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Abstract – The paper considers an iterative method for solving 
systems of linear equations (SLE), which applies multiple 
displacement of the approximation solution point in the direction 
of the final solution, simultaneously reducing the entire residual of 
the system of equations. The method reduces the requirements for 
the matrix of SLE. The following SLE property is used: the point 
is located farther from the system solution result compared to the 
point projection onto the equation. Developing the approach, the 
main emphasis is made on reduction of requirements towards the 
matrix of the system of equations, allowing for higher volume of 
calculations. 
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I. INTRODUCTION 
The demand for new tools for solving systems of linear 

equations (SLE) has appeared along with the emerging 
computing technologies, rapidly developing computation 
methods of physical process modelling, application of 
discretization of the calculation area (division into subareas) 
and substitution of differential operations in approximation to 
algebraic ones. In compliance with the requirements of finite 
difference method and finite elements method (FEM) and their 
modifications, the method for solution of weakly-filled 
diagonal matrices with the expressed main diagonal with the 
direct and iterative methods [1], [2] has been elaborated. The 
methods of effective SLE storage and solution have been 
elaborated considering the matrix symmetry to the main 
diagonal both for direct and iterative methods. Over the past 
years, along with the introduction of new computation 
techniques (super elements, boundary element method), the 
need for solving SLE with the help of an ultimately filled 
matrix, using the matrix without the main diagonal dominance 
[3], [7] has arisen. Such problem-solving techniques are still 
being developed, frequently applying iterative methods based 
on the Gauss–Seidel method [2], [7]. Solving SLE with the help 
of iterative methods (for instance, the Gauss–Seidel method) 
supposes correction of one of the unknowns (Fig. 1a) by 
reducing one certain equation residual; furthermore, other 
equations are not used in this process [2]. To speed up the 
convergence of an iterative process, the methods are 
supplemented with relaxation parameters, which optimise 
variable speed of the iterative process. 
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The article explores the approach [4], [5] to solving SLE 
using the matrix without main diagonal dominance and null 
main diagonal. The method is rooted in the principle of 
simultaneous reduction of all SLE residuals in each iteration by 
changing the values of all the system unknowns (Fig. 1b).  

The essence of the solution is an iterative solution of 
optimization problems, where each iteration consists of two 
steps:  

− the first step – to determine the direction of the 
successive point location; 

− the second step – to determine the optimal 
successive length of the point displacement. 

 

 
                        a)                                                        b) 
 

Fig. 1. Correction of one and all unknowns at the iterative solving stage of the 
equation system. 

First, the solution for a two-equation system will be 
considered, then it will be generalised for any finite 
dimensional number. 

II. DETERMINATION OF POINT DISPLACEMENT DIRECTION  
IN ITERATION 

A. Principles of Determining the Approximation Solution 
Direction   
It is easy to demonstrate that projections of any point P(x, y) 

in the xy-plane to equations are located closer to the solution of 
the equation system than the point itself (Fig. 2).  The arithmetic 
average of the projection of all equations is even closer to the 
solution of the equation system [4], [5]. 

https://doi.org/10.2478/acss-2021-0007
http://creativecommons.org/licenses/by/4.0
mailto:Jurijs.Lavendelsl@rtu.lv


Applied Computer Systems 
_________________________________________________________________________________________________2021/26 
 

55 
 

 
 

Fig. 2. Determination of the next iterate direction in the iterative system solving. 

It follows from the above-mentioned considerations that it is 
possible to apply the following iterative algorithm to solve the 
system of equations (Fig. 2):   

− the projections of the existing approximation point Pi(x, y) 
onto equations are determined; 

 − the midpoint (arithmetic average) Pi(xi, yi) for projections 
onto the system equation A and equation B is taken as a new 
approximation Pi+1(xi+1, yi+1); for equations a and b;  

− correction of approximation is repeated iteratively.  

B. Direction of Approximation Solution for Larger Equation 
Systems  
The considered approach is easily applicable to any finite 

number of equations.   
Therefore, in case of two dimensions, geometrically the 

equation is a straight line, but a non-contradictory equation 
system represents two straight lines that intersect, thus forming 
four angles. In case of three dimensions, one equation 
geometrically represents a plane, a non-contradictory system 
represents three planes that intersect. Iterative solving occurs 
inside the pyramid with three plane derived surface, the apex of 
the pyramid is sought for. Eight pyramids are formed, whereas 
the solving process occurs only in one of them.  

