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GENERAL DESCRIPTION OF THE WORK 

Introduction 

Artificial neural networks (ANN) are widely used in machine learning. They are powerful 

non-linear models that can be trained in a supervised, semi-supervised, and unsupervised 

manner. There is no single best machine learning classifier that can be used in all scenarios, 

but ANNs are frequently outperforming other classifiers. On the downside, it is hard to 

explain how classification decision is made within ANN. Artificial neural networks are 

essentially black-boxes. Lack of understanding of how such classifiers work severely limits 

their applicability. The Thesis is devoted to the development of approaches allowing to 

extract knowledge in the form of rules from trained ANN classifier. 

Topicality  

Comprehensibility of the classification model is a crucial requirement in mission-critical 

domain areas like nuclear power, medicine, finance, and others. Additionally there could be 

law requirements, like the European Union GDPR 2018 law [118] stating that all life-

changing algorithmic decisions should be explainable. Explainability allows ensuring there 

are no classification biases and discrimination and can generate new knowledge. There exist 

publications in the knowledge extraction domain, but no ready to use algorithms are available. 

In addition, as it was discovered reproducibility is a huge problem, thus the development of 

tooling for explaining ANN classifiers can significantly improve their usability. 

Research Aim and Tasks 

The research aim is to develop algorithms for pruning and knowledge extraction (KE) 

from trained ANN and unify them into knowledge extraction methodology. Such 

methodology should allow representing trained feedforward neural networks as an If–Then 

rules set, as a binary classification tree or set of equation rules. Research tasks to be solved to 

accomplish the stated research aim are the following. 

1. To review and analyse existing knowledge representation and extraction approaches 

described in scientific literature addressing the same problem. 

2. To study artificial neural networks pruning methods, their pros and cons, develop an 

improved method and evaluate it. 

3. To develop, implement and evaluate approaches, which allow performing knowledge 

extraction from trained multilayer perceptron. 

4. To develop and assess optimization-based methods for If–Then and elliptical rules 

extraction from trained piece-wise linear classifier and RBFNN. 

5. To develop a generalized methodology for knowledge extraction from ANN. 
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Research Object and Subject 

The research object is an explanation of trained artificial neural network classification 

decision, research subject – machine learning and specifically knowledge extraction 

approaches. 

Research Hipotheses 

During research and development of ANN pruning techniques and rules extraction 

methods, the following hypotheses were defined. 

1. Improved sensitivity-based pruning algorithm successfully escapes local minimums 

and controls classification error rise. 

2. Discreet input space subdivision acquired from MLP neurons outputs can be used to 

build a classification decision tree with controllable classification precision. 

3. If–Then rules acquired via posing and solving the convex optimization problem allow 

approximate input space regions bounded by hyperplanes. 

4. Elliptical rules extracted from feedforward radial basis function neural network by 

solving a non-convex optimization problem allow to approximate original RBFNN. 

Research Methods 

The study is based on mathematical and statistical analysis, machine learning, 

optimization theory, and experimental research methodologies. Literature review and analysis 

are used as well to gather information about the existing approaches in the subject 

domain area. 

Scientific Novelty of the Thesis 

The scientific novelty of the study is based on reviewing the existing and developing 

methods for knowledge extraction. Which, in turn, holds four specifically developed methods, 

which can be applied whenever model understanding and knowledge in explicit form is 

required. The scientific novelty and achievements are listed below. 

1. A sensitivity-based artificial neural network pruning algorithm developed with several 

modifications allowing it to escape local minimums. A comparison of weights versus 

nodes pruning performed with recommendations on approach selection depending on 

requirements. 

2. An implemented method for binary classification decision tree extraction from trained 

feedforward ANN multi-class classifier. An experimental testing of the 

proposed solution was performed. 

3. An approach developed for extraction of If–Then rules from piece-wise linear 

approximation of a non-linear classifier. This approach allows rules extraction from a 

set of hyperplanes defined in input space. Although the approach has shown itself as 
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prone to curse of dimensionality, it can be utilized for datasets with a small amount of 

input data dimensions. 

4. An approach developed for extraction of elliptical rules from two-dimensional or 

three-dimensional RBF neural network. Although this approach has shown itself prone 

to the curse of dimensionality developed optimization problem posed as the right 

approach for elliptical rules extraction in case of two or three dimensions. Larger 

dimensions counts can be supported via algorithmic enhancement. 

5. Based on the conducted research and experiments developed the methodology for 

utilization of rules extraction approaches, listed above, with recommendations on 

cases when one approach should be selected over the other. 

Practical Significance of Thesis 

The practical significance lies in programmatic realizations, experimental validation and 

assessment of the discussed methods. Full list of practical achievements is as follows. 

1. Performed review and comparison of knowledge representation schemas, and 

recommendations are given for scheme selection. 

2. In the scope of developed methodology, recommendations allowing extraction of 

accurate or comprehensible rules are given. 

3. Recommendations for using nodes or weights pruning are given, allowing to rise 

generalization of ANN. 

4. Applicability of reviewed classifiers (MLP, RBFNN, Piece-Wise linear classifier) has 

been improved, as now it becomes possible to validate them, understand model 

classification decision, and discover new knowledge. 

5. Programmatic realizations have been created in Matlab, extensions of Lua-based 

Torch7 deep learning (DL) framework and Python-based PyTorch DL framework. 

PyTorch version is applicable to medium-sized datasets. 

Approbation 

Research results were presented at thirteen international scientific conferences. 

1. RTU 60
th

 International Scientific Conference. Latvia, Riga, 10–11 October 2019. 

2. RTU 59
th

 International Scientific Conference. Latvia, Riga, 10–12 October 2018. 

3. RTU 57
th

 International Scientific Conference. Latvia, Riga, 17–21 October 2016. 

4. 10th International Scientific and Practical Conference “Environment. Technology. 

Resources”. Latvia, Rezekne, 18–20 June 2015.  

5. RTU 55th International Scientific Conference. Latvia, Riga, 14–16 October 2014. 

6. 6th International Conference “Applied Information and Communication Technology”. 

Latvia, Jelgava, 25–26 April 2013. 

7. RTU 53rd International Scientific Conference. Latvia, Riga, 11–12 October 2012. 

8. International Conference “Information Intelligent Systems”. Ukraine, Kharkiv,  

17–19 April 2012. 
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9. 10th WSEAS International Conference on Artificial Intelligence, Knowledge 

Engineering and Data Bases (AIKED’11). United Kingdom, Cambridge, 20–22 

February 2011. 

10. 17th International Conference on Soft Computing MENDEL. Czech Republic, Brno,  

15–17 June 2011. 

11. 15th International Conference on Knowledge-Based and Intelligent Information and 

Engineering Systems (KES 2011). Germany, Kaiserslautern, 12–14 September 2011. 

12. 16th International Conference on Soft Computing MENDEL’10. Czech Republic, 

Brno,  

23–25 June 2010. 

13. RTU 51st International Scientific Conference, Latvia, Riga, 11–15 October 2010. 

Research results that served as the basis for the Thesis were published in the 

following scientific papers. 

1. Bondarenko, A. Controlling Complexity and Accuracy of Classification Decision Tree 

Extracted from Trained Artificial Neural Network. In: 60th International Scientific 

Conference on Information Technology and Management Science of Riga Technical 

University (ITMS), 2019. Available from: doi:10.1109/ITMS47855.2019.8940739. 

Indexed in Scopus. 

2. Bondarenko, A., Aleksejeva, L. Methodology for Knowledge Extraction from Trained 

Artificial Neural Networks. Information Technology and Management Science. 2018, 

vol. 21, pp. 6–14. Available from: doi:10.7250/itms-2018-001. 

