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Abstract. This systematic literature review examines the deep learning (DL) 

models for retail sales forecast. The accuracy of a retail sales forecast is a 

prevalent force for uninterrupted business operations. Accuracy for retailers 

means limiting supply chain and storage costs, ensuring no product is out of stock, 

and facilitating smooth promotional operations. The study analyses the DL 

frameworks used in reviewed literature. Tested DL models are listed, as well as 

other machine learning and linear models used for the evaluation comparison. 

Additionally, the review presents the metrics used by the authors for the model 

evaluation. This article concludes by describing the benefits and limitations of 

DL models for sales forecasting. 
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1 Introduction 

To stay competitive retail companies must look for ways of increasing the efficiency of operations. 

For any retailer the main focus of the business is the volumes of sales, consequently having precise 

sales estimates is the cornerstone of every business. Without it, the supply chain, finance, 

marketing, or any other function in the company cannot operate without disruptions. As a result of 

underestimated sales, the product may end out of stock, marketing activities can be disrupted, and 

customers can be lost; in turn, overestimation can cause problems with the shelf life of products, 

and ultimately increase the cost of storage, products, and operations. Thus, sales forecast accuracy 

trickles down to the overall efficiency of the business. With ever-growing technological 

capabilities, it makes the most sense for retailers to look for solutions in this area.  

Artificial intelligence (AI), although it can now be found almost everywhere – in our phones, 

laptops, cars, watches – still has many unexplored and insufficiently developed applications. One 

of the most advanced technologies of AI is deep learning (DL). DL as technology has a variety of 

applications such as image recognition, speech recognition, natural language understanding, 

acoustic modeling, and prediction modeling [1].  
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This article is a piece of secondary research with the aim of identifying, evaluating, and 

interpreting currently available research regarding the usage of DL.  

The goal of this systematic literature review is to summarize the existing knowledge regarding 

retail sales forecasting using DL technology and to provide an evaluation of benefits and 

limitations of the approaches used in DL for retail sales forecasting.  

To achieve this goal the following research questions have been identified: 

RQ1. What are the DL models used for sales forecasting?  

RQ2. What metrics are used for model evaluation?  

RQ3. What are the benefits of using DL models for sales forecasting? 

RQ4. What are the challenges and limitations of using DL models for sales forecasting?  

The structure of the article is as follows. Section 2 introduces sales forecasting, the approaches 

used for estimating it, with a specific focus on DL concepts. Section 3 presents the research method 

and search strategy. Section 4 shows the process of literature search and article selection.  Section 

5 contains the data analysis and results, and Section 6 concludes the article. 

2 Background 

This section provides the background to sales forecasting and the approaches used, additionally 

giving a brief overview of DL models and metrics commonly used. 

According to Mentzer & Moon [2], a sales forecast is a “projection into the future of expected 

demand, given a stated set of environmental conditions”. In some of the earlier works, instead of 

“sales forecast”, the terms “sales prediction” or “demand forecast” have been used as synonyms 

of “sales forecasting”. The general approach of using time series historical data for estimating the 

future value of sales is the common factor in the reviewed literature, therefore, for this study, “sales 

forecasting” as an umbrella term will be applied.  

For addressing forecasting problems, different models and methods have been used. Two of the 

classical forecasting methods are Auto-Regressive Integrated Moving Average (ARIMA), 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA), where exponential smoothing 

performs statistical time series analysis. These are often used for market-level sales forecasts [3], 

[4].  

Besides the conventional methods, there are also methods based on machine learning (ML). ML 

is a subset of AI. ML algorithms rely on data and learning to reach a specific goal by extracting 

patterns from the data. Some of the ML models are Linear Regression, k-Nearest Neighbor (k-

NN), Random Forest (RF), and Support Vector Machine (SVM) [5], [6]. Artificial neural networks 

(ANN) are a specific discipline within ML. DL is an even smaller part of AI and ML. DL focuses 

on multilayer ANN and uses them as a backbone for DL algorithms [5]. Since 2006 the third 

popularity wave of ANN algorithms has started, and the term “deep learning” solidified its 

presence in the academic literature [7]. Some of the DL architectures commonly used are 

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Recurrent 

Neural Network (RNN). Schmidhuber [7] provides a comprehensive historical overview of the 

development of DL in NN. Additionally, more information on the DL models and architectures 

can be retrieved from [5] and [6]. Figure 1 describes the inclusive nature of the AI-related terms. 

