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Abstract. The stochastic vehicle allocation problem addresses the movement of 
vehicles between locations over a given planning horizon. The demand for vehicles to 
carry loads between locations is uncertain, and vehicles are assumed able to handle 
several loads over the course of the planning horizon. Assuming random and coming 
at random time moments demands, we construct a stochastic model for this transport 
logistic scheme and derive Gaussian approximation for transport and stock level of 
goods dynamics. The proposed stochastic model in tandem with stochastic 
approximation procedure permits to take into account random character of demand for 
freight services and to supplement the classical deterministic analysis with Gaussian 
approximation for possible random deviations. 
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1 Introduction  

 
The beginning of the twenty-first century and the last decades in the twentieth century have 
indeed been an exciting era for research and development in traffic and transportation 
systems. Considerable advances in real-time traffic detection, data processing, 
communications, and control methods have enabled new frontiers in both developing a deeper 
understanding of the nature of traffic and transportation as well as opening up new ways to 
manage and control the transportation system in response to the actual conditions. (see 
[1,5,6,7,8] and references there).  
Even for most simple logistic dynamical system consisting of a wholesale store of capacity A, 
a retail store of capacity R and automobiles which are taking part in goods delivery from a 
wholesale store to a retail store the author of paper [1] by means of imitation modelling 
succeeded in finding such a complex mode of the operation as limit cycles and other irregular 
attractors. But in reality any transport logistics model is dependent at random demand and 
operates at random environment. Besides, a time moment for restocking of goods also is a 
random value. This means that for quantitative analysis for goods growth we have to calculate 
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not only given by deterministic dynamical system stock level of goods bet also to estimate 
possible random deviations on these idealized representations.  To do this in our paper we 
consider some complicate proposed in [1] deterministic model assuming that the demand be 
random and coming at random time moments. The expressed in paper [1] mathematical model 
for dynamical analysis of the above transport logistics scheme is system of three dimensional 
ordinary differential equations. 
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with right part, that dependent on the number of involving in goods delivery transport ( )x t  
and stock levels of  goods ( )y t and ( )z t in the corresponding stores. This model constructed 
under assumption that,  for any 0t  : 
 

 the increments ( ) : ( ) ( )x t x t x t     of involving  in goods delivery number of trucks 
are proportional to   multiplied by  to stock ( )z t  at wholesale store and  a number of 
vacancies  R ( )y t  at retail store: 

( ) : ( ) ( ) ( )( ( ))x t x t x t kz t R y t        ; 
 

 the increments ( ) : ( ) ( )y t y t y t     of stock levels of  goods are proportional to   
multiplied by involving  in goods delivery number of trucks ( )x t ,  a number of 
vacancies  R ( )y t  at retail store, after deduction of  ordering for goods ( )by t  ; 

11( ) : ( ) ( ) ( )( R ( )) ( ( )) ( )y t y t y t bx t y t h t y t           ; 
 

 the increments ( ) : ( ) ( )z t z t z t     of stock levels of  goods are proportional to   
multiplied by ( )x t ,  a number of vacancies  A ( )z t  at wholesale store, after 
deduction of  goods transportable from wholesale store to retail store: 

1 1( ) : ( ) ( ) ( ( )) ( )(1 R ( ))1z t z t z t с z t hx t y t           A . 

To take into account random properties of demand for goods we have to model a demand at 
the time interval  [ , )t t    as a random variable that can arrive or not with dependent on 
interval length probability. That is why we propose for dynamical analysis of the above 
logistic transportation scheme a stochastic model given by following finite-difference 
approximation: 
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where ,kt k k N   ,  is a small positive parameter, and ( )y kt  is a random sequence 
defined by dependent on two identically independent distributed (i.i.d.) independent uniform 
R(0,1) distributed series  { , }k k N   and exponentially distributed with parameter 1    
series { , }k k N   as follows: 
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This means that there are  random time moments { , }k k N   when the trajectory for stock 
levels of  goods ( )y t   has small jumps ( ) ( )k kb y t   bet these jumps occur very close: 

1N : E{ }k kk       . The  sample trajectories for equations (2) - (3) with parameters 
0.01, 0.001, 1, 1, 10,c 1,k h R        100, ( ) 2 , 0.25A b u bu b    and trajectories for 

solutions  of equitation (1) with initial conditions 
(0) (0) 2, (0) (0) 2, (0) (0) 2x x y y z z        are  shown at the Fig.1. As we can see most 

dependent on random demand are dynamics for stock levels of  goods ( )y t .  
 