3. Bondarenko, A., Aleksejeva, L. Workflow for Knowledge Extraction from Neural 

Network Classifiers. In: 59th International Scientific Conference on Information 

Technology and Management Science of Riga Technical University (ITMS), 2018. 

Available from: doi:10.1109/ITMS.2018.8552964. Indexed in Scopus. 

4. Bondarenko, A., Aleksejeva, L., Jumutcs, V., Borisovs, A. Classification Tree 

Extraction from Trained Artificial Neural Networks. Procedia Computer Science, 

2017, vol. 104, pp. 556–563. Available from: doi:10.1016/j.procs.2017.01.172. 

Indexed in Scopus, Web of Science. Cited: 9. 

5. Bondarenko, A., Borisovs, A., Aleksejeva, L. Neurons vs Weights Pruning in 

Artificial Neural Networks. In: Environment. Technology. Resources: Proceedings of 

the 10th International Scientific and Practical Conference, Latvia, Rezekne, 18–20 

June 2015. Vol. 3. Rezekne: Rezekne Higher Education Institution, 2015, pp. 22–28. 

Available from: doi:10.17770/etr2015vol3.166, Indexed in Scopus. Cited: 2. 

6. Bondarenko, A., Borisovs, A. Artificial Neural Network Generalization and 

Simplification via Pruning. Information Technology and Management Science. 2014, 

vol. 17, pp. 132–137. Available from: doi:10.1515/itms-2014-0020.  

7. Bondarenko, A., Borisovs, A. Elliptical Rule Extraction from a Trained Radial Basis 

Function Neural Network. In: The 6th International Conference “Applied Information 

and Communication Technology” (CD-ROM), Latvia, Jelgava, LUA Faculty of 

Information Technology, 25–26 April 2013. Indexed in Web of Science. Cited: 1. 
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8. Bondarenko A., Borisov A. Research on the Classification Ability of Deep Belief 

Networks on Small and Medium Datasets. Scientific Journal of Riga Technical 

University, Information Technology and Management Science, 2013, vol. 16, pp. 60–

65. Available from: doi:10.2478/itms-2013-0009. Indexed in EBSCO, De Gruyter, 

Google Scholar, ResearchGate. Cited: 2. 

9. Bondarenko, A., Borisovs, A. Knowledge Extraction from Piecewise-Linear 

Approximation of Multi-Surface Classifier. In: International Conference “Information 

Intelligent Systems”, Kharkov, Ukraine, 17–19 April 2012. Vol. 6, pp. 5–6. 

10. Bondarenko, A., Borisov, A. The Extraction of Elliptical Rules from the Trained 

Radial Basis Function Neural Network. Information Technology and Management 

Science. 2012, vol. 15, pp. 161–165. Available from: doi:10.2478/v10313-012-0027-2.  

11. Bondarenko, A., Jumutc, V. Extraction of Interpretable Rules from Piecewise-Linear 

Approximation of a Nonlinear Classifier using Clustering-Based Decomposition. 

Proceedings of the 10th WSEAS international conference on Artificial intelligence, 

knowledge engineering and data bases (AIKED’11), United Kingdom, Cambridge,  

22–22 February 2011. Cambridge: 2011, pp.145–149. Indexed in Scopus. 

12. Bondarenko, A., Zmanovska, T., Borisovs, A. Piece-Wise Classifier Application to 

RBF Neural Network Rules Extraction. In: 17th International Conference on Soft 

Computing (MENDEL’11), Czech Republic, Brno, 15–17 June 2011. Brno: Brno 

University of Technology, 2011, pp. 170–176. Indexed in Scopus, Web of Science. 

13. Jumutcs, V., Bondarenko, A. Polytope Classifier: A Symbolic Knowledge Extraction 

from Piecewise-Linear Support Vector Machine. In: Knowledge-Based and Intelligent 

Information and Engineering Systems: 15th International Conference (KES 2011): 

Proceedings, Part 1, Germany, Kaiserslautern, 12–14 September 2011. Berlin: 

Springer Berlin Heidelberg, 2011, pp. 62–71. Available from: doi:10.1007/978-3-642-

23851-2_7. Indexed in Scopus, Web of Science, ResearchGate, SpringerLink. 

14. Bondarenko, A., Borisov, A. Decompositional Rules Extraction Methods from Neural 

Networks. In: Proceedings of the 16th International Conference on Soft Computing 

MENDEL’10, Czech Republic, Brno, 23–25 June 2010, Brno: University of 

Technology, 2010, pp. 256–262. ISBN 9788021441200. Indexed in Scopus, Web of 

Science. 

15. Bondarenko, A., Borisov, A. Research of Artificial Neural Networks Abilities in 

Printed Words Recognition. Scientific Journal of Riga Technical University, 

Information Technology and Management Science. 2010, vol. 44, issue 5, pp. 124–

129.  

The results of the Doctoral Thesis research have been used in the following projects.  

1. Latvian Council of Science project No. 09.1564 “Simulation and computational 

intelligence methods for logistics and e-business optimization” (2010–2012). Project 

leader Professor Dr. habil. sc. ing. Y. Merkurjevs. 

2. Latvian Council of Science funded project LZP-2018/2-0051 “Fast and non-contact 

optical estimation of micro-organisms activity” (2018−2020). Project leader Dr. 

phys. A. Lihačov.  
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3. Latvian Council of Science funded project LZP-2018/2-0052 “Skin cancer early 

diagnostics accuracy improvement by using neural networks” (2018–2020), Project 

leader Dr. phys. I. Lihačova. 

Structure and Content of the Thesis 

The Doctoral Thesis contains an introduction, five main chapters, results analysis, and 

conclusions. 

The introduction validates the topicality of the conducted investigations, formulates the 

object, the aim, and research tasks. It describes scientific novelty, as well as briefly 

characterizes basic directions of the research performed. 

Chapter 1 describes the problem area, which is artificial neural networks. A short 

introduction is given along with brief descriptions of the main well-known ANN types. 

Chapter 2 describes in detail the initial step required for knowledge extraction from a 

trained artificial neural network – network pruning. This chapter covers several existing 

algorithms along with their evaluations and comparison to the developed pruning algorithm. 

Chapter 3 presents the developed approach for the extraction of binary classification 

decision tree from a trained multilayer perceptron. This chapter describes the implemented 

algorithm, provides its pseudocode, and holds algorithm evaluation. 

Chapter 4 presents the developed optimization-based methods for oblique (If–Then) and 

equation rules extraction from a piece-wise linear classifier and RBFNN. 

Chapter 5 describes the developed methodology for choosing one of the described 

methods over others.  

Results and Conclusions chapter recaps the aim, tasks, and hypotheses, makes 

conclusions, covers scientific and practical novelty of the Thesis, and discusses future 

research directions. 
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SUMMARY OF THESIS CHAPTERS 

1. NEURAL NETWORKS AND KNOWLEDGE EXTRACTION 

Based on the posed aim and tasks, the first chapter performs an overview of the machine-

learning field and artificial neural networks (ANN) as a research object. This chapter covers 

ANN types, their training and usage. Knowledge extraction (KE) algorithms and knowledge 

representation forms are reviewed. 

1.1. Neural Networks and Knowledge Extraction Overview 

Look into [90] for the in-depth introduction to biological and artificial neural networks. 

Authors of [40] posed a plausible explanation describing how neural networks can operate 

and approximate simple linear functions. Later, researchers inspired by biological neural 

networks have proposed different artificial neural network architectures. 

Data itself represent little value. Information on the other side is data bound into a specific 

context, which gives some meaning to the data and allows us to see relations. Knowledge is 

information, which is organized in a way that allows seeing specific patterns. Wisdom is even 

more abstract and allows an understanding of general principles. In the scope of general AI 

systems, knowledge had to be represented in such a way that specific reasoning could be 

applied over it. Knowledge is the level covered by current research, it uses the definition for 

“rule extraction” term proposed in [73]. Given definition is broader than others like one given 

in [96] and underlines the fact that extracted rules can take different forms, not only lexical: 

“Given an opaque predictive model and the data on which it was trained, produce a 

description of the predictive model’s hypothesis that is understandable yet closely 

approximates the predictive model’s behaviour.” 

