
Applied Computer Systems

©2019 Mahdi Khazaiepoor, Amid Khatibi Bardsiri, Farshid Keynia.
This is an open access article licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),

in the manner agreed with Sciendo.

82

ISSN 2255-8691 (online)
ISSN 2255-8683 (print)

December 2019, vol. 24, no. 2, pp. 82–93

https://doi.org/10.2478/acss-2019-0011

https://content.sciendo.com

A Dataset-Independent Model for Estimating

Software Development Effort Using Soft Computing

Techniques

Mahdi Khazaiepoor1, Amid Khatibi Bardsiri2*, Farshid Keynia3
1Computer Engineering Department, Kerman Branch, Islamic Azad University, Kerman, Iran

2Computer Engineering Department, Bardsir Branch, Islamic Azad University, Bardsir, Iran
3Department of Energy Management and Optimization, Graduate University of Advanced Technology, Kerman, Iran

Abstract – During the recent years, numerous endeavours have

been made in the area of software development effort estimation

for calculating the software costs in the preliminary development

stages. These studies have resulted in the offering of a great many

of the models. Despite the large deal of efforts, the substantial

problems of the offered methods are their dependency on the used

data collection and, sometimes, their lack of appropriate

efficiency. The current article attempts to present a model for

software development effort estimation through making use of

evolutionary algorithms and neural networks. The distinctive

characteristic of this model is its lack of dependency on the

collection of data used as well as its high efficiency. To evaluate the

proposed model, six different data collections have been used in

the area of software effort estimation. The reason for the

application of several data collections is related to the investigation

of the model performance independence of the data collection

used. The evaluation scales have been MMRE, MdMRE and

PRED (0.25). The results have indicated that the proposed model,

besides delivering high efficiency in contrast to its counterparts,

produces the best responses for all of the used data collections.

Keywords – Clustering, estimation, feature selection, genetic

algorithm, imperialist competitive algorithm, neural network,

regression, software development effort.

I. INTRODUCTION

Software development effort estimation is regarded as an

important stage in software development projects. Therefore,

many industry specialists and researchers have been devoting

their attention to this field during recent years [1].

Software cost estimation incorporates the process of reaching

a conclusion regarding the amount of effort required for the

development of a software system [2]. The most important

demanding requirement of the software development cost

estimation is the accuracy of the estimation [3]. That is due to

the fact that the overestimation of the software development

cost might cause losing a project in a tender and, on the other

hand, the underestimation might also cause the software

company to be incurred by losses and/or it might cause the

allocation of lower resources, as a result of which the project

quality cannot be guaranteed [4], [5]. On the contrary, the

accurate estimation can assist the managers and engineers in

prioritisation of the project stages and proper allocation of the

*Corresponding author’s e-mail: a.khatibi@srbiau.ac.ir

resources [6], [7]. This is why the accurate estimation of the

software development effort is deemed both a serious challenge

for project managers [8] and a major phase in project

development [9].

There are many uncertain variables extant in software

development effort estimation, for example, development

method, programming organisation and language that make the

software size take a fuzzy form [10]; also, a great many of the

important and influential factors of effort estimation are

determined during the final phases of software development.

Therefore, these factors have to be taken into account before

running an estimation effort [11]. Thus, it is difficult to estimate

the costs and efforts required for software development during

the early stages of software development cycle. Many of the

project researchers and managers have become notoriously

famous for their underestimation of the real software

development costs [8]. According to the statistics presented by

the International Society of Parametric Analysis (ISPA) [12]

and Standish Group [13], two-thirds of software projects have

failed before delivery due to being either time consuming or

costly. There are two substantial reasons behind the software

project failure: inappropriate project estimation in terms of size,

costs and personnel required and uncertainty about the software

and system requirements [8].

A majority of the studies in the area of effort estimation have

been predominantly concentrated on the designing of a good

estimator [14] and/or new metrics [15] and/or other aspects of

the software project [16].

There are different methods for the estimation of software

development effort, the most important of which can be

categorised into two sets of model-based and expert-based [3].

The model-based group, as well, is classified into two sets of

statistical and mathematical methods, such as regression, and

smart methods, e.g., machine learning [17]. Nowadays,

increasing attention is paid to machine learning for its high

competency of modelling the relationships between the project

effort and its components. Multilayer perceptron neural

network (MLP) and neural networks drawn on radial basis

functions (RBF) and metaheuristic algorithms, including

http://creativecommons.org/licenses/by/4.0
mailto:a.khatibi@srbiau.ac.ir

Applied Computer Systems

___2019/24

83

genetic algorithm [18] and imperial competitive algorithm, are

inter alia these methods.

Although there are various models offered for software

development estimation, a majority of them, unfortunately, lack

the required efficiency and a comprehensive model providing

an acceptable and independent estimation of the data collection

is yet to be presented [19]; the majority of the models are

pertinent to a specific dataset, which is why the model

performance is observed being highly dependent on the dataset

[20]. Model blending, feature weight determination and model

weighing for combining the models are amongst the methods

that have been recently put into practice [19], [21].

The present article intends to combine machine learning

methods during several phases in order to offer a software

development effort estimation model that, besides having a high

efficiency in estimating the software estimation, is maximally

independent of the dataset used. To verify the model

independence, six datasets, comprised of general and publicly

available information featuring various sizes, will be used in

effort estimation. The proposed method is composed of three

general phases. During the first phase, the genetic algorithm and

neural network are combined to perform the feature selection

operation. During the next phase, the genetic algorithm and

imperial competitive algorithm are employed to perform a

clustering operation. During the final phase, the neural network

is used to perform modelling and test the clusters. In the end,

the obtained results are compared with the results of some other

models to evaluate the efficiency of the proposed model.