 

Figure 1. Relationships between AI components  
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The ultimate goal of classification is prediction. Varied measures are used to capture the quality 

of the prediction or forecast. Mean Absolute Error (MAE) calculates the average size of the error 

that the forecast contains (see Formula 1). Additionally, the Mean Absolute Percentage Error 

(MAPE) shows the average absolute percent of how far a forecast value is off the actual sales 

(Formula 2). As it is expressed as a percentage, MAPE allows evaluation of the overall accuracy 

of the model and comparison with other models. One of the typical measures used to evaluate the 

error of a model in predicting numerical data is Root Mean Square Error (RMSE), which enables 

the comparison of the predicted value with the actual observation for different models (Formula 

3). A lower RMSE value means that the model has been able to forecast the values within a smaller 

error range and thus fits the data the best. The formulas (1–3) describe the most common metrics 

where at is the actual sales value, while ft is the value forecasted by the model.  

 

𝑀𝐴𝐸 =  
1
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Additional information on accuracy measures is available in [8]. 

Emmert-Streib et al. [1] summarized the DL architectures used for every kind of prediction 

model. Their article focuses on the theory of DL and the various ways in which it can be applied. 

Also, Fildes et al., [4] wrote about the methods and aspects of retail forecasting not, however, 

focusing on DL. To the best of our knowledge, no work so far has analyzed the literature regarding 

retail sales forecasting with the use of DL prediction models, and moreover, there is a lack of 

comprehensive analysis of DL models and their applicability in this field. 

3 Research Method 

The systematic literature review process is performed according to Kitchenham and Charters 

report [9]. Figure 2 displays the main phases of the method. 

The process starts with the research need identification. During this phase, the focus of the study 

has been selected, and relevance established. The process continues with specifying research 

questions. This step is important as it sets the framework of the research scope and findings. The 

next phase is to develop a search strategy. This serves as a roadmap for the research to find all the 

relevant literature and show the completeness, rigor, and transparency of the process. As shown in 

Figure 2, the next task is to perform the literature analysis of which the main part is data extraction 

and amalgamation. Further, we move to presenting study results followed by a discussion which 

answers the research questions set in Section 1. Lastly, we derive conclusions from the study.  

 

 

Figure 2. Main research phases according to [9] 
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3.1 Search Strategy 

The following search strategy is used for the selection of relevant studies. First, a list of keywords 

is compiled. The list consists of word groups derived from research questions, synonyms of the 

words, a preliminary review of the topic is Scopus database, and the taxonomy of IEEE.  

Identified keywords: deep learning, deep neural network, retail, purchasing prediction model, 

sales prediction, predictive models, prediction modeling, prediction methods, sales forecasting. 

Second, these keywords are used for search string development. The search string was used to 

search article titles, keywords, and abstracts. 

Search string: (Deep learning OR Deep Neural network) AND Retail AND (Purchasing 

prediction model OR sales prediction OR Predictive models OR Prediction modeling OR 

prediction methods OR sales forecasting) 

Third, the search string was used in the following digital libraries: Scopus, IEEE Explorer, ACM 

Digital Library, and Science Direct. 

Fourth, the exclusion and inclusion criteria, to which the  studies had to comply were stated :  

 

Criterion 1 Articles in the selected databases must have free access provided by Riga Technical 

University or be open/public, otherwise, the article is excluded. 

Criterion 2 Articles must be written in English. Articles written in other languages are excluded. 

Criterion 3 An article must be written after the year 2005, articles prior this year are excluded. 

The year is chosen as it gives a sufficient period for review and, around that time, 

the term “deep learning” started to gain popularity [1]. 

Criterion 4 An article must be a conference proceeding or journal article, other types of works 

like books, standards, and courses are excluded. 

Criterion 5 An article must be relevant to the topic and subject area of retail sales prediction 

using DL. 