Depending on the context, rule extraction algorithms can be tuned to produce either more 

comprehensible, and hence compact and understandable, or more accurate rules. 

According to the knowledge extraction taxonomy proposed in [76], there exist three types 

of knowledge extraction algorithms. The fourth knowledge extraction algorithm family 

(compositional) was proposed in [139]. These types are decompositional, pedagogical, 

eclectic, and compositional. 

Depending on the use-case, the decision regarding the trade-off between readability and 

high classification rate should be made. This decision will allow selecting the most 

appropriate rules type. Types of rules (see detailed description in [22], [73]) are: propositional 

If−Then / If−Then−Else rules; M of N rules; Oblique rules / Equational rules; and Fuzzy 

rules. 

If–Then rules and Decision trees are most welcome as they are easily embeddable, have 

good comprehensibility and acceptable expressiveness and compactness. Equational and 

oblique rules are most expressive while least interpretable by a human expert. The last two 
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groups – Fuzzy rules and M of N rules − are of less interest as they either bound to fuzzy 

neural networks, which are less common and are not easily embeddable, or have low 

expressive power. The current Thesis is focused on If–Then rules and binary classification 

decision tree extraction from MLP, as well as on extraction of elliptical rules from RBFNN. 

As it was noted in [49], to get compact FFNN, there exist several approaches. The current 

Thesis is concentrating on the pruning approach. In case one does not have a trained neural 

network, the same pruning approach can be used for training an overly complex network with 

subsequent pruning to remove unnecessary neurons. Lowering the number of neurons can 

result in a smaller number of rules. The pruning algorithm developed in the scope of the 

Thesis is covered in Chapter 2. 

1.2. Types of Knowledge Extraction Methods  

There are four main types of KE algorithms, their strengths and weaknesses are 

summarized in Table 1.1. The current Thesis concentrates on decompositional and 

compositional KE algorithms. Decompositional algorithms, as it was shown in [39], are 

performing better than pedagogical approaches. Classification accuracy, portability and ability 

to influence the complexity and precision of extracted rules were selected as the most 

important properties. 

The pedagogical approach is applied to RBFNN to extract Elliptical rules due to their high 

expressive power. For a decompositional approach If–Then rules and classification decision 

tree were chosen as knowledge representation forms to be explored. They are most commonly 

widespread, can be easily embedded into any existing information system and have an 

“embedded” inference engine, while being easily understandable. 

Table 1.1 

Comparison of Types of Knowledge Extraction Algorithms  

Property 
Algorithm class 

Decompositional Eclectic Pedagogical Compositional 

Classification accuracy ++ + + n/a 

Portability (not specific to classifier) − +− + − 

Tunability ++ + + − 

Algorithm consistency (several runs – 

same result) 
− + +− n/a 

Speed − + + n/a 

Knowledge representation variety ++ + + − 

Scalability (Big data) + + + n/a 

Algorithm complexity (computational) − + + + 

The chapter provides a general overview of the ML field and ANN generalization theory. 

Knowledge representation schemas and typical knowledge extraction workflow are covered. 

Task number one of the stated research tasks is accomplished. 
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2. NEURAL NETWORK PRUNING 

It is known that neural networks with a smaller number of neurons are easier to extract 

knowledge from, and extracted knowledge is of smaller complexity. The pruning step is 

always welcome as it can positively influence ANN generalization abilities. In addition, 

pruning controls the comprehensibility and accuracy of extracted rules by controlling the 

number of neurons to be processed. Papers [3], [6], [25] give an overview of pruning 

algorithms. To select the pruning approach, based on a literature review a summary Table 2.1 

was created using the scale from zero to five (higher is better).  

Table 2.1 

Comparison of Pruning Approaches  

Criteria / Pruning type 
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Simplicity 4 1 5 2 3 1 2 

Execution time 0 1 3 2 3 1 1 

Memory footprint 3 0 3 3 1 2 2 

No special training procedure 2 1 2 0 2 2 2 

Classification 

precision / generalization 
3 2 0 n/a n/a 3 n/a 

Pruned neurons / weights count 3 3 0 n/a n/a 4 n/a 

Sensitivity-based pruning approach was chosen due to its simplicity and good reported 

performance. Its idea is to remove single neuron and assess the ANN performance change, 

thus the least sensitive (important) neuron can be found and removed. 

2.1. Sensitivity-Based Pruning Algorithm 

Experiments with basic sensitivity-based pruning approach have shown that it is prone to 

local minimums, thus improved algorithm version has been developed. To escape local 

minimums, the algorithm [26] has been equipped with three improvements. The main steps of 

the developed algorithm are: 

1) save the ANN state; 

2) determine the least sensitive neuron (or weight), remove it; 

3) retrain ANN; 

4) assess classification performance degradation; if it is acceptable, continue pruning, 

otherwise rollback last neuron (or weight) removal; if several consecutive rollbacks 

have occurred (threshold is reached), then stop pruning and return the last best known 

saved ANN. 
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Steps 1, 3 and 4 are the improvements proposed within the scope of the Thesis. They allowed 

to prune more neurons (or weights) and control classification degradation. To validate the 

proposed improvements, a pruning process visualization was created, see Figure 2.1 
 

   

Fig. 2.1. Neuron pruning experiments for the Ionosphere dataset. 

2.2. Validation of the Developed Pruning Algorithm  

To validate the developed algorithm, an experiments plan has been developed. The goal 

was to validate the developed algorithm and compare neurons vs. weights pruning. In the first 

experiments series (Table 2.2), nodes pruning algorithm was applied to neurons in hidden 

layers only. It is seen, that in all but three cases the testing error of pruned ANN was smaller 

than that of unpruned ANN. The developed pruning algorithm has shown strong performance 

both in terms of ANN simplification and its generalization improvement. 

Table 2.2 

Results of Pruning Experiments  

Dataset MLP train avg. 
MLP test 

avg. 
Pruned train 

Pruned test 

avg. 

Architecture 

before/after pruning 

(hidden nodes in 2 

hidden layers) 

Ionosphere 10.83 % 10.83 % 5.39 % 10.44 % 15–15 / 5.4–3.8 

Monks-1 20.16 % 29.68 % 18.47 % 24.35 % 15–15 / 5–3 

Monks-2 36.82 % 36.55 % 31.83 % 32.58 % 15–10 / 5–3.1 

Monks-3 6.64 % 2.80 % 5.98 % 2.85 % 15–15 / 1.7–1.1 

WPBC 0.00 % 0.00 % 0.00 % 0.00 % 10–10 / 1–1 

WDBC 3.89 % 4.04 % 3.03 % 3.69 % 30–30 / 23.2–17.1 

Pima 23.02 % 23.56 % 25.94 % 26.81 % 10–10 / 2.8–3.1 

Haberman 26.13 % 26.57 % 28.50 % 28.20 % 15–15 / 2.3–3.7 

Parkinsons 24.62 % 24.61 % 16.29 % 15.82 % 30–30 / 26.8–28 

Chainsaw pattern – the result of 
pruning and retraining. Retraining 

fixes the damage inflicted by pruning. 

Train classification error is 

lowering.  

Pruning neurons count is 

growing. Platoes prove 
that retry mechanism 

allows escaping local 

minimums. 