The present article is organised in six sections. Prior research

will be presented in Section II. Section III explains the proposed

method requirements and Section IV gives details of the

method. In Section V, the results are discussed and the analysis

of research findings is performed in Section VI. Sections VII

and VIII also discuss the validity and credibility of the method

and its relevant results, and present the conclusions and

suggestions for further research, respectively.

II. RELATED WORKS

Soft computation technique is a novel idea that has been

around since 1994 [22]. Its domain has been speedily expanded

in such a way that it is now covering such techniques as genetic

algorithm and swarm intelligence. The software project effort

estimation models using constructive cost model (COCOMO)

and genetic algorithm are provided in [23]. The presented

models were tested on NASA software projects.

In [24], the author runs a thorough study of using genetic

style of programming (GP) and neural network (NN) and linear

regression in problem-solving of software projects. Moreover,

there are other studies offered about the use of soft computation

techniques for software effort estimation in [25].

A glance at the prior studies makes it clear that a substantial

fraction of the models focuses on combining various estimation

strategies [26]. According to the simplicity and flexibility of

analogy, comparison is the basis of the proposed models in the

majority of studies. Combining analogy with genetic algorithm

[27], analytics [28], particle swarm optimisation algorithm [29]

and artificial neural network [30] has also been a method of

choice.

Recently, the localisation idea has been introduced in

software development projects and promising results have also

been acquired. Khatibi in [19] offers a model using model

combination and localization.

In [8], a complete analysis of various types of neural

networks has been undertaken based on radial basis function,

multilayer perceptron, general regression neural network and

cascade correlation neural network.

III. THE PROPOSED METHOD

In this section, we deal with the explication of the proposed

method. First, the independent variables are normalised by

mapping to [0, 1] interval using (1).

 𝑥𝑖
′ =

𝑥max − 𝑥𝑖

𝑥max − 𝑥min
, (1)

where, 𝑥𝑖 is the i-th data item and 𝑥max and 𝑥min are the highest

and the lowest values for each independent variable.

After normalisation, the dataset is randomly divided into two

parts of training data and test data (for a ratio of 70 % to 30 %).

Since the results obtained from the model performance should

be compared with the results of the other studies, the data

assigned to two classes of the proposed model and compared

reference models will be used. Therefore, the randomised

division of the data will not exert a considerable effect on the

comparison results.

The model consists of three general phases as stated below:

• GA and NN are used for feature selection;

• GA and ICA are used for clustering;

• MLP neural network used for modelling.

After the modelling phase, the test data are employed to

perform model testing operation. At the end of this phase, such

efficiency scales as MMRE, MdMRE, PRED (0.25) [31] are

applied to compare the efficiency of the proposed model with

that of the others. Figure 1 demonstrates the generalities of the

proposed method.

A. Phase One: Feature Selection

The selection of a subset of features is one of the most

important steps in enhancing the efficiency of the majority of

software development effort estimation [20]. The proper

selection of a subset of the most effective features, besides

increasing the model speed, can considerably influence its

efficiency.

Applied Computer Systems

___2019/24

84

Fig. 1. Generalities of the proposed method.

During this phase, the collection of the selected data is fed as

input to the genetic algorithm. The cost function of the genetic

algorithm is named FeatureSelectionCost (FSC). The

chromosome length is determined according to the number of

the selected dataset features. Each chromosome is a bit-thread

composed of “0s” and “1s” that, respectively, denote the

selection and/or rejection of the corresponding feature. After

the preliminary population is created, each member of the

population is evaluated by FSC function. The cost function is

calculated using neural networks created by the fitnn() function

in the MATLAB neural network toolbox. To render results

more reliable, five neural networks are evaluated and the mean

value of the results is returned.

After creating and evaluating the preliminary responses, the

main loop of the genetic algorithm is initiated. The loop,

repeated for a hundred times, includes the following steps:

a) Performing crossover: the parents are selected by the use

of RoulettWheelSelection function to randomly undergo

one of the single-point, two-point and/or even crossover

operations with probability values of 0.2, 0.3 and 0.5,

respectively, selected by RoulettWheelSelection function

resulting in the generation of the offspring;

b) Response Evaluation: immediately after the generation

of responses resulting from the cross-over, the responses

are evaluated by FSC functions;

c) Mutation: at this stage, a number of responses are selected

based on a given rate and subjected to mutation;

d) Evaluation of Offspring Resulting from Mutation: the

action is also carried out by FSC function;

e) Blending of the three population groups: (initial

population, population resulting from crossover and the

population resulting from mutation) it is followed by

ordering and selecting the best as the next generation

population.

The output of the algorithm forms the training and test

dataset with the selected features that are sent to the

forthcoming phase.

B. Phase Two: Clustering

Generally, a clustering operation is an unsupervised

classification. Since our objective in the current research paper

is to create a model with no dependency on any specific set of

data, a total number of six datasets are selected from the effort

estimation study field. Considering the difference these datasets

have in terms of the nature and size, a different number of

clusters is produced for each dataset. Therefore, clustering is

accomplished in two stages. At the first stage, the genetic

algorithm [32] is used for each dataset to calculate the number

of clusters. During this stage, the genetic algorithm carries out

Applied Computer Systems

___2019/24

85

the cluster number determination assisted by DB [33] and CS

[34] indices.

Conceptually, DB index can be considered as intending to

minimise the intra-cluster distance and maximise the inter-

cluster distance, which correspond to the two principles of

cohesion inside the cluster and separation between the clusters,

respectively. Relations (2), (3), (4) and (5) show the index

calculation method.