At the next sections applying the stochastic averaging method [3] we derive approximative 
solution for  (2) -(3) as a three dimensional Gaussian process and discuss a behaviour of 
mean value and variances for stock levels of  goods { ( ), ( ), ( )}z t y t z t   . 
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Fig.1. Logistic system: Sample trajectories for (1)-(3) 

X(0)=2; Y(0)=4; Z(0)=5 ;delta = 0.001; k=1; R=1; c=1; A=2; a2=5; h=1; b=0.8;
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Fig. 1. Sample trajectory for (1) (unbroken line) and corresponding  
                                        solutions of  (2) - (3) (broken lines).   

 
 

 

2  Diffusion approximation procedure 

 

The defined in previous section stochastic dynamical system in more general form has been 
analysed in our previous paper [2]. The corresponding to finite-difference equation (2) - (3)  
random process possess Markov property and may be analysed  through intermediary of  
generator [3] 
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where ( , , )v x y z  is an arbitrary sufficiently smooth bounded function . Now we have to derive 
a limit 

0
lim ( ) ( , , ) : ( , , )v x y z v x y z





  , where 
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and 
1

0

( )b b u du  . The operator (5) can be interpreted as an infinitesimal operator [9] for 

defined by system (1) continuous semigroup and  therefore [2] for sufficiently small 0   
sample trajectories of  defined by finite-difference equation (2) - (3) random dynamical 
system we can approximate by corresponding solutions of equation (1), that is, if 

(0) (0), (0) (0), (0) (0),x x y y z z      then for any 0T   

 0 0

P lim sup[| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |] 0 1
t T

x t x t y t y t z t z t  
  

       (6) 

As it has been proven in [2] the deviations of solutions (2) - (3) on corresponding solutions of
(1) have an order   and we may analyse these deviations applying diffusion approximation
procedure  to no homogeneous three dimensional Markov process

( ) ( ) ( ) ( ) ( ) ( )
( ) , ( ) , ( )

x t x t y t y t z t z t
X t Y t Z t  

  
  

  
   (7) 

with zero initial conditions. The same as before we should derive a generator for (7) 
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and
1

2 2

0

( )b u du   . This operator can be interpreted [3] as a generator for no homogeneous 

Markov process{ ( ), ( ), ( ), 0}X t Y t Z t t   which satisfies to the  systems of two ordinary 
equations and one stochastic Ito equation: 

1 1

1 1
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with initial conditions { (0) 0, (0) 0, (0) 0}X Y Z   . As it has been proved in [2] finite 
dimensional distributions of  the defined by equations (2) - (3) Markov process  
{ ( ), ( ), ( )}x t y t z t    may be approximated by corresponding finite dimensional distributions of 
the process 

).()()(),()()(),()()( tZtztztYtytytXtxtx    (12) 
Unfortunately, we cannot analyse variance separately approximation for stock levels of goods 
given by equation (10). We have to derive and solve the system of differential equations for 
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all elements of a covariance matrix for the three dimensional Gaussian random vector  
{ ( ), ( ), ( )}X t Y t Z t : 
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(13) 

with zero initial conditions. Applying the Runge-Kutta method for solution of equations (13) 
we  can calculate approximation for covariance matrix for stock levels of  goods for  with the 
same parameters in (1)-(2)-(3) and initial values as for the  Fig.1.  

Fig. 2. Covariances ( ), ( ), ( )XY XZ YZq t q t q t . 

Fig. 3. Variances ( ), ( ), ( )XX YY ZZq t q t q t .   
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3  Conclusion 

The proposed stochastic model for transport logistics in a form of nonlinear difference-
differential  equations with stochastic Poisson type  increments in tandem with stochastic 
approximation procedure  permits to take into account random character of  demand for 
freight services and to supplement  the classical deterministic analysis with Gaussian 
approximation for possible random deviations.  
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