4 Literature Search and Selection 

Figure 3 presents the literature search strategy implementation process in the selected databases 

and the criteria applied to the studies. Initially, using the search string, 137 studies were identified, 

further, with the criteria of language, publication year, and source type, 100 studies were selected 

for further examination. These 100 studies were examined based on title, abstract, and full access 

rights. In total 19 articles have been selected after applying the search strategy inclusion and 

exclusion criteria described in the previous section.  

 

 

Figure 3. Literature search process 

Use of search string 

Search in selected databases 
137 Criterion 1 

Filter Language 
136 Criterion 2 

Filter Year 
121 Criterion 3 

2005 + 

Source type 
100 Criterion 4 

Conference proceeding or journal article 

Abstract and access 
19 Criterion 5 

English 

Abstract relevant to subject, full access 

Action Criterion # of studies 
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5 Findings and Results 

The reviewed literature concerned data from different retail businesses and industries. Table 1 

displays the industries represented and the number of studies reviewed from those industries. 

Grocery, e-commerce, apparel and accessory industry, alcohol, health and beauty, and shopping 

mall sales have been forecasted by the authors. Most frequently authors used Python for the model 

implementation. Overall, the 19 studies reviewed are dating from 2016 to 2021, so it is the most 

current academic literature that has been considered. The following sections will introduce the 

analysis of the extracted data, answer the research questions, and present the results.  

Table 1. Industry prevalence in the reviewed literature 

Industry Number of articles Reference 

Alcohol retail 1 [10] 

Apparel & Accessories 2 [11], [12] 

E-commerce 3 [13]–[15] 

Grocery stores 9 [3], [16]–[23] 

Health & Beauty 2 [24] 

Not specified retail 2 [25], [26] 

Shopping Mall 1 [27] 

5.1 Prediction Models 

DL can be achieved by using many different neural network architectures. As a subset of machine 

learning, DL uses perceptron, heuristics, and it often utilizes large datasets. The most common 

architectures of DL are ANN, RNN, CNN, LSTM, and MLP. Each one is slightly different in the 

tasks it can perform and its architectural complexity [1]. 

The studies of prediction modeling used various techniques and developed additional 

frameworks based on the above-mentioned architectures. One study used the K-means algorithm 

for data clustering and LSTM architecture for the prediction model. This combination allowed the 

model to reach a high level of prediction accuracy even with limited historical data [5]. Kaneko 

and Yada [16] use a simple DL framework to predict whether the sales would increase or decrease.  

Table 2 consists of the DL models considered by reviewed articles, and machine learning or 

linear models used for the comparison. DL models are divided into two parts. The first 11 entries 

listed and marked grey in Table 2 are original frameworks or architecture adaptation proposals 

from the reviewed papers’ authors (H2O, DSF, STANet, ASFC, NN MPL, EE-CNN, EMD-G, 

EMD-MG, NN Model, AGA-LSTM, CNN-LSTM). The following 7 models have established DL 

architectures that are used to perform the analysis in a novel setting or make an extensive model 

comparison with DL, ML, and linear models, like [11], [13]. The most common DL model used 

by the authors is LSTM architecture. It is a type of RNN architecture, which is applicable to many 

uses including natural language processing, voice recognition, and, of course, predictions [1]. 
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Table 2. List of models used in reviewed studies 

 

5.2 Model Evaluation Metrics 

In the reviewed articles it is common to compare the target DL models with some other baseline 

models. For this evaluation the authors use different types of evaluation metrics. This section 

analyses the metrics used to compare the prediction models. The summary of evaluation metrics 

used in the related work is displayed in Table 3.  
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7 
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4 
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 1 1 1 1 1 1 1 1 1 1 1 7 3 2 2 2 2 1 6 6 4 2 2 1 1 1 1 1 1 1 1 4 2 1 1 1  

 
AGA-LSTM – Adaptive Genetic Algorithm LSMT; ANN – Artificial Neural Networks; AR –Autoregressive; ARIMA – Auto-Regressive 

Integrated Moving Average; ARMA – Auto-Regressive Moving Average; ASFC – Aggregate sales forecasting framework based on ConvLSTM; 

CNN+WD – Convolutional Neural Network with weights assigned; DNN – Deep Neural Network; DSF – Deep Sales Forecasting Framework; 
EE-CNN  – Entity Embedding and convolutional neural network; EMA – Exponential Moving Average; EMD-G – Empirical Mode 