 
0 2500 5000 

7500 

ANN pruning retrain iteration 

(a) 

(b) (c) 

 
0 10 20 30 40 0 10 30 40 20 

Pruning iteration Pruning iteration 

P
ru

n
ed

 c
la

ss
if

ic
at

io
n

 e
rr

o
r 

P
ru

n
ed

 n
eu

ro
n
 c

o
u
n
t 

C
ro

ss
en

tr
o
p

y
 e

rr
o
r 



15 

Experiments were conducted to validate the developed algorithm in application to nodes 

and weights pruning [25] applied to the input and hidden neurons, see Table 2.3 for results.  

In Table 2.2 and Table 2.3 one can see that pruned ANN in two cases has a minor rise in 

classification error and in the majority of cases its error rate is lowered. In four cases 

(Table 2.3), weights pruning was better than nodes pruning. In the remaining five experiment 

sets, nodes pruning proved to be a better option. Error after weights pruning on the Monks-1 

dataset is 1.81 % in contrast to 13.22 % after nodes pruning, this is the only case with such 

drastic difference. 

Table 2.3 

Classification Error Rates and Mean Pruned Weights / Nodes Counts 

Dataset 
MLP 

train avg. 

MLP test 

avg. 

Pruned 

weights 

train avg. 

Pruned 

weights test  

avg. 

Pruned 

nodes 

train avg. 

Pruned 

nodes test  

avg. 

Pruned weights  

/ pruned nodes 

counts 

Haberman 25.99 % 26.78 % 24.39 % 24.91 % 24.98 % 26.17 % 54.9/23.8 

Ionosphere 10.83 % 10.83 % 4.21 % 10.25 % 4.55 % 9.22 % 34.1/34.3 

Monks-1 21.51 % 32.74 % 0.83 % 1.81 % 6.83 % 13.22 % 45.9/22.4 

Monks-2 38.46 % 36.04 % 12.47 % 12.21 % 11.26 % 10.25 % 16.8/20.1 

Monks-3 6.56 % 2.88 % 5.16 % 3.45 % 3.33 % 5.76 % 32.4/29.3 

Parkinsons 24.58 % 24.61 % 14.83 % 16.38 % 14.30 % 15.57 % 10.5/8.3 

Pima 23.93 % 24.56 % 21.64 % 23.74 % 22.12 % 23.05 % 56.0/22.7 

WDBC 4.16 % 4.33 % 1.83 % 2.63 % 1.77 % 2.93 % 23.3/18.5 

WPBC 0.00 % 0.00 % 0.00 % 0.17 % 0.00 % 0 % 153.6/50.0 

Pruning has been shown to be a useful trained ANN generalization improving step. The 

overall current chapter  contributions are listed below. 

 Developed pruning algorithm is presented, it is based on sensitivity measure with 

retraining, metric worsening threshold, and pocket memory, allowing pruning 

procedure to successfully escape local minimums. 

 Conducted experiments have proven algorithm utility in simplifying the neural net 

structure and rising its generalization abilities. 

 Input and hidden layer neurons pruning have shown lower classification errors, when 

compared to only hidden layers pruning. 

 Experiments have shown that in general case nodes pruning is preferable over weights 

pruning as it requires a smaller amount of computations. The only exception would be 

a necessity to get the lowest possible error rate in which case weights pruning should 

be applied. 

The current chapter accomplished task number two – the study of ANNs pruning 

approaches. The pruning approach was selected and based on the developed pruning 

algorithm. 
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3. DECISION TREE EXTRACTION FROM  

MULTILAYER PERCEPTRON 

While frequently outperforming other types of classifiers artificial neural networks (ANN) 

black-box nature limit their usage. Therefore, knowledge extraction (KE) from trained ANN can 

help to uncover new knowledge, validate and productionalize or embed ANN-based classifiers. 

3.1. Knowledge Extraction Overview 

Description of various ANN types and architectures can be found in  

[12], [38], [56], [70], [92], [98], [120]. Due to the widespread usage of fully connected neuron 

layers, the current chapter concentrates on knowledge extraction from FFNNs. Non-linearity 

introduced by hidden layers is what makes FFNN flexible in modelling input data, but hard to 

understand classification decision. R. Setiono [96] was one of the first researchers who 

proposed to work not with weights of the neural network, but with neuron ‘statistics’ – 

neurons output values obtained over the training data set. As a preliminary KE step, it is 

proposed to prune neurons to minimize the number of neurons output values sets to be 

processed (see Chapter 2) – this potentially can minimize the number of ‘rules’ that will be 

extracted. The next stage involves neurons output values discretization to find bounds or, in 

the case of several neurons, regions from input space where all input vectors belonging to that 

region are classified as belonging to the same class. Later on, the developed algorithm 

(Fig. 3.1) can be applied to extract a classification decision tree from such 

discretized neurons. 

 

Fig. 3.1. The high-level knowledge extraction process. 

The developed algorithm is decompositional as it is using intrinsic knowledge about 

neurons outputs in the neural network. Due to the knowledge extraction algorithm specifics a 

binary classification decision tree was chosen as a rules representation form. Its visualization 

allows for straightforward reasoning about the classification process. Decision trees can be 
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directly, in a quazi-optimal way, mapped into If–Then rules as well. 

Figure 3.1 provides a high-level overview of the knowledge extraction routine, along with 

required and optional pre-processing steps. Steps to which the current Thesis contributes to 

the development of new algorithms are highlighted. 

In cases when the input data amount is prohibitively large, it is possible to: 1) work with 

the subset of the data; and 2) perform neurons output values discretization. After output 

values discretization step, output values clusterization needs to be performed that will further 

shrink possible neuron output values. 

3.2. Knowledge Extraction Algorithm 

Many of the KE algorithms described in the literature are extending the original 

NeuroRule algorithm [68]. NeuroRule and its derivatives have a very common workflow. The 

steps are neurons output signals non-linearity break-up via outputs clusterization (built up of 

quantization tables), afterwards all neurons starting from output layer are replaced with the 

sets of If–Then rules, finally all of these rules are merged and pruned to get final If–Then 

rules set. Instead of performing such rules merging, a solution was proposed to utilize only 

input neurons quantization tables for classification decision tree construction. In the proposed 

algorithm, to extract the decision tree from ANN, only quantization table borders are used 

(points at which class belongingness decision potentially changes) as a candidate split-points 

to estimate Information-Gain or GINI value on the full training dataset. This improvement 

lowers algorithm complexity and potentially amount of computations. To assure that the 

decision tree is accurately describing original ANN, the decision tree extraction dataset is 

generated, such that it contains points nearest to the quantized ANN classification boundary, 

see step 3 in Figure 3.2. A comparison of existing and proposed approaches can be seen 

in Figure 3.3.

 

Fig. 3.2. Decision tree built from clusters boundaries formed using input neurons outputs. 
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The main steps of the proposed algorithm for the decision tree extraction are (see steps 2-4 

in Fig. 3.2): 

1) pruned ANN classifier non-linearity is broken via neurons outputs clusterization; 

2) candidate split-points are acquired from input layer neurons quantization tables; 

3) a modified decision tree algorithm uses found candidate cluster boundaries from input 

layer neurons as a candidate split-points (while using full training dataset to calculate 

GINI or Information-Gain) to build a classification decision tree. 

 

Fig. 3.3. Existing and proposed approaches for rules extraction. 

The described algorithms were implemented as an extension to the well-known deep 

learning package nn of Torch7 library in Lua programming language [31]. Additionally, 

algorithms were reimplemented in Python programming language extending PyTorch deep 

learning library. 

