.789 15.789 15.789 21.052 31.578 

 

Fig. 2. Comparing methods (MMRE, MdMRE, PRED) on COCOMO dataset. 

 
Fig. 3. Box plot for MRE in COCOMO dataset. 
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TABLE V 

THE RESULTS ON ALBRECHT DATASET 

 

 

Fig. 4. Comparing methods (MMRE, MdMRE, PRED) on Albrecht dataset. 

 

Fig. 5. Box plot for MRE in Albrecht dataset. 

TABLE VI 

THE RESULTS ON DESHARNAIS DATASET 

  MetaHeuristic Methods Neural Networks Regression Methods 
 

  GA ICA PSO MLP RBF CART MLR SWR Proposed 

MMRE 0.8318 0.5627 0.7050 0.7953 0.5474 0.6261 0.5048 0.4460 0.4776 

MdMRE 0.8581 0.4839 0.7952 0.4775 0.3720 0.7069 0.3533 0.3880 0.2104 

PRED(%) 0.0000 13.0435 8.6957 30.4348 39.1304 17.3913 39.1304 30.4348 52.1739 

 

Fig. 6. Comparing methods (MMRE, MdMRE, PRED) on Desharnais dataset. 
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  MetaHeuristic Methods Neural Networks Regression Methods 
 

  GA ICA PSO MLP RBF CART MLR SWR Proposed 

MMRE 0.8515 0.4757 0.7395 0.5029 0.4845 0.7306 0.5635 0.5444 0.4038 

MdMRE 0.3634 0.4419 0.4759 0.4744 0.3162 0.6742 0.3900 0.2633 0.3042 

PRED(%) 14.2857 28.5714 28.5714 14.2857 28.5714 0.0000 14.2857 42.8571 42.8571 
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Fig. 7. Box plot for MRE in Desharnais dataset. 

TABLE VII 

THE RESULTS ON MAXWELL DATASET 

  MetaHeuristic Methods Neural Networks Regression Methods 
 

  GA ICA PSO MLP RBF CART MLR SWR Proposed 

MMRE 0.7482 0.6275 0.8217 0.7421 0.5538 0.6692 0.9286 0.5234 0.5083 

MdMRE 0.4407 0.4558 0.5233 0.4661 0.5552 0.8054 0.6174 0.3381 0.2483 

PRED(%) 36.8421 36.8421 26.3158 15.7895 15.7895 10.5263 26.3158 26.3158 52.6316 

 

 

Fig. 8. Comparing methods (MMRE, MdMRE, PRED) on Maxwell dataset. 

 

Fig. 9. Box plot for MRE in Maxwell dataset. 
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TABLE VIII 

THE RESULTS ON ISBSG DATASET 

 

 

Fig. 10. Comparing methods (MMRE, MdMRE, PRED) on ISBSG dataset. 

 

Fig. 11. Box plot for MRE in ISBSG dataset. 

TABLE IX 

THE RESULT ON THE CHINA DATASET 

  MetaHeuristic Methods Neural Networks Regression Methods 
 

  GA ICA PSO MLP RBF CART MLR SWR Proposed 

MMRE 0.5039 0.4571 0.2361 0.7053 2.9239 0.3696 0.1877 0.2566 0.1076 

MdMRE 0.2942 0.1962 0.1127 0.2765 0.8876 0.2658 0.0675 0.0941 0.0512 

PRED(%) 44.6667 60.6667 75.3333 47.3333 16.0000 47.3333 80.0000 72.0000 84.0000 

  

 

Fig. 12. Comparing methods (MMRE, MdMRE, PRED) on the China dataset. 

  MetaHeuristic Methods Neural Networks Regression Methods 
 

  GA ICA PSO MLP RBF CART MLR SWR Proposed 

MMRE 0.8773 0.6900 0.8773 1.1218 0.7543 0.7863 0.5478 0.5360 0.3523 

MdMRE 0.8859 0.7099 0.8859 0.6258 0.5114 0.7278 0.5208 0.4224 0.2927 

PRED(%) 0.0000 5.2632 0.0000 15.7895 21.0526 10.5263 21.0526 36.8421 42.1053 
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Fig. 13. Box plot for MRE in the China dataset.

VI. RESULT ANALYSIS 

The results indicate that the efficiency of the majority of the 

models is undeniably dependent on the dataset used. Table X 

summarises the model efficiency rates according to three levels: 

good, medium and weak. The table indicators have been 

computed corresponding to the following algorithm: 

DataSet = {Cocomo, Albrecht, Desharnais, Maxwell, ISBSG, China} 

Method = {GA, ICA, PSO, MLP, RBF, CART, MLR, SWR, 

Proposed} 

For each DatsSeti 

For each Methodj 

A𝑖𝑗 = 1 −
 MMRE[DataSet 𝑖   Method 𝑗]− min(MMRE[DataSet 𝑖 ])

max(MMRE[DataSet 𝑖 ])− min(MMRE[DataSet 𝑖 ])
  

𝐵𝑖𝑗 = 1 −
 MdMRE[DataSet 𝑖   Method 𝑗]− min(MdMRE[DataSet 𝑖 ])

max(MdMRE[DataSet 𝑖 ])− min(MdMRE[DataSet 𝑖 ])
  

C𝑖𝑗 =
 PRED[DataSet 𝑖   Method 𝑗 ]− min(PRED[DataSet 𝑖  ])

max(PRED[DataSet 𝑖 ])− min(PRED[DataSet 𝑖 ])
  

X𝑖𝑗 = (A𝑖𝑗  + 𝐵𝑖𝑗 + C𝑖𝑗)/3 

If (X𝑖𝑗 <= 30%) then EFFICIENCY[i,j] = 'weak' 