 𝑆𝑖.𝑞 = √
1

𝑁𝑖
∑ 𝑑𝑥∈𝑐𝑖

𝑞
(𝑥, 𝑚𝑖)

𝑞; (2)

 𝑑𝑖.𝑗.𝑡 = √∑ |𝑚𝑖.𝑝 − 𝑚𝑗.𝑝|
𝑡𝑑

𝑝=1

𝑡

; (3)

 𝑅𝑖.𝑞.𝑡 = max
𝑗∈𝑘.𝑗≠𝑖

(
𝑠𝑖.𝑞+𝑠𝑗.𝑞

𝑑𝑖.𝑗.𝑡
) ; (4)

 𝐷𝐵 =
1

𝑘
∑ 𝑅𝑖.𝑞.𝑡

𝑘
𝑖=1 . (5)

Let us suppose that xp is a member to cluster 𝑐𝑖. In this case,

CS index can be defined according to relations (6), (7) and (8)

 𝑑𝑝
max = max 𝑑

𝑥𝑞∈𝑐𝑖

(𝑥𝑝 , 𝑥𝑞) ; (6)

 mean(𝑑𝑖) =
1

𝑁𝑖
∑ 𝑑𝑝

max
𝑥𝑝∈𝑐𝑖

; (7)

 𝐶𝑆 =
1

𝑘
∑ mean(𝑑𝑖)𝑘

𝑖=1
1

𝑘
∑ min

𝑗𝜖𝑘.𝑗≠𝑖
𝑑(𝑚𝑖,𝑚𝑗)𝑘

𝑖=1
 (8)

in such a way that k is the number of clusters and 𝑚𝑖 and 𝑚𝑗 are

the centres of clusters i and j, respectively.

The lesser values of CS indices are indicative of the idea that

the distance between the cluster centres is larger and the

distance between the members of a cluster is smaller, i.e., the

cluster cohesion and separation principles have been met.

 The reason why a genetic algorithm has been applied during

this stage is its speed and binary nature. Moreover, the

calculation of the DB and CS indices takes a lot of operation to

accomplish. At the second stage, having the number of clusters

at hand, the imperialist competitive algorithm is used to perform

clustering for offering good cohesion and good capability of

setting the parameters. The phase outputs are the clusters and

their centres.

Imperial competitive algorithm was introduced in 2007 by

Atashpaz and Lucas [35]. The algorithm that is inspired by the

imperialist-colony phenomenon in the real world is laid on the

foundation of the assumption that there are at first a number of

entities called countries, which are ranked based on certain

scales. The algorithm consists of two general phases:

• competition in an empire;

• competition between the empires.

In intra-empire competition, the colonies try to achieve a

stage of growth so that they can take the position of the

imperialist of the empire; such a growth is carried out based on

such operators as attraction and revolution. In the intra-empire

competition, the empires do their best to occupy the colonies of

the other empires. To do so, a colony from the weakest empire

is taken away by the operator “omission” and given to one of

the other empires in each repetition.

C. Phase Three: Modelling and Testing

During this phase, the MLP neural network [8] is first

employed to run modelling on the training data in such a

manner that a network will be constructed for every cluster. The

test data are assigned to the nearest cluster based on the cluster

centres computed from the previous phase. Now, the network

calculates the predicted effort for each cluster of the test data

assisted by the network corresponding to that cluster. In the end,

the predicted effort is compared for the data sets of all clusters

with the real values followed by the calculation of the efficiency

scales.

IV. EXPERIMENTAL DESIGN

We deal, in this section, with the introduction of the used

datasets, preliminary settings of the algorithms and efficiency

scales. The present article has endeavoured to compare the

obtained results with the results acquired from the other

common effort estimation models so as to better validate the

proposed model. The compared models can be divided into one

of the following classes:

• Regression methods: they encompass the multiple linear

regression (MLR), stepwise regression (SWR) and

classification and regression tree (CART);

• Metaheuristic algorithm methods: they embrace genetic

algorithm, particle swarm algorithm and imperialist

competitive algorithm;

• Neural network methods: they incorporate multilayer

perceptron (MLP) neural network and the neural network

based on radial basis functions (RBF).

A. Introducing the Datasets

To evaluate the proposed model, we use the following

commonly used public datasets:

• COCOMO81 dataset: this dataset contains information

of NASA software projects [36];

• Albrecht dataset: it includes the information of IBM

software projects made in the 1970s [37];

• Desharnais dataset: in this dataset, there is information

of some software projects accomplished in Canada [38];

• Maxwell dataset: it contains information on several

projects pertinent to the trade banks in Finland [39];

• ISBSG dataset: this collection of data incorporates

information of a large number of industrial software

projects from all around the globe that have been collected

and offered by ISBSG group [40];

• China dataset: This data collection that is the newest

dataset in the area of effort estimation contains

information on 499 software projects with 18 features

belonging to various software companies and firms [2].

Applied Computer Systems

___2019/24

86

TABLE I

THE SIX SELECTED DATASETS CONSISTING OF 792 SOFTWARE PROJECT CASES

Max Median Mean Min Unit Num SS F-cat F Data set

11400.0 98.0 683.5 5.9 months 63 1 1 17 Cocomo81

105.2 11.5 21.9 0.5 months 24 2 0 7 Albrecht

23940.0 3542.0 4833.9 546.0 hours 81 2 1 11 Desharnais

63694.0 5190.0 822.0 583.0 hours 62 1 6 27 Maxwell

60826.0 3216.0 5588.65 64.0 hours 63 2 0 7 ISBSG

54620.0 1829.0 3921.1 26.0 hours 499 1 0 18 China

F – number of features, F-cat – number of categorical variables,

SS – number of software size variables, Num – number of projects.

According to the existence of some missing data, various

kinds of features and different measurement metrics, the present

study, after implementing a preparatory operation, has made use

of the information of 63 projects with seven features. A

summary of the information from these data sets is provided in

Table I.

B. Efficiency Scales

Numerous and diverse efficiency scales have been employed

in various articles. The objective of the majority of these scales

is the assessment of the model estimation accuracy.

A majority of the articles have made use of relative error size

scale in lieu of the relative error that can be defined as shown in

relation (9).