3.3. Developed Algorithm Validation  

To validate the developed algorithm experiments have been performed on nine well-

known UCI repository datasets. Table 3.1 holds the results of the experiments. For the C4.5 

algorithm, results were taken from [2], [10], [17], [40], [74]. An example of the decision 

boundary for the pruned feedforward neural network is depicted in Figure 3.4(a), the decision 

boundary for the extracted binary decision tree can be seen in Figure 3.4(b). Average size 

decision tree, see Figure 3.5(a) and minimal and maximal, see Figure 3.5(b) extracted 

decision trees for Ripley and 3-class Iris datasets are presented in Figure 3.5. 
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Table 3.1 

Accuracies and Leafs Counts for MLP, Pruned MLP, Extracted Tree, and C4.5 

Dataset 
MLP 

train/test 

Proposed methods 
C4.5/J48 

test 

C4.5 

𝐥𝐞𝐚𝐟𝐬 
Pruned MLP 

train/test 

Extracted 

tree train/test 

Extracted 

tree 𝐥𝐞𝐚𝐟𝐬𝐦𝐚𝐱
𝐦𝐢𝐧  

Iris 0.9911/0.9667 0.9652/0.9667 0.9689/0.9533 4.25
3 0.9400 6 

Pima 

diabetis 
0.7319/0.7332 0.7253/0.7279 0.7433/0.7423 22

2 0.7210 14 

Ionosphere 1.0000/0.9087 0.9552/0.9544 0.9546/0.9059 21.626
12 0.8971 17 

Ripley 0.8560/0.8920 0.8640/0.8982 0.8631/0.8946 12.620
4  0.8941 6 

Haberman 0.7509/0.7381 0.7542/0.7547 0.7567/0.7446 22
2 0.7190 n/a 

Monks-1 1.0000/1.0000 1.0000/1.0000 1.0000/1.0000 88
8 1.0000 28 

Monks-2 0.6923/0.6736 0.7160/0.6435 0.7041/0.5949 1414
14 0.6700 1 

Monks-3 0.9754/0.9259 0.9508/0.9722 0.9508/1.0000 66
6 0.9440 14 

Parkinsons 0.8051/0.8001 0.8006/0.8099 0.8092/0.8102 22
2 0.9261 n/a 

If there are a small number of cluster boundaries to be used as split points for decision tree 

building, then computational complexity is rather small. Experimental results show that 

extracted tree classification accuracy is directly related to a neural network accuracy, which is 

used as a knowledge source, as well as to the number of input neurons output values clusters 

boundaries that are used to build a tree. Authors of [74] have stated that they were able to get 

MLP accuracy of 0.9876, which is much higher than in presented experiments. This suggests 

that in the case of better trained MLP, the extracted tree would have higher classification 

accuracy. Of course, if comprehensibility and simplicity of the extracted decision tree are of 

higher importance, then more aggressive pruning can be applied and accuracy will be lower. 

But still, to get the best results it is important to have a trained ANN with the highest possible 

classification performance. 

  

Fig. 3.4. Ripley test dataset split into two classes by (a)  

pruned neural network and (b) extracted decision tree.  

x2 

x1 x1 

x2 

(a) (b) 
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Table 3.1 shows that the developed decision tree extraction algorithm is outperforming the 

C4.5 algorithm in the majority of cases in terms of classification accuracy. Cases when it 

shows lower performance are those were the original ANN has shown initial poor 

classification results. Rules-wise count both algorithms are on par, but having higher accuracy 

allows to further lower rules count, which gives the developed approach an edge over the 

C4.5 algorithm. 
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Fig. 3.5. Sample decision tree extracted for (a) Ripley data set and (b)  

decision trees of varying depth extracted for Iris data set. 

Chapter 3 has reviewed knowledge extraction approaches in application to ANN; justified 

knowledge extraction from ANN in the form of a binary classification decision tree; justified 

the selection of Torch7 as a base for the deep learning framework for proposed NNKX [31] 

implementation; presented and experimentally validated the developed algorithm for 

classification decision tree extraction. The proposed algorithm has a lower classification error 

than C4.5 in all tested datasets, where a trained ANN had error lower than the C4.5 classifier. 

Experiments validated the developed approach. The extracted decision tree has high 

classification accuracy and low complexity, with that research task number three stated as 

accomplished. 
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4. OPTIMIZATION-BASED METHODS FOR RULE EXTRACTION 

Chapter 3 introduced the decision tree extraction approach applicable to a fully connected 

trained feed-forward artificial neural network (ANN). But when it comes to training a 

classification model, it can be a case that the selected ANN will not show the best results. 

Therefore, Chapter 4 aims at the development of two alternative optimization-based 

approaches, one that allows the extraction of elliptical rules from radial basis function (RBF) 

neural networks and another approach allowing acquiring hyper-polytope classifier in input 

data space and approximating it using If–Then rules. Hyperpolytopes acquisition is a separate 

problem and two approaches to acquiring them are presented. 

4.1. Elliptical Rules Extraction From RBF Neural Networks 

Apart from fully connected ANNs with sigmoidal activation functions, RBF neural 

network (RBFNN) can be used as an alternative classifier. Elliptical rules are more expressive 

than If–Then rules. Therefore, optimization-based pedagogical approach allowing to extract 

elliptical rules from RBFNN was developed and evaluated [21], [27]. 

Optimization Problem 

The extraction of elliptical rules from the trained RBFNN can be treated as a non-convex 

optimization problem of finding ellipsoids of maximum volume inscribed into the input space 

area defined by RFBNN classification decision boundary. Let us denote an ellipsoid as 

ε = {𝐵𝑢 + 𝑑 | ‖𝑢‖2 ≤ 1}, (4.1) 

where 𝐵 is a symmetric positive definite matrix; 𝑢 is a unit ball (set of points of distance one 

from a fixed central point); 𝑑 is a vector representing ellipsoid center; ‖𝑢‖2 denotes the 

Euclidean norm, i.e., ‖𝑢‖2 = (𝑢T𝑢)1 2⁄ .  

Ellipsoid ε is a unit ball under affine transformation. In such a formulation, the ellipsoid 

volume is proportional to detB [32]. Thus, the optimization problem can be posed as 

max log(det (𝐵)),  s. t. RBFNN ⊇ ε, (4.2) 

The described problem allows finding the first ellipsoid inscribed into the RBFNN 

decision boundary. A multi-start search will help in dealing with local optimums due to non-

convexity of optimization problem. In most cases, it will be insufficient to represent RBFNN 

with a single ellipsoid; thus, iterative search for additional ellipsoids is required. To find other 

ellipsoids it is sufficient to look for the newly inscribed ellipsoid (potentially overlapping 

previously found ellipsoids) with maximum volume not covered by the already 

found ellipsoids: 

max(εvol − 𝐸vol) − 𝑃, s. t. RBFNN ⊇ ε, (4.3) 

where εvol is the volume of newly found ellipsoid; 𝐸vol is the volume of already existing 

(previously found) ellipsoids; and 𝑃 is penalty term, see description below. Introduced 

penalty term P calculates the minimal distance (Eq. 4.4) between the candidate ellipsoid 
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center and the border of a set formed by the intersection of all previously found ellipsoids.  

𝑃 = min(dist(εcenter, 𝐸surf): 𝐸surf  ∈ (𝐸1 ∪ … ∪ 𝐸𝑁 ), (4.4) 

where εcenter is the center of newly found candidate ellipsoid; and 𝐸surf is the surface formed 

by the intersection of already found ellipsoids. Introduction of P term ensures that on each 

iteration optimization objective will find a new ellipsoid, which will cover the largest possible 

portion of the volume not yet covered by existing ellipsoids. 

Experiments and Results 

Experiments have been conducted on a synthetic two-dimensional Ripley dataset (to aid 

visual analysis), which can be found in the UCI dataset repository [49]. The algorithm 

described in [37] was used in RBFNN initialization to construct several neural networks 

containing a variable number of neurons. In experiments only closed RBFNN defined 

classification boundaries were observed, which may be seen in figures. Looking at the 

algorithm, one can notice maxEllipsoidsCount variable. It was initialized with a number of 

neurons in the subject RBFNN, the only exception was a network with 9 neurons for which 

the maximum number of ellipsoids to be extracted had been set to 7. A number of neurons in 

RBFNN was chosen to be 2, 6, 7, and 9. Overall visual analysis confirms that the algorithm 

works as expected, while experimental results (see Table 4.1) show excellent performance of 

the extracted elliptical rules. 