Else if (X𝑖𝑗  > 30% & X𝑖𝑗  <= 70%) then EFFICIENCY[i,j] = 

'Medium' 

Else EFFICIENCY[i,j] = 'Strong' 

END (for j) 

END (for i) 

It can be stated based on Table X that the regression-based 

models have had better performance in comparison to that of 

the other models and the evolutionary algorithm models have 

shown the weakest performance. Moreover, the results obtained 

for each model largely depend on the used dataset.  As an 

example, PSO model has been proved strong for some datasets, 

weak for some others and yet intermediately performed for the 

third group of datasets. Although parameter setting plays an 

effective role in the performance of these algorithms, it can be 

observed for the proposed method that it has exhibited the best 

performance for all of the datasets. The issue is reflective of the 

reality that the proposed model is least dependent on the used 

set of data. One factor largely influential on the model 

performance can be the number of the training samples because 

the models, particularly the proposed model, have displayed the 

best performance for the China dataset whose records are a lot 

higher than those of the other data collections. According to the 

fact that the proposed model makes use of two phases, i.e., 

feature selection and clustering, two factors, namely the 

selection of the most effective features and localisation, have 

been able to corroborate the model performance. The 

enhancement rates are more distinct in regard of the China 

dataset; in addition, the localisation operation has been found 

having no significant effect on the improvement of the proposed 

model performance due to a low number of samples. Table XI 

presents the mean percentage of performance improvement of 

the proposed model for various scales on the datasets used 

herein.

TABLE X 

COMPARISON OF PERFORMANCE RATE OF THE PROPOSED MODEL 

DataSet 

MetaHeuristic Methods Neural Networks Regression Methods 
 

GA ICA PSO MLP RBF CART MLR SWR Proposed 

Cocomo Weak Weak Weak Medium Medium Strong Weak Medium Strong 

Albrecht Weak Medium Medium Weak Medium Weak Weak Strong Strong 

Desharnais Weak Weak Weak Weak Medium Weak Medium Strong Strong 

Maxwell Medium Medium Medium Weak Weak Weak Medium Medium Strong 

ISBSG Weak Weak Weak Weak Medium Weak Medium Strong Strong 

China Weak Medium Strong Weak Weak Weak Strong Strong Strong 
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TABLE XI 

PERFORMANCE IMPROVEMENT OF THE PROPOSED MODEL 

Cocomo Albrecht Desharnais Maxwell ISBSG China Dataset 

77 % 34 % 24 % 27 % 54 % 86 % MMRE 

57 % 28 % 62 % 52 % 56 % 86 % MdMRE 

64 % 50 % 57 % 53 % 67 % 38 % PRED(0.25) 

 

According to Table XI, it can be stated that the highest 

improvement percentage has been documented for MMRE and 

MdMRE scales on the China dataset. One possible reason 

behind such an improvement can be the large number of the 

records in this set of data that, per se, causes the localisation 

phase of the proposed method exhibit more appropriate 

performance. The improvement results are also considerable for 

the other datasets. 

VII. THREATS TO VALIDITY 

Metaheuristic and neural networks have been used during 

various phases of the present research. Considering the random 

nature of these tools, the results obtained from every 

implementation might appear a little different from one another. 

MDMRE, MMRE and PRED(0.25) used in the present article 

are biased. They have only been chosen herein because they 

were found most frequently employed in the prior research. 

To perform training and test operations, all of the datasets 

have been assigned randomly to training and test groups in a 

70 % to 30 % ratio, respectively. The random assignment of the 

data can have a considerable influence on the model results. 

However, considering that all the models are run based on a 

single classification, there will be made not much of an effect 

on the overall work because the objective has been to compare 

the performance of various models and to evaluate the model 

dependency on the dataset applied.  

The datasets used herein contain a low number of records, 

except for the China dataset. The low number of the records in 

a dataset reduces the effect of the localisation operation of the 

clustering phase. According to the results, it can be seen that the 

model proposed herein has had better performance in regard of 

the China dataset.  

VIII. CONCLUSION 

The accuracy of the software development project effort 

estimation plays a substantial role in the project management, 

cost overestimation and/or underestimation. Having a highly 

accurate model independent of the used dataset has always been 

demanded by the researchers in this study field. After 

performing normalisation operation in the model, the dataset 

has been assigned to two groups of training and test data (for a 

ratio of 70 % to 30 %, respectively). The data assignment has 

been conducted in a randomised manner. The model consists of 

three general phases as described below: 

• Feature Selection: during this phase, genetic algorithm 

and MLP neural network are first applied for every dataset 

to select the most effective features influencing the project 

development effort. 

• Clustering: during this phase, genetic algorithm and 

imperialist competitive algorithm are used to run 

clustering over the training set of the data collection. 

• Modelling and Test: this phase performs the modelling 

with the help of the MLP neural network; then, the test 

data are employed to perform the model test operation. In 

the end, MMRE, MdMRE and PRED(0.25) are applied as 

the efficiency scales to compare the efficiency rate of the 

model with that of the other models.  

The results have indicated that the proposed model 

outperforms all the other methods for all the datasets and 

regression-based methods come next to it. Moreover, the largest 

superiority of the proposed model is its independence of the 

datasets used. The problem of the model efficiency dependence 

on the used dataset can be seen in the majority of the models 

designed previously. Since the proposed model uses 

localisation and clustering, its performance on larger datasets 

might be better due to better clustering. Based on the obtained 

results, the following topics can be suggested for further 

research in line with model performance improvement: 

• using regression methods in modelling; 

• using fuzzy methods in clustering; 

• using new sets of data with a larger number of records. 
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