In case of multiple dimensions, an equation is an  
n-dimension hyperplane, where n is an equation system layer. 
A non-contradictory equation system is the total of n 
hyperplanes, which intersect. Iterative solving occurs inside the 
hyper pyramid, whose hypersurface is formed by n hyperplane 
equations, the apex of the hyper pyramid is sought for. In case 
of four and more dimensions, it is impossible to get graphic 
images of the studied objects, but all mathematical approaches 
and formulas remain valid. In case of any number of dimensions 
for the point (iterate) P(p1, p2, ..., pn), the projection coordinates 
onto hyperplane 

  a1x1 + a2x2 + … + anxn + b = 0 (1) 

can be calculated as follows [8]. A normal vector to the plane 
n = (a1, a2, …, an) is perpendicular to the plane, so there is a 
direction vector of the plane that is the nearest distance from 
point P(p1, p2, ..., pn) to the plane, i.e., to the point projection 

onto the plane. Point P(p1, p2, ..., pn) coordinates are added to 
the canonical straight line equations:   

  (x1 – p1) / a1 = (x2 – p2) / a2 = … = (xn – pn) / an.   (2) 

− straight line equation is expressed in the parametric 
form:   

  (x1 – p1) / a1 = t or x1 = a1t + p1; (3) 

  (x2 – p2) / a2 = t or x2 = a2t + p2;   

... 

  (xn – pn) / an = t or xn = ant + pn.  

by adding x1, x2, ..., xn to the plane equation we acquire:  

  t = –(a1x1 + a2x2 + ... + anxn) / a1a1 + a2a2 + ... anan;  (4) 

− the coordinates of the projection point are: 

  P1proj = a1t + p1;  

  P2proj = a2t + p2; (5) 

  …  

  Pnproj = ant + pn.  

In case of any number of dimensions, a new value of 
approximation coordinates is taken as the arithmetic average of 
the projections of the previous approximation onto the 
hyperplanes. 

It is not difficult to show that:  
− in case of a compatible system, the suggested iterative 

process approaches the solution with every step;  
− the speed of iterative convergence depends on the 

properties of an equation system, on the angle between the 
equations in case of two dimensions;  

− if equations are contradictory (equations are close to 
parallels), the process will not converge and the solution will 
not be found;  

− unlike the popular techniques, the approach does not pose 
strict requirements towards the matrix of equation system – the 
main diagonal dominance is not important, the main diagonal 
may have zero entries; 

 − in each iteration, upon definition of the existing 
approximation solution projections onto equations and their 
arithmetic average, the solution direction is determined 
approximately. The approximation solution direction is close to 
optimal, but the displacement length is usually significantly 
lower than the optimal one; 

 − the technique can be improved. 
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C. Location of a Successive Approximation Solution Point to 
Equations  
The speed of equation system approximation solution 

convergence significantly depends on the location of the 
existing solution point (Fig. 3).  Problem solving converges 
faster if solving occurs in the area of the wide angle (in terms 
of two-dimensional cases). Still, if SLE is in the angle larger 
than 90o, iterative process “tries” to leave the area of the wide 
angle and to move to the adjacent area (Fig. 3).  

 
 

   Location of the solution point Pi+1 “crossing” equation A 

      Location of the solution point Pi+2 “without crossing” the equations  

Fig. 3. Coordinates and solution convergence speed of the successive 
approximation solution point. 

It is important that point Pi is located above, but the 
successive solution point Pi+1 is determined below equation A, 
according to the coordinates of the calculated point acquired 
with algorithm (1)–(5). Regardless of whether the successive 
point and the preceding point are located on one side of the 
equation or on different sides, each iteration results in the 
reduction of SLE root mean square error.  

Each step of the iteration calculated with algorithm (1)–(5) is 
directed towards the solution, but is lower than the admissible. 
The technique of successive iteration step definition is needed 
for solving the SLE rooted for projections of unknowns to 
equations. 

In cases when the iterative SLE solving process occurs 
through the equation (Fig. 3), the course of its solution is not 
interrupted, but it is specified that there is a partially optimal 
determination of solution direction. It can be demonstrated that 
the location of the successive point as the arithmetic average of 
the preceding point projection to equations is not always 
optimal. It is appropriate to apply the relation  

  Pi+1(x, y) = Pi+1(xaCa + xbCb, yaCa + ybCb), (6) 

  Ca + Cb = 1.  

Coefficients Ca and Cb should be determined as the functions 
of projections da and db (Fig. 2), defining coordinate of a new 

point, the largest contribution should be made by the point with 
the highest value of projection da or db.  Evaluation and 
development of relation (6) effectiveness should consider both 
achievement and scope of calculations for the computation of 
the optimal formula (6). 