Table 4.1 

RBFNN Accuracy, Extracted Ellipsoid Rules Accuracy, and Counts 

# of neurons 

in RBFNN 

RBFNN 

train 

accuracy 

RBFNN test 

accuracy 

Ellipsoid train 

accuracystd.dev. 

Ellipsoid test 

accuracystd.dev. 

Ellipsoids 

number 

𝐦𝐞𝐚𝐧𝐦𝐚𝐱
𝐦𝐢𝐧  

2 neurons 0.852 0.911 0.84000.000 0.88700.000 22
2 

6 neurons 0.868 0.905 0.86800.002 0.90320.005 4. 45
4 

7 neurons 0.876 0.905 0.87600.000 0.90310.002 5.17
4 

9 neurons 0.868 0.905 0.87280.005 0.90390.001 6.87
5 

Experiment results show that the extracted ellipsoids have almost identical accuracy rates 

to original RBFNN while having an equal or smaller count of ellipsoids (in comparison to 

RBF neurons used in NN). Thus, the proposed algorithm works as expected. An important 

point to mention is computational complexity, as the algorithm uses RBFNN to check 

whether an ellipsoid fully lies within the RBFNN decision boundary. This is a 

computationally intensive operation, but it is parallelizable. 

Summarized list of current sub-chapter contributions is as follows: optimization problem 

formulation, including a specific penalty; equipped objective function; and programmatic 

realization end experimental validation of the proposed algorithm. It was shown that a small 

number of found ellipsoids could perform classification with a small drop of classification 

accuracy. This proves the proposed approach to be feasible, especially for RBFNN with small 

input vector dimensionality. 
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4.2. Rules Extraction Using a Piece-Wise Approximation Algorithm 

The current sub-chapter presents an application of optimization techniques for If–Then 

rules extraction from the piece-wise linear classifier. This direction was chosen because as it 

was already shown in [127], non-linear sigmoidal neurons decision boundary can be 

approximated by piece-wise linear functions. The developed algorithm is a generalization of 

the previously developed algorithm [80], which was developed to extract If–Then rules from 

linear support vector machine (SVM) classifier. 

Overview of the Approach 

To test If–Then rules extraction algorithm, a piece-wise polytope classifier was developed 

instead of piece-wise approximations of sigmoidal neurons outputs. The core idea of the 

developed piece-wise classifier is to build convex polytopes defined by hyperplanes around 

clusters of data points. Afterwards If–Then rules are extracted from such convex polytopes. 

Alternatively MSM-T classifier can be used as a source of polytopes [28]–[30], [79]. The 

developed algorithm is recursive, its main steps are: 

1) acquisition of hyperpolytope classifier (Fig. 4.1(a)); 

2) allocation of best (by volume or by covered points count) If–Then rule (Fig. 4.1(b)); 

3) recursion start: splitting space into non-covered sub-spaces; finding the best If–Then 

rule in each of the found sub-spaces (Fig. 4.1)); 

4) checking recursion depth limit, if not reached, repeat step 3, otherwise 

stop (Fig. 4.1(b)). 

 

Fig. 4.1. If–Then Rule extraction algorithm iterations. 

If–Then Rules Extraction Algorithm 

The described algorithm follows the defined linear programming (LP) problem [28]–[30], 

[79] and defines two vertices, namely representing 𝑙𝑜𝑤𝑒𝑟 and 𝑢𝑝𝑝𝑒𝑟 bounds of the found 
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hypercube. Having a single hypercube inscribed into the polytope can be insufficient in terms 

of classification fidelity. To overcome this undesirable result, the recursive search should be 

applied to search for additional hypercubes inscribed into the remaining regions of the 

polytope. This process could be repeated recursively so that ongoing search for the smaller 

uncovered regions will generate more and more rules that will asymptotically approximate the 

original polytope classifier with the desired level of classification fidelity. Such remaining 

regions of interest could be defined as follows: 

𝐼𝑖
𝑙 = {

𝑥 ∈ 𝑅𝑛, s. t. ,
𝑙𝑗

∗ < 𝑥𝑗 ≤ 𝑢𝑗
∗∀1 ≤ 𝑗 ≤ 𝑖,

𝑥𝑖 ≤ 𝑙𝑖
∗,

                 𝐼𝑖
𝑢 = {

𝑥 ∈ 𝑅𝑛, s. t. ,
𝑙𝑗

∗ ≤ 𝑥𝑗 < 𝑢𝑗
∗∀1 ≤ 𝑗 ≤ 𝑖,

𝑥𝑖 ≥ 𝑢𝑖
∗,

 (4.5) 

where 𝐼𝑖
𝑙, 𝐼𝑖

𝑢 are polytope regions that are surrounding extracted rule for the i-th dimension; 

and 𝑙, 𝑢 are upper and lower bounds of the currently processed hypercube (rule). Presented in 

Equation 4.5 rule inequalities are satisfied for the first 𝑖 − 1 dimensions of 𝑥, the inequality 

that relates to the i-th dimension is not satisfied, and the rest dimensions are free and should 

not be constrained. To support the recursive search, it is important to guarantee that new 

recursively inscribed hypercubes will not intersect with each other. Consider dimensions 𝑖, 𝑗 

with 𝑗 > 𝑖. For each 𝑥 ∈ 𝐼𝑗, we have 𝑙𝑖
∗ < 𝑥𝑖 < 𝑢𝑖

∗ , and for each 𝑥 ∈ 𝐼𝑖, we have 𝑥𝑖 ≤ 𝑙𝑖
∗ or 

𝑥𝑖 ≥ 𝑢𝑖
∗. Hence, 𝐼𝑖 are non-intersecting, and the rules that are acquired for each 𝐼𝑖 differ in 

terms of approximated polytope region. It should be noted that polytopes could have 

intersections between each other, thus the extracted rules (hypercubes) could be intersecting. 

The optimization of extracted rules is not part of the current effort. 

Experiments and Results 

For the developed rule extraction approach verification and testing several public UCI 

datasets [49] were selected. The verification of the proposed method is covered in [28]–[30], 

[79]. Datasets for the experiments were selected based on popularity criteria.  

Before the actual rule extraction algorithm can take place, polytopes should be created. To 

acquire polytopes from which If–Then rules will be extracted it is possible to use the MSM-T 

classifier, which is as a classification decision tree with optimal splits that are not parallel to 

axes. Another option is to use a proposed piece-wise linear classifier, see [79] for details of 

the proposed method. For datasets that were not originally separated into validation and 

training sets 10-fold cross-validation was performed, and averaged classification accuracy 

was collected. In the case of Monks dataset training and validation, datasets were already 

provided and 10 experiments were conducted. 

It can be seen in Table 4.2 that all datasets, except “Balance-Scale”, are not so nicely 

separable using Linear SVM. On the other hand, an approximation of a nonlinear decision 

surface gives a necessary boost of the classification accuracy for the polytope classifier and 

for extracted rules. Here C4.5 fails to perform good classification. Multi-Surface Method Tree 

(MSM-T) method falls behind SVM methods and Polytopes. The rules extracted from MSM-

T show high classification error. Empirically it was found that the increase in recursion depth 

for rules extraction from MSM-T helps to lower the classification error. 