 𝑀𝑅𝐸𝑖 =
| Estimated𝑖−Actual𝑖 |

Actual𝑖
. (9)

A majority of the extant efficiency scales measure the

estimation accuracy so they have been formed based on the

same scale. The present article makes use of MMRE, MdMRE

and PRED(0.25) efficiency scales defined corresponding to

relations (10), (11) and (12):

 MMRE = mean(𝑀𝑅𝐸); (10)

 MdMRE = median(𝑀𝑅𝐸); (11)

 PRED(0.25) =
𝐴

𝑁
, (12)

where A is the number of observations in which their MRE

values are below 0.25 and N is the total number of observations.

C. Preliminary Settings

The present article makes use of genetic algorithm and

multilayer perceptron neural network for feature selection; also,

the genetic algorithm and imperialist competitive algorithm are

applied to perform clustering and, finally, the neural network is

utilised to carry out the modelling operation. The preliminary

settings and the parameter values of genetic algorithm and

imperialist competitive algorithm have been obtained based on

trial and error as well as according to an observation of the prior

and similar works as summarised in Tables II and III.

The neural network used herein is a two-layer perceptron in

the first layer of which the number of neurons is determined

according to the intended dataset based on trial and error. The

first input layer is the values of the features selected from every

dataset. Thus, the number of the neural network inputs is

different in every dataset. Trainscg function (conjugate

gradient) has been used to train the neural network and the test

data; training data and validation data have been divided in

ratios of 70 %, 15 % and 15 %, respectively.

TABLE II

THE INITIAL SETTINGS AND THE VALUES OF PARAMETERS OF GENETIC

ALGORITHMS

Value Description Name

100 Maximum of iteration MaxIt

30 Num of initial population Npop

0.8 Crossover percentage Pc

0.3 Mutation percentage Pm

0.1 Mutation rate Mu

TABLE III

THE INITIAL SETTINGS AND THE VALUES OF PARAMETERS OF ICA
Value Description Name

1000 Maximum of iteration MaxIt

Num. of dataset
records

Num. of initial population Npop

10 Num. of empires Nemp

3 Selection pressure Alpha

1 Assimilation coefficient Beta

0.2 Revolution probability Prevolution

0.3 Revolution rate Mu

0.5
Effect coefficient of the colony

value on the empire value Zeta

V. EXPERIMENTAL RESULTS

The COCOMO dataset is usually applied in the evaluation

process of software project effort estimation models. Table IV,

Figs. 2 and 3 summarise the effort estimation values for each of

the aforesaid models.

The Albrecht dataset includes information pertaining to 24

projects with eight features, all of which have been applied in

the effort estimation process. The results obtained from the

various models based on this dataset for three parameters of

Applied Computer Systems

___2019/24

87

MMRE, MdMRE and PRED(0.25) have been given in Table V,

Figs. 4 and 5.

The Desharnais dataset is one of the most widely used dataset

in studies on effort estimation area. The dataset was presented

in 1997 by Desharnais et al. The results of various models using

this dataset for three parameters of MMRE, MdMRE and PRED

(0.25) have been summarised in Table VI, Figs. 6 and 7.

The Maxwell dataset is one of the most well-known and

frequently applied datasets in the area of effort estimation. The

results of various models using this dataset for three parameters

of MMRE, MdMRE and PRED(0.25) are summarised in

Table VII, Figs. 8 and 9.

The ISBSG dataset has been offered by the International

Software Benchmarking Standards Group (ISBSG) and it is

continuously updated. The results of various models using this

dataset for three parameters of MMRE, MdMRE and

PRED(0.25) are summarised in Table VIII, Figs. 10 and 11.

The results of various models using the China dataset for

three parameters of MMRE, MdMRE and PRED(0.25) are

summarised in Table IX, Figs. 12 and 13.

TABLE IV

THE RESULTS ON COCOMO DATASET

 MetaHeuristic Methods Neural Networks Regression Methods

 GA ICA PSO MLP RBF CART MLR SWR Proposed

MMRE 4.7227 5.8391 4.6650 2.7064 2.2826 1.0592 4.5950 3.2778 0.86011

MdMRE 0.9475 0.9297 0.9478 1.0367 0.9245 0.8846 0.8104 0.8106 0.645129

PRED(%) 5.263 15.789 5.263 10.526 15.789 15.789 15.789 21.052 31.578

Fig. 2. Comparing methods (MMRE, MdMRE, PRED) on COCOMO dataset.

Fig. 3. Box plot for MRE in COCOMO dataset.

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

PRED

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

MMRE

MdMRE

Applied Computer Systems

___2019/24

88

TABLE V

THE RESULTS ON ALBRECHT DATASET

Fig. 4. Comparing methods (MMRE, MdMRE, PRED) on Albrecht dataset.

Fig. 5. Box plot for MRE in Albrecht dataset.

TABLE VI

THE RESULTS ON DESHARNAIS DATASET

 MetaHeuristic Methods Neural Networks Regression Methods

 GA ICA PSO MLP RBF CART MLR SWR Proposed

MMRE 0.8318 0.5627 0.7050 0.7953 0.5474 0.6261 0.5048 0.4460 0.4776

MdMRE 0.8581 0.4839 0.7952 0.4775 0.3720 0.7069 0.3533 0.3880 0.2104

PRED(%) 0.0000 13.0435 8.6957 30.4348 39.1304 17.3913 39.1304 30.4348 52.1739

Fig. 6. Comparing methods (MMRE, MdMRE, PRED) on Desharnais dataset.

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

PRED

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

MMRE MdMRE

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

MMRE MdMRE

0.0000
10.0000
20.0000
30.0000
40.0000
50.0000
60.0000

PRED

 MetaHeuristic Methods Neural Networks Regression Methods

 GA ICA PSO MLP RBF CART MLR SWR Proposed

MMRE 0.8515 0.4757 0.7395 0.5029 0.4845 0.7306 0.5635 0.5444 0.4038

MdMRE 0.3634 0.4419 0.4759 0.4744 0.3162 0.6742 0.3900 0.2633 0.3042

PRED(%) 14.2857 28.5714 28.5714 14.2857 28.5714 0.0000 14.2857 42.8571 42.8571

Applied Computer Systems

___2019/24

89

Fig. 7. Box plot for MRE in Desharnais dataset.