III. POINT DISPLACEMENT DETERMINATION WITH SUCCESSIVE 
ITERATION 

A.  Equation Solution Residual  
In case of a two linear equation system F1(x, y) = 0, 

F2(x, y) = 0, each solution space point is referred to numerical 
values determined for F1(x, y) and F2(x, y), which will be named 
as the residual N1(x, y), N2(x, y) (Fig. 4). For equations 
F1(x, y) = 0 and F2(x, y) = 0 the residual value is N1(x, y) = 0 
and N2(x, y) = 0, respectively. On the one side, the equation has 
a negative residual value, on another side – positive.  On the 
selected straight line, the residual changes linearly within the 
solution space. 

 
Fig. 4. Residual N1 and N2 value operators in the sectors of the calculated area.  

Equation residuals with the known direction vector can be 
applied to solving SLE.  The solving algorithm should include 
determining the approximation solution of the specified 
precision:  

− determining the successive approximation point 
(direction vector) by applying (1, 2, 3, 4, 5); 

− moving in the specified vector direction at a defined 
step, while at least one of the system residuals 
changes its operator.  

The further solution can be refined, for instance, using 
dichotomy principles. Introduction of the approach into practice 
is going slowly, as the entire residual of equations must be 
considered at each step. 

B. The Equation Squared Residual and the SLE Squared Residual 
Application of the residual can be supplemented with the 

squared residual of the equation, which is defined as the square 
of equation residual. The equation squared residual (ESR) on 
the selected line changes non-linearly, it is a squared function 
and has only non-negative values. 

The squared residual can be applied in the same way as a 
common residual, by replacing the finding of the operator 
changes with the finding of the minimal values of the squared 
residual. ESR characterises the distance from each solution 
space point to the equation (more precisely, the square of the 

Pi

Pi+2
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distance). The SLE squared residual (SLESR) is defined as the 
sum of all squared residuals of equations in the system, as is in 
case of two equations: 

  Nk(x, y) = N1(x, y)2 + N2(x, y)2. (7) 

The system squared residual (SSR) offers substantially new 
properties; this is a smooth non-negative function dependent on 
all SLE equations, which characterises all processes related to 
all equations in the system.  

In each solution space point P(x, y), SLESR characterised the 
distance from a solution space point to the SLE solution as a 
scalar value. The point of the SLE solution is Nk(x, y) = 0. On 
the straight line that passes by the SLE solution point, SLESR 
changes quadratically and achieves the minimum (not null) at 
the projection of the solution point onto the straight line 
(Fig. 5). It is possible to determine individual equation squared 
residuals on the straight line (Fig. 5). ESR value is null 
(achieves the minimum) at the point, where the straight line 
crosses the equation. SLESR and ESR minimums on the 
straight line are mutually displaced (Fig. 5)  

 
                  The system squared residual (SLESR) 

            The equation squared residual (ESR)  

Fig. 5. SLESR and ESR on the straight line in the vicinity of the SLE solution. 

 

             The system squared residual (SLESR) 

        The equation squared residual (ESR) 

Fig. 6.  SLESR and ESR on the straight line going through the SLE solution 
point. 

On the straight line that passes by the SLE solution point, 
SLESR changes quadratically and achieves the minimum (null) 
at the solution point (Fig. 6). It is also possible to determine 
individual equation squared residuals on the straight line 
(Fig. 6). ESR value is null (achieves the minimum) at the SLE 
solution point. SLESR and ESR minimum values on the line are 
not mutually displaced (Fig. 6). Applying the description of 
SLE properties given above, the SLE solution task can be 
formulated as follows.  

SLE solving is an optimization task – to find the solution 
space point of the given SLE, where SLESR is 0. 

The solving process represents accomplishment of iterative 
operations: 
− to determine the direction vector approximation to SLE 

solution point using the successive solution space point 
technique in the rooted approximation solution projection 
analysis (1)–(5); 

− to find the next SLE approximation solution using SLESR 
extrapolation (Fig. 7). 

C. Calculation of the Successive Approximation Solution Using 
SLESR Extrapolation 
If the direction of the existing approximation displacement is 

determined, the successive displacement step can be defined as 
follows (Fig. 7): 

− select three points in the certain displacement 
direction, for instance, a, b, c with the step size, one 
length, two lengths, three lengths, the length is 
determined by the (1–5) technique; 

− SLESR values Nk(a), Nk(b), Nk(c) should be 
determined at three points; 

− build a parabola in these points using the 
coordinates and SLESR values of the selected 
points; 

− in the parabola minimum point coordinates 
(function Nk derivative is equal to null), take the 
next approximation solution x. 

 
Fig. 7. Successive iteration in determination of a displacement step size. 