25 

Table 4.2 

Classification Accuracy, % 

Classifier Monks-1 Monks-2 NDCC Balance 

SVMlinear 65.509 67.130 73.333 93.730 

SVMrbf 86.806 80.556 95.000 98.082 

MSM-T 83.565 79.630 88.667 87.526 

Rules (MSM-T) 69.444 54.861 75.333 68.524 

C4.5 75.690 65.050 74.000 70.780 

Polytopes 99.537 80.324 93.667 97.913 

Rules (polytopes) 96.296 74.537 89.738 96.857 

The rows highlighted in grey are the results shown by developed classifiers. Bold 

highlights the best overall classification result on test set across all datasets (columns). Green, 

yellow and red are highlighting explainable classifiers accuracies. Here one can see that the 

rules extracted from polytope classifier have higher accuracy than rules extracted from 

MSM-T. Overall SVM with RBF kernel outperforms other classifiers. Among all classifiers, 

only three classifiers (C4.5, Rules (MSM-T) and Rules (polytopes)) are explainable. Among 

them, the rules extracted from hyper-polytopes (lower row) have the highest accuracies. This 

proves that the chosen approach can be successfully applied to extract precise rules. 

The current chapter presents two approaches developed in the scope of optimization-based 

knowledge extraction. These approaches complement and serve as an alternative methods of 

knowledge extraction in cases when the decision tree extraction from trained ANN has shown 

poor results. Also, in cases when ANN to be described by the set of the rule is RBFNN and 

we are willing to lower the number of rules – elliptical rules are a better option. In case when 

one has hyperpolytopes to be described with If–Then rules, the developed approach provides 

yet another alternative to classification decision tree extraction. 

Experimental validation has shown that If–Then rules can be extracted from hyper-

polytopes using the developed algorithm as a convex-optimization problem solution. It was 

shown that extracted If–Then rules have high accuracy, thus can be used to describe original 

classifier and serve as yet another tool in machine learning practitioner toolbox. Also, a non-

convex optimization problem was posed, and a new algorithm developed that supports the 

extraction of Elliptical rules. The above said allows concluding that the research task related 

to development and assessment of optimization-based methods for If–Then and elliptical rule 

extraction from trained FFNN and RBFNN is accomplished. 

Research task number four, related to the development and assessment of optimization-

based methods for If–Then and elliptical rules extraction from trained FFNN and RBFNN is 

accomplished. 
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5. KNOWLEDGE EXTRACTION METHODOLOGY 

Based on accomplished work and acquired results, a methodology for rules extraction is 

developed and experimentally validated in the current chapter. Unified workflow for 

knowledge representation and model selection, knowledge extraction, assessment, and 

refinement is presented. Review of knowledge representation and extraction from artificial 

neural networks and other types of classifiers covered in Chapter 1 serves as a basis for the 

methodology, which presents a pruning algorithm, see Chapter 2, a novel algorithm for binary 

classification decision tree extraction from fully connected multilayer ANN, covered in 

Chapter 3. Finally, optimization-based method for rules extraction using convex optimization 

problem is covered in Chapter 4. The same chapter presents a novel developed (non-convex 

optimization) method for elliptical rules extraction from RBFNN classifier. The proposed 

workflow [18]–[20] is experimentally validated and guidelines on how to acquire simple or 

precise rules are given. 

5.1. Methodology Development 

Methodology developed as part of the dissertation divides knowledge extraction (KE) 

process into four main stages. 

1. Knowledge representation schema and classifier type selection. 

2. Classifier training and preparation for KE steps. 

3. Knowledge extraction. 

4. Extracted knowledge assessment and refinement. 

The first step assumes knowledge schema selection. Elliptical rules are more expressive than 

decision tree or If–Then rules, but less comprehensible. So, if the overall goal is to understand 

how classification is performed elliptical rules might be a suboptimal choice. On the other side 

decision tree can be extracted only from ANN, hence if the best performing classifier is piece-

wise hyperpolytopes then If–Then rules will have to be used as knowledge representation. 

The second and third steps are straightforward. In case the classifier is already pre-trained 

KE can be performed right away. In the case of ANN pruning can be applied, which can be 

used to influence on precision and number of extracted rules. 

The fourth step is knowledge assessment and refinement. If extracted rules are too 

complex, several possibilities to mitigate that are listed below. 

 Rules can be merged and pruned. 

 A greater degree of pruning should be applied on ANN, or lower amount of ellipsoids 

or smaller depth of If–Then rules recursion should be set. 

 The classifier could be retrained to have altered training parameters and 

hyperparameters and KE steps should be re-run. 

 As an alternative, if dataset size allows it, smaller sub-space region, were used 

classifier performance is poor, can be used to train a separate classifier to run KE on it. 

All developed algorithms are combined into a unified methodology, see Figure 5.1.  
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5.2. Precise vs. Comprehensive Rules 

To validate the proposed workflow and assess guidelines for acquiring precise or simple 

rules, an experiments plan has been developed and executed on medium and small sized 

datasets. To overcome large computational requirements needed to process real-life medium-

sized (~50 000 records) Adult Census dataset (taken from UCI repository), two modifications 

were incorporated into the KE algorithm: 

 neurons output discretization via outputs rounding to n digits for all neurons become a 

mandatory step, disregarding possible performance degradation; 

 neurons outputs clusterization was performed on a data subset (in experiments, it was 

15 % of the training set). 

The experiments goal is to prove that the parameter controlling allowed performance 

metric degradation during neurons outputs clusterization phase allows controlling the 

extracted decision trees complexity and classification performance. The second question was 

to understand how pruning, as a preceding step, influences the extracted decision tree 

complexity and performance. 

Results gathered in Table 5.1 hold means over ten experiments for each dataset and show 

that aggressive pruning coupled with large performance degradation threshold for neurons 

outputs clustering results in lower classification performance and smaller decision trees. Light 

pruning and small threshold give larger, but more precise decision trees. 

Table 5.1 

Knowledge Extraction Parameters Influence on Extracted Rules Complexity and Accuracy 

ANN 

pruning 

level 

Neurons 

output values 

clusterization 

Characteristics 

Datasets 

Adult Ripley 

Train Test Train Test 

Aggressiv

e pruning 

ANN 82.27 82.15 83.84 87.92 

Low perf. 

degradation 

clustering 

threshold 

Discretized ANN Accuracy, % 82.09 81.95 83.84 87.89 

Extracted tree accuracy, % 79.74 79.81 83.8 88.0 

Extracted tree rules count / 

depth 
212.7/16.2 55.6/28.7 

Medium perf. 

degradation 

clustering 

threshold 

Discretized ANN accuracy, % 80.89 80.99 83.28 87.76 

Extracted tree accuracy, % 79.80 79.74 83.28 87.76 

Extracted tree rules count / 

depth 
20.1/7.7 16.8/12.3 

Minimal 

pruning 

ANN 83.41 83.22 84.44 89.52 

Low perf. 

degradation 

clustering 

threshold 

Discretized ANN accuracy, % 83.39 83.21 84.44 89.62 

Extracted tree accuracy, % 82.12 81.95 84.44 89.52 

Extracted tree rules count / 

depth 
1562/21.8 137/91.6 

Medium perf. 

degradation 

clustering 

threshold 

Discretized ANN accuracy, % 82.27 82.00 83.4 88.4 

Extracted tree accuracy, % 79.25 78.87 83.4 88.4 

Extracted tree rules count / 

depth 
161.1/12.5 11.3/8.1 
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Experiments on the Ripley dataset help to understand how the clusterization threshold 

parameter influences the extracted decision tree. As a starting point, Figure 5.2(a) displays 

how the initial classification boundary produced by trained and slightly pruned ANN looks 

like. The result of discretization and clusterization using small (Fig. 5.2(b)) and large 

(Fig. 5.2(c)) allowable performance degradation threshold is seen in Figure 5.2. Vertical and 

horizontal lines show clusters boundaries. 