TABLE VII

THE RESULTS ON MAXWELL DATASET

 MetaHeuristic Methods Neural Networks Regression Methods

 GA ICA PSO MLP RBF CART MLR SWR Proposed

MMRE 0.7482 0.6275 0.8217 0.7421 0.5538 0.6692 0.9286 0.5234 0.5083

MdMRE 0.4407 0.4558 0.5233 0.4661 0.5552 0.8054 0.6174 0.3381 0.2483

PRED(%) 36.8421 36.8421 26.3158 15.7895 15.7895 10.5263 26.3158 26.3158 52.6316

Fig. 8. Comparing methods (MMRE, MdMRE, PRED) on Maxwell dataset.

Fig. 9. Box plot for MRE in Maxwell dataset.

0.0000

20.0000

40.0000

60.0000
PRED

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000
MMRE MdMRE

Applied Computer Systems

___2019/24

90

TABLE VIII

THE RESULTS ON ISBSG DATASET

Fig. 10. Comparing methods (MMRE, MdMRE, PRED) on ISBSG dataset.

Fig. 11. Box plot for MRE in ISBSG dataset.

TABLE IX

THE RESULT ON THE CHINA DATASET

 MetaHeuristic Methods Neural Networks Regression Methods

 GA ICA PSO MLP RBF CART MLR SWR Proposed

MMRE 0.5039 0.4571 0.2361 0.7053 2.9239 0.3696 0.1877 0.2566 0.1076

MdMRE 0.2942 0.1962 0.1127 0.2765 0.8876 0.2658 0.0675 0.0941 0.0512

PRED(%) 44.6667 60.6667 75.3333 47.3333 16.0000 47.3333 80.0000 72.0000 84.0000

Fig. 12. Comparing methods (MMRE, MdMRE, PRED) on the China dataset.

 MetaHeuristic Methods Neural Networks Regression Methods

 GA ICA PSO MLP RBF CART MLR SWR Proposed

MMRE 0.8773 0.6900 0.8773 1.1218 0.7543 0.7863 0.5478 0.5360 0.3523

MdMRE 0.8859 0.7099 0.8859 0.6258 0.5114 0.7278 0.5208 0.4224 0.2927

PRED(%) 0.0000 5.2632 0.0000 15.7895 21.0526 10.5263 21.0526 36.8421 42.1053

Applied Computer Systems

___2019/24

91

Fig. 13. Box plot for MRE in the China dataset.

VI. RESULT ANALYSIS

The results indicate that the efficiency of the majority of the

models is undeniably dependent on the dataset used. Table X

summarises the model efficiency rates according to three levels:

good, medium and weak. The table indicators have been

computed corresponding to the following algorithm:

DataSet = {Cocomo, Albrecht, Desharnais, Maxwell, ISBSG, China}

Method = {GA, ICA, PSO, MLP, RBF, CART, MLR, SWR,

Proposed}

For each DatsSeti

For each Methodj

A𝑖𝑗 = 1 −
 MMRE[DataSet 𝑖 Method 𝑗]− min(MMRE[DataSet 𝑖])

max(MMRE[DataSet 𝑖])− min(MMRE[DataSet 𝑖])

𝐵𝑖𝑗 = 1 −
 MdMRE[DataSet 𝑖 Method 𝑗]− min(MdMRE[DataSet 𝑖])

max(MdMRE[DataSet 𝑖])− min(MdMRE[DataSet 𝑖])

C𝑖𝑗 =
 PRED[DataSet 𝑖 Method 𝑗]− min(PRED[DataSet 𝑖])

max(PRED[DataSet 𝑖])− min(PRED[DataSet 𝑖])

X𝑖𝑗 = (A𝑖𝑗 + 𝐵𝑖𝑗 + C𝑖𝑗)/3

If (X𝑖𝑗 <= 30%) then EFFICIENCY[i,j] = 'weak'

Else if (X𝑖𝑗 > 30% & X𝑖𝑗 <= 70%) then EFFICIENCY[i,j] =

'Medium'

Else EFFICIENCY[i,j] = 'Strong'

END (for j)

END (for i)

It can be stated based on Table X that the regression-based

models have had better performance in comparison to that of

the other models and the evolutionary algorithm models have

shown the weakest performance. Moreover, the results obtained

for each model largely depend on the used dataset. As an

example, PSO model has been proved strong for some datasets,

weak for some others and yet intermediately performed for the

third group of datasets. Although parameter setting plays an

effective role in the performance of these algorithms, it can be

observed for the proposed method that it has exhibited the best

performance for all of the datasets. The issue is reflective of the

reality that the proposed model is least dependent on the used

set of data. One factor largely influential on the model

performance can be the number of the training samples because

the models, particularly the proposed model, have displayed the

best performance for the China dataset whose records are a lot

higher than those of the other data collections. According to the

fact that the proposed model makes use of two phases, i.e.,

feature selection and clustering, two factors, namely the

selection of the most effective features and localisation, have

been able to corroborate the model performance. The

enhancement rates are more distinct in regard of the China

dataset; in addition, the localisation operation has been found

having no significant effect on the improvement of the proposed

model performance due to a low number of samples. Table XI

presents the mean percentage of performance improvement of

the proposed model for various scales on the datasets used

herein.