The process is repeated until the above specified SLESR 
value is achieved. 
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IV. APPROBATION 
The described technique has been approbated in the demo 

prototype designed for up to 4-equation SLE solving: 
− using the technique rooted in the approximation solution 

projections analysis (1)–(5); 
− using the technique rooted in the approximation solution 

projections analysis (1)–(5) supplemented with SLESR 
extrapolation. 

 
 For instance, the following equation system was solved:  

� 
 −6    8
     1    4

   1   1
−1 −1

      1    5
   −1 −1

  0     7
  2    2

� · �

𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑣𝑣
� + �

3400
4600
7800
4000

�=�
0
0
0
0

�. (8) 

Using the technique rooted in the approximation solution 
projections analysis (1)–(5), the given system was solved 
through 80 iterations and the correct solution of the system 
was found {200, 400, 600, 800} with the accuracy of 6 
significant figures (Fig. 8). 

 The solution analysis demonstrates: 
− that if the solution is based on the equation (Fig. 8), 

the behaviour of the solution convergence changes in 
certain iterations, for example, iteration 33; 

− in the beginning, solving can pass through the 
equation multiple times (Fig. 8); 

− using the technique rooted in the approximation 
solution projections analysis (1)–(5) and in case of 
SLESR extrapolation, the path of solving is 
“broken”, which is due to squared SLESR 
extrapolation.  

 
Fig. 8. Solution convergence by the technique rooted in the approximation 
solution projection analysis (1)–(5).  

Using the technique rooted in the approximation solution 
projections analysis (1)–(5) supplemented with SLESR 
extrapolation, the solving process required 4 times fewer 
iterations (Fig. 9). It was impossible to compare the efficiency 
of the solution with the classical techniques, as due to bad 
matrix it was possible to solve the system only with the given 
techniques. 

 
Fig. 9. The solution convergence using the technique rooted in the 
approximation solution projections analysis (1)–(5) and SLESR extrapolation. 

Here, using iterations, all four system unknown adjustments 
can be understood; furthermore, in order to determine the 
solution step size, algorithm (1)–(5) was used to define the 
direction of correction and three ESR calculations in order to 
find the correction value. 

The results of both techniques show that at the beginning of 
the iterative process both techniques rapidly converge, upon 
achieving the certain solution value, the speed of convergence 
decreases and in the end approaches asymptotically the SLE 
solution. It is evident that applying the technique rooted in the 
approximation solution projections analysis, solution 
convergence occurs slower than in case of application of both 
the technique rooted in approximation solution projections 
analysis (1)–(5) and SLESR extrapolation, although the solving 
process is “smoother”.  

 

 the technique rooted in the approximation solution projections analysis 
(1)–(5) 

 the technique rooted in the approximation solution projections analysis 
(1)–(5) and SLESR extrapolation 

Fig. 10. 20 first iterations of the solution process, convergence in the projection 
onto the xy plane.   
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The detailed analysis of the solving technique is given in 
Fig. 10. It is evident that using the technique rooted in the 
approximation solution projections analysis (1)–(5) and SLESR 
extrapolation, the process of convergence occurs essentially 
faster, it is obvious that with the same number of iterations the 
process has approached the solution much closer. Furthermore, 
the “broken” profile of the iterative process (snake line) does 
not affect the quality of the solution. It appeared to be 
impossible to evaluate quantitatively “the snake line” effect on 
the number of necessary iterations using the introduced 
analytical tools. In the beginning, the “passing” of the solution 
through the equation does not impact much the speed of 
convergence. At the final stage of the iterative process of 
solving, passing across the equation reduces the solving step 
size. This is why the final stage of solving needs additional 
research, concerning the development of formula (6) and 
feasibility.   

Solving multiple equations shows that SLE matrix also 
affects the time of calculations.  

V. CONCLUSION 
SLE solving technique rooted in the approximation 

projections to equations analysis practically functions, posing 
substantially fewer requirements towards the SLE matrix. 
Implementation of a certain kind of optimization algorithm lies 
at the essence of the solution. Introduction of the technique does 
not pose strict requirements towards system matrix storage. 

The first steps in the use of SLE solving technique rooted in 
the approximation solution projection analysis and 
determination of the successive iteration step size have been 
made. Implementation of the techniques into the demo 
prototype has been accomplished, which confirms the 
effectiveness of the conducted research. Enhancements to the 
technique for practical engineering purposes need further 
research. 

The results of the conducted research demonstrate: 
− the technique needs substantially more arithmetic 

operations than the widely used algorithms, although it is 
applicable to the SLE remaining beyond the capacities of 
the widely used algorithms; 

− the technique has been introduced as an optimization tool; 
− the technique does not need complex algorithms to store 

the SLE matrix; 
− the first steps in research of the techniques rooted in the 

approximation solution projections analysis have been 
made. 
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