 

 

Fig. 5.2. Classification boundaries for the Ripley dataset. 

A small number of points in Figure 5.2(c) is due to the utilization of quantization tables 

that are replacing neurons output values. Figure 5.3 shows the classification boundaries of 

decision trees extracted from (quantized) ANN using neurons outputs clusterization. 

 

  

Fig. 5.3. Decision tree classification boundary of an ANN with (a) small and  

(b) large clustering parameter controlling performance degradation. 

Experiments have shown that the primary tool for controlling the extracted decision tree 

complexity is the clusterization phase performance degradation threshold. Next auxiliary 

parameter belongs to discretization – how big rounding should be, to acquire a smaller count 

of neurons outputs and lower computational costs during the clusterization phase (at the cost 

of some classification performance degradation). Lastly, pruning itself can control the rules 

complexity and classification performance, but the pruning effect has smaller importance on 

extracted tree complexity. 

In regards to accuracy, pruning plays an important role as a regularizer preventing 

(a) (b) (c) 
x1 x1 x1 

  
    

x2 x2 x2 

(a) (b) 
x1 x1 

x2 x2 
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overfitting. In any case, when non-agressive pruning is applied, the extracted tree will have 

classification performance similar to ANN it is being extracted from. 

The current chapter summarizes the conducted work and presents a unified workflow with 

recomendations for KE. This workflow and recomendations underline the research work 

accomplished in previous chapters and provides guidelines for knowledge extraction with 

experimental validation results. Guidelines are provided for the selection of classifiers and 

corresponding knowledge extraction algorithms, taking into account dataset characteristics. 

Workflow for dealing with overly complex or too simple extracted knowledge is presented 

and experimentally validated. The contribution of current work can be summarized as 

follows: 

 proposed methodology – general workflow of knowledge extraction from trained 

ANN or hyper-polytope classifier; 

 Recommendations formulated within the scope of methodology on classification 

model selection based on dataset characteristics; 

 as part of the methodology, based on experimental validation proposed 

recommendations on pruning and knowledge extraction parameters selection, 

described parameters influence on extracted knowledge complexity and performance; 

 defined assessment procedure suggesting how knowledge should be assessed and what 

corrective actions can be performed to fix problems (if any are found). 

Classification decision tree extraction is the most general way of acquiring knowledge 

from a neural network. However, according to the “No Free Lunch” theorem, there is no 

single method, which will be equally good for all datasets. Thus, alternative algorithms for 

extraction of elliptical and If–Then rules were developed and proved to be usable. All listed 

improvements have become parts of the overall knowledge extraction workflow. The work 

presented in this chapter accomplishes task number five stated as a research task. 
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RESULTS AND CONCLUSIONS 

The Doctoral Thesis is devoted to knowledge extraction from trained artificial neural 

networks (ANN). Within this work, an analysis of existing approaches to knowledge 

representation, ANN pruning, and knowledge extraction was performed. As a result of this 

analysis, a methodology for knowledge extraction was developed. This methodology lists 

typical knowledge representation schemes, and provides guidelines for selecting best 

knowledge representation. In the case when knowledge is extracted from ANN, due to lack of 

ready to use algorithms and low performance of available implementations, new pruning 

approach was developed. An algorithm for classification decision tree extraction from ANN 

was developed. To cover more use-cases, alternative optimization-based knowledge 

extraction approaches were developed. These approaches allow extraction of If–Then rules 

from the classifier described by hyperpolytopes and Elliptical rules from Radial-Basis 

function neural network (RBFNN). All developed approaches are united into single workflow 

along with recomendations in regards to choosing specific workflow steps. The decision tree 

classifier is supplied with experimentally proven recommendations allowing user to get either 

complex and precise or more comprehensible and less precise decision trees.  

The aim of the Doctoral Thesis is to develop algorithms for ANN pruning and knowledge 

extraction from trained ANN and unify them into knowledge extraction methodology. Thesis 

accomplishments are as follows.  

1. A review and analysis of existing scientific literature covering theory and algorithms 

for knowledge representation and extraction is performed. As a result, the research 

discovered pros and cons of existing approaches, which allowed to define 

requirements for knowledge extraction workflow. 

2. Artificial neural networks pruning algorithms are reviewed, and new ANN pruning 

algorithm based on sensitivity measure with retraining and pocket memory is 

developed and evaluated. Recommendations for choosing weights vs. nodes pruning 

are developed. The algorithm ability to overcome local minimums is proven 

experimentally. 

3. A new decompositional approach for classification decision tree extraction from 

trained multilayer perceptron is developed. The algorithm extends Torch7 based nn 

deep learning package with an additional neural network. 

4. Optimization based pedagogical approaches for oblique If–Then and elliptical rules 

extraction from a set of convex hyper-polytopes and RBF neural network are 

developed and evaluated. 

5. Generalized methodology for knowledge extraction is developed and evaluated. The 

methodology includes suggestions on the model selection (MLP, RBFNN, and convex 

polytopes), which influences knowledge representation and extraction approach.  

Methodology contains workflow, which guides knowledge extraction, assessment, and 

refinement depending on the selected classification model. The experimental 

validation of methodology testifies the conclusions. 
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The performance of all developed algorithms was evaluated and analysed to prove the 

proposed hypotheses. Based on the conducted research, several conclusions can be made. 

 The developed pruning algorithm based on sensitivity analysis successfully escapes 

from local minimums and allows to control classification error rise. In the scope of 

sensitivity-based pruning in some cases, weights pruning can produce results better 

than neurons pruning. Although neurons pruning is more welcome as it is a less 

computationally intensive method and in general produces results on par with weights 

pruning, these findings prove the first hypothesis. 

 Usage of retraining and memory-pocket trick are simple yet effective algorithmic 

improvements that, when used with sensitivity-based pruning algorithm, produce good 

pruning results – these findings contribute to the first hypothesis as well. 

 In the scope of decision tree extraction from MLP, usage of input layer neurons output 

values classification decision boundaries (acquired via neuron output values 

clusterization) instead of replacement of all neurons with rules produces a good 

classification decision tree. Such method is simpler in terms of computational resources in 

comparison to the description of all neurons via sets of rules with subsequent rule 

clustering, merging and pruning (to get required rules for the input layer). Additionally, 

the developed approach for classification decision tree extraction allows to control the 

extracted tree complexity and classification accuracy – this proves the second hypothesis. 

 Based on experiments results involving the developed approach, a conclusion can be 

made that optimization-based approach can be used for If–Then rules extraction from 

convex polytopes. On non-HPC hardware, this method is applicable to datasets with 

less than eleven attributes. Hence, this method is usable on subsets of input datasets as 

an alternative method in case the extraction of classification decision tree from MLP 

produces poor classification decision tree for a specific sub-region. The experiments 

prove that the extracted If–Then rules effectively approximate the input space regions 

bounded by hyper-polytopes – this proves the third hypothesis. 

 Based on experiments involving the developed algorithm, a conclusion can be made 

that the optimization-based approach can be used for Elliptical rule extraction from 

RBFNN for datasets with less than four dimensions (on non-HPC hardware). This 

method is applicable as a way to replace large sub-trees in a decision tree with more 

expressive elliptical rules. The experiments prove that the extracted elliptical rules 

effectively approximate RBFNN and achieve similar classification accuracy – this 

proves the fourth hypothesis. 

All posed theoretical questions are experimentally proven via proposed and developed 

approaches and methodology. As a result, in the scope of Thesis rules extraction methodology 

is developed and experimentally evaluated. The methodology allows performing a selection 

of knowledge representation schema and classification method, knowledge extraction, its 

assessment, and refinement. Further research directions can include research of ways to 

introduce reproducibility into ANN pruning and rules extraction, as well as neurons output 

values clusterization speedup. 
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