TABLE X

COMPARISON OF PERFORMANCE RATE OF THE PROPOSED MODEL

DataSet

MetaHeuristic Methods Neural Networks Regression Methods

GA ICA PSO MLP RBF CART MLR SWR Proposed

Cocomo Weak Weak Weak Medium Medium Strong Weak Medium Strong

Albrecht Weak Medium Medium Weak Medium Weak Weak Strong Strong

Desharnais Weak Weak Weak Weak Medium Weak Medium Strong Strong

Maxwell Medium Medium Medium Weak Weak Weak Medium Medium Strong

ISBSG Weak Weak Weak Weak Medium Weak Medium Strong Strong

China Weak Medium Strong Weak Weak Weak Strong Strong Strong

Applied Computer Systems

___2019/24

92

TABLE XI

PERFORMANCE IMPROVEMENT OF THE PROPOSED MODEL

Cocomo Albrecht Desharnais Maxwell ISBSG China Dataset

77 % 34 % 24 % 27 % 54 % 86 % MMRE

57 % 28 % 62 % 52 % 56 % 86 % MdMRE

64 % 50 % 57 % 53 % 67 % 38 % PRED(0.25)

According to Table XI, it can be stated that the highest

improvement percentage has been documented for MMRE and

MdMRE scales on the China dataset. One possible reason

behind such an improvement can be the large number of the

records in this set of data that, per se, causes the localisation

phase of the proposed method exhibit more appropriate

performance. The improvement results are also considerable for

the other datasets.

VII. THREATS TO VALIDITY

Metaheuristic and neural networks have been used during

various phases of the present research. Considering the random

nature of these tools, the results obtained from every

implementation might appear a little different from one another.

MDMRE, MMRE and PRED(0.25) used in the present article

are biased. They have only been chosen herein because they

were found most frequently employed in the prior research.

To perform training and test operations, all of the datasets

have been assigned randomly to training and test groups in a

70 % to 30 % ratio, respectively. The random assignment of the

data can have a considerable influence on the model results.

However, considering that all the models are run based on a

single classification, there will be made not much of an effect

on the overall work because the objective has been to compare

the performance of various models and to evaluate the model

dependency on the dataset applied.

The datasets used herein contain a low number of records,

except for the China dataset. The low number of the records in

a dataset reduces the effect of the localisation operation of the

clustering phase. According to the results, it can be seen that the

model proposed herein has had better performance in regard of

the China dataset.

VIII. CONCLUSION

The accuracy of the software development project effort

estimation plays a substantial role in the project management,

cost overestimation and/or underestimation. Having a highly

accurate model independent of the used dataset has always been

demanded by the researchers in this study field. After

performing normalisation operation in the model, the dataset

has been assigned to two groups of training and test data (for a

ratio of 70 % to 30 %, respectively). The data assignment has

been conducted in a randomised manner. The model consists of

three general phases as described below:

• Feature Selection: during this phase, genetic algorithm

and MLP neural network are first applied for every dataset

to select the most effective features influencing the project

development effort.

• Clustering: during this phase, genetic algorithm and

imperialist competitive algorithm are used to run

clustering over the training set of the data collection.

• Modelling and Test: this phase performs the modelling

with the help of the MLP neural network; then, the test

data are employed to perform the model test operation. In

the end, MMRE, MdMRE and PRED(0.25) are applied as

the efficiency scales to compare the efficiency rate of the

model with that of the other models.

The results have indicated that the proposed model

outperforms all the other methods for all the datasets and

regression-based methods come next to it. Moreover, the largest

superiority of the proposed model is its independence of the

datasets used. The problem of the model efficiency dependence

on the used dataset can be seen in the majority of the models

designed previously. Since the proposed model uses

localisation and clustering, its performance on larger datasets

might be better due to better clustering. Based on the obtained

results, the following topics can be suggested for further

research in line with model performance improvement:

• using regression methods in modelling;

• using fuzzy methods in clustering;

• using new sets of data with a larger number of records.

REFERENCES

[1] X.-Y. Jing, F. Qi, F. Wu, and B. Xu, “Missing Data Imputation Based on

Low-Rank Recovery and Semi-Supervised Regression for Software
Effort Estimation” in Proceedings of the 38th International Conference

on Software Engineering (ICSE 2016), 2016, pp. 607–618.

https://doi.org/10.1145/2884781.2884827
[2] F. Qi, X.-Y. Jing, X. Zhu, X. Xie, B. Xu, and S. Ying, “Software Effort

Estimation Based on Open Source Projects: Case Study of Github,”

Information and Software Technology, vol. 92, pp. 145–157, Dec. 2017.
https://doi.org/10.1016/j.infsof.2017.07.015

[3] F. Zare, H. K. Zare, and M. S. Fallahnezhad, “Software Effort Estimation

Based on the Optimal Bayesian Belief Network,” Applied Soft Computing,
vol. 49, pp. 968–980, Dec. 2016.

 https://doi.org/10.1016/j.asoc.2016.08.004

[4] M. Jørgensen, “The Influence of Selection Bias on Effort Overruns in
Software Development Projects,” Information and Software Technology,

vol. 55, no. 9, pp. 1640–1650, Sep. 2013.

https://doi.org/10.1016/j.infsof.2013.03.001
[5] S. Grimstad, M. Jørgensen, and K. Moløkken-Østvold, “Software Effort

Estimation Terminology: The Tower of Babel,” Information and Software

Technology, vol. 48, no. 4, pp. 302–310, Apr. 2006.
https://doi.org/10.1016/j.infsof.2005.04.004

[6] B. Kitchenham, S. Lawrence Pfleeger, B. McColl, and S. Eagan, “An

Empirical Study of Maintenance and Development Estimation Accuracy,”
Journal of Systems and Software, vol. 64, no. 1, pp. 57–77, Oct. 2002.

https://doi.org/10.1016/S0164-1212(02)00021-3

[7] M. Jorgensen and M. Shepperd, “A Systematic Review of Software
Development Cost Estimation Studies,” IEEE Transactions on Software

Engineering, vol. 33, no. 1, pp. 33–53, Jan. 2007.

https://doi.org/10.1109/TSE.2007.256943
[8] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural Network

Models for Software Development Effort Estimation: A Comparative

Study,” Neural Computing and Applications, vol. 27, no. 8, pp. 2369–
2381, Nov. 2015. https://doi.org/10.1007/s00521-015-2127-1

[9] M. Jørgensen and D. I. Sjøberg, “Impact of Effort Estimates on Software

Project Work,” Information and Software Technology, vol. 43, no. 15, pp.

939–948, Dec. 2001. https://doi.org/10.1016/S0950-5849(01)00203-8

[10] J. Khan, Z. A. Shaikh, and A. B. Nauman, “Development of Intelligent

Effort Estimation Model Based on Fuzzy Logic Using Bayesian
Networks” in International Conference on Advanced Software

Engineering and Its Applications, Springer, 2011, pp. 74–84.

https://doi.org/10.1007/978-3-642-27207-3_9

https://doi.org/10.1145/2884781.2884827
https://doi.org/10.1016/j.infsof.2017.07.015
https://doi.org/10.1016/j.asoc.2016.08.004
https://doi.org/10.1016/j.infsof.2013.03.001
https://doi.org/10.1016/j.infsof.2005.04.004
https://doi.org/10.1016/S0164-1212(02)00021-3
https://doi.org/10.1109/TSE.2007.256943
https://doi.org/10.1007/s00521-015-2127-1
https://doi.org/10.1016/S0950-5849(01)00203-8
https://doi.org/10.1007/978-3-642-27207-3_9

Applied Computer Systems

___2019/24

93

[11] R. Fuentetaja, D. Borrajo, C. L. López, and J. Ocón, “Multi-Step

Generation of Bayesian Networks Models for Software Projects
Estimations,” International Journal of Computational Intelligence

Systems, vol. 6, no. 5, pp. 796–821, 2013.

https://doi.org/10.1080/18756891.2013.805583
[12] D. Eck, et al., Parametric Estimating Handbook, The International

Society of Parametric Analysts, 2009.

[13] J. Lynch, “Chaos Manifesto,” The Standish Group, 2009.
[14] J. Moeyersoms, E. Junqué de Fortuny, K. Dejaeger, B. Baesens, and D.

Martens, “Comprehensible Software Fault and Effort Prediction: A Data

Mining Approach,” Journal of Systems and Software, vol. 100, pp.
80–90, Feb. 2015. https://doi.org/10.1016/j.jss.2014.10.032

[15] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented

Design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, Jun. 1994. https://doi.org/10.1109/32.295895

[16] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting Best Practices for

Effort Estimation,” IEEE Transactions on Software Engineering, vol. 32,

no. 11, pp. 883–895, Nov. 2006. https://doi.org/10.1109/TSE.2006.114

[17] C. Lopez-Martin, C. Isaza, and A. Chavoya, “Software Development

Effort Prediction of Industrial Projects Applying a General Regression
Neural Network,” Empirical Software Engineering, vol. 17, no. 6, pp.

738–756, Dec. 2012. https://doi.org/10.1007/s10664-011-9192-6

[18] A. Idri, F. azzahra Amazal, and A. Abran, “Analogy-Based Software
Development Effort Estimation: A Systematic Mapping and Review,”

Information and Software Technology, vol. 58, pp. 206–230, Feb. 2015.
https://doi.org/10.1016/j.infsof.2014.07.013

[19] A. Khatibi Bardsiri, S. M. Hashemi, and M. Razzazi, “GVSEE: A New

Global Model to Estimate Software Services Development Effort,”
Journal of the Chinese Institute of Engineers, vol. 39, no. 6, pp. 765–776,

2016. https://doi.org/10.1080/02533839.2016.1176873

[20] J. Keung, E. Kocaguneli, and T. Menzies, “Finding Conclusion Stability
for Selecting the Best Effort Predictor in Software Effort Estimation,”

Automated Software Engineering, vol. 20, no. 4, pp. 543–567, May 2012.

https://doi.org/10.1007/s10515-012-0108-5

[21] D. Wu, J. Li, and Y. Liang, “Linear Combination of Multiple Case-Based

Reasoning With Optimized Weight for Software Effort Estimation,” The

Journal of Supercomputing, vol. 64, no. 3, pp. 898–918, Dec. 2010.
https://doi.org/10.1007/s11227-010-0525-9

[22] L. A. Zadeh, “Soft Computing and Fuzzy Logic,” in Fuzzy Sets, Fuzzy

Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh, World
Scientific, 1996, pp. 796–804.

https://doi.org/10.1142/9789814261302_0042

[23] A. F. Sheta, “Estimation of the COCOMO Model Parameters Using
Genetic Algorithms for NASA Software Projects,” Journal of Computer

Science, vol. 2, no. 2, pp. 118–123, Feb. 2006.

https://doi.org/10.3844/jcssp.2006.118.123
[24] J. J. Dolado and L. Fernandez, “Genetic Programming, Neural Networks

and Linear Regression in Software Project Estimation” in Proceedings of

International Conference on Software Process Improvement, Research,
Education and Training, 1998.

[25] A. Sheta, D. Rine, and A. Ayesh, “Development of Software Effort and

Schedule Estimation Models Using Soft Computing Techniques” in 2008
IEEE Congress on Evolutionary Computation (IEEE World Congress on

Computational Intelligence), pp. 1283–1289, Jun. 2008.

https://doi.org/10.1109/CEC.2008.4630961
[26] N.-H. Chiu and S.-J. Huang, “The Adjusted Analogy-Based Software

Effort Estimation Based on Similarity Distances,” Journal of Systems and

Software, vol. 80, no. 4, pp. 628–640, Apr. 2007.
https://doi.org/10.1016/j.jss.2006.06.006

[27] S.-J. Huang and N.-H. Chiu, “Optimization of Analogy Weights by

Genetic Algorithm for Software Effort Estimation,” Information and
Software Technology, vol. 48, no. 11, pp. 1034–1045, Nov. 2006.

https://doi.org/10.1016/j.infsof.2005.12.020

[28] Q. Song and M. Shepperd, “Predicting Software Project Effort: A Grey
Relational Analysis Based Method,” Expert Systems with Applications,

vol. 38, no. 6, pp. 7302–7316, Jun. 2011.

https://doi.org/10.1016/j.eswa.2010.12.005
[29] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi, “A

PSO-Based Model to Increase the Accuracy of Software Development

Effort Estimation,” Software Quality Journal, vol. 21, no. 3, pp. 501–526,
Sep. 2012. https://doi.org/10.1007/s11219-012-9183-x

[30] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi,

“Increasing the Accuracy of Software Development Effort Estimation
Using Projects Clustering,” IET software, vol. 6, no. 6, pp. 461–473, Dec.

2012. https://doi.org/10.1049/iet-sen.2011.0210

[31] A. K. Bardsiri, S. M. Hashemi, and M. Razzazi, “Statistical analysis of

the most popular software service effort estimation datasets,” Journal of
Telecommunication, Electronic and Computer Engineering, vol. 7, no. 1,

pp. 87–96, 2015.

[32] D. E. Goldberg and J. Richardson, “Genetic Algorithms With Sharing for
Multimodal Function Optimization” in Proceedings of the Second

International Conference on Genetic Algorithms, Lawrence Erlbaum,

1987.
[33] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 1, no. 2,

pp. 224–227, Apr. 1979. https://doi.org/10.1109/TPAMI.1979.4766909
[34] C.-H. Chou, M.-C. Su, and E. Lai, “A New Cluster Validity Measure and

Its Application to Image Compression,” Pattern Analysis and

Applications, vol. 7, no. 2, pp. 205–220, Jun. 2004.
https://doi.org/10.1007/s10044-004-0218-1

[35] E. Atashpaz-Gargari and C. Lucas, “Imperialist Competitive Algorithm:

An Algorithm for Optimization Inspired by Imperialistic Competition” in

2007 IEEE Congress on Evolutionary Computation, IEEE, 2007, pp.

4661–4667. https://doi.org/10.1109/CEC.2007.4425083

[36] B. W. Boehm, “Software Engineering Economics,” IEEE Transactions on
Software Engineering, vol. 10, no. 1, pp. 4–21, Jan. 1984.

https://doi.org/10.1109/TSE.1984.5010193

[37] A. J. Albrecht and J. E. Gaffney, “Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science

Validation,” IEEE Transactions on Software Engineering, vol. 9, no. 6,
pp. 639–648, Nov. 1983. https://doi.org/10.1109/TSE.1983.235271

[38] J. M. Desharnais, “Analyse statistique de la productivitie des projets

informatique a partie de la technique des point des fonction,” Master’s
Thesis, University of Montreal, 1989.

[39] K. D. Maxwell, Applied Statistics for Software Managers, Prentice Hall,

2002.
[40] International Software Benchmarking Standards Group. [Online].

Available: https://www.isbsg.org/

Mahdi Khazaiepoor received a M.S. degree in

computer-software engineering from science and research
branch, IAU university in 2008, and now he is a PhD

candidate in Kerman branch, IAU university. He is

currently dean of software engineering department, IAU
university, Birjand branch, Iran.

E-mail: mkhazaiepoor@gmail.com

Amid Khatibi Bardsiri received his B.S. degree in

computer software engineering from Shahid Bahonar
university, Kerman, Iran in 2008, and his M.S. and PhD

degree in software engineering from Islamic Azad

University, Tehran, Iran, in 2014. He published about 45

research papers in international journals and conference

proceedings. His areas of research include information
systems engineering, software development, software

metrics, grid computing, and cloud computing.

E-mail: a.khatibi@srbiau.ac.ir
ORCID iD: https://orcid.org/0000-0001-9640-498X

Farshid Keynia, Associated Professor Department of

Energy Management and Optimization Graduate

University of Advanced Technology, Kerman, IRAN
Ph.D., Electrical Engineering, Semnan University. M.S.,

Electrical Engineering, Shahid Bahonar University,

Kerman, IRAN. B.S., Electrical Engineering, Shahid
Bahonar university, Kerman, Iran.

E-mail: fkeynia@gmail.com

ORCID iD: https://orcid.org/0000-0001-6286-3600

https://doi.org/10.1080/18756891.2013.805583
https://doi.org/10.1016/j.jss.2014.10.032
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/TSE.2006.114
https://doi.org/10.1007/s10664-011-9192-6
https://doi.org/10.1016/j.infsof.2014.07.013
https://doi.org/10.1080/02533839.2016.1176873
https://doi.org/10.1007/s10515-012-0108-5
https://doi.org/10.1007/s11227-010-0525-9
https://doi.org/10.1142/9789814261302_0042
https://doi.org/10.3844/jcssp.2006.118.123
https://doi.org/10.1109/CEC.2008.4630961
https://doi.org/10.1016/j.jss.2006.06.006
https://doi.org/10.1016/j.infsof.2005.12.020
https://doi.org/10.1016/j.eswa.2010.12.005
https://doi.org/10.1007/s11219-012-9183-x
https://doi.org/10.1049/iet-sen.2011.0210
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1007/s10044-004-0218-1
https://doi.org/10.1109/CEC.2007.4425083
https://doi.org/10.1109/TSE.1984.5010193
https://doi.org/10.1109/TSE.1983.235271
https://www.isbsg.org/
mailto:mkhazaiepoor@gmail.com
mailto:a.khatibi@srbiau.ac.ir
https://orcid.org/0000-0001-9640-498X
mailto:fkeynia@gmail.com
https://orcid.org/0000-0001-6286-3600