Decomposition and GRU method; EMD-MG – Empirical Mode Decomposition and MLP (multi-Layer perceptron) and GRU method; GBDT – 

Gradient Boosting Decision Tree; GBM – Gradient Boosting Method; GBRT – Gradient boosting regression tree; kNN – k-Nearest Neighbor; 
LSTM – Long Short-Term Memory; LSVR – Linear Support Vector Regression; NN Model – Neural Network Model; NN MPL – Neural 

Network Multi-Layer perceptron; RF – Random Forest; RNN – Recurrent Neural Network; STANet – Structural Temporal Attention Network; 

SVM – Support Vector Machine; SVR – Support Vector Regression; XGBoost – eXtreme Gradient Boosting 
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Table 3. List of metrics used in reviewed studies 

  Metrics  
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AUC – Area Under the Curve; EMP – Expected Maximum Profit; MAD – Mean Absolute Deviation; MAE – Mean Absolute Error; MAPE – 

Mean Absolute Percentage Error; MSE – Mean Squared Error; RMSE – Root Mean Squared Error; RMSSE – Scaled Root Mean Squared Error; 
RSE – Relative Squared Error; wMAPE – Weighted Mean Absolute Percentage Error 

Accuracy* - no particular accuracy measure is denoted in the article and cannot be identified 

 

Figure 4 displays, as a percentage, how many articles used a particular metric. The most 

common metric used is RMSE; this metric has been used by almost half of the surveyed articles 

(47%, 9 articles). MAE has been used by 37% or 7 studies. The articles usually refer to 2-3 metrics 

in their analysis. Most commonly the authors use a combination of RMSE, MAE, MAPE or MSE 

to achieve the most accurate evaluation.  

 

Figure 4. Frequency of metrics 

47%
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26%
21% 21%

11%
5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%
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5.3 DL Benefits 

This section addresses the benefits that are achieved by applying deep learning to the prediction 

model. DL prediction models open new capabilities, that might not be possible to reach with 

standard models, for instance, Giri et al. [14] proposed a neural network MPL model, that by 

examining apparel features in the product picture can estimate the sales of new, previously unsold 

products. STANet framework developed by Liao et al. [26] achieves superiority in sales prediction 

accuracy by considering, not only historical sales, but also relationships among products. They 

hypothesized that a relationship among products, like being of the same brand, would play a role 

in the sales forecast. Qi et al. [13] and Chena et al. [19] similarly consider product relationships 

and promotions in their model to achieve higher accuracy. DL models allow the estimation of data 

with non-linear relationships, which is one of the biggest advantages over linear models [19]. 

However, the most important benefit is apparent from the comparative analysis of DL and other 

approaches. As displayed in Figure 5, 82% (14 articles) of the research articles that had DL model 

comparison with machine learning or linear models found that DL had superior results. Two papers 

found that other types of model had a better result, while one study did not have a conclusive 

answer, as the results varied based on metrics.  

 

Figure 5. DL model result vs comparison models 

5.4 DL Limitations 

This section considers the challenges and limitations of using DL models for sales predictive 

modeling. Some specific limitations can be mentioned for each of the reviewed approaches. For 

instance, the Kaneko and Yada [16] model was able to predict increase or decrease, but not the 

actual sales figure. However, this also means that their model was simple and easy to implement. 

For more complex problems, the DL models do become extensively complex to implement and 

understand. DL models are the so-called black-box solution; thus, their decision-making process 

is not traceable, and the approach would not be applicable if knowledge extraction and outcome 

explanation is required [19]. Additionally, similarly to non-neural network ML models, DL models 

may also be subject to biases, overfitting (the model being trained too close to given data) or 

underfitting (model not suitable for generalization and not being able to model the data) [5]. That 

is the reason why so many DL algorithms are still being developed, evaluated, and tested. Thus, 

although the potential of DL models is there, the limitations cannot be ignored. 

Superior; 14; 
82%

Inferiour result; 
2; 12%

Not conclusive; 
1; 6%
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6 Conclusions 

This study is a summary of sales forecast models using DL. Based on the article reviews performed 

in this study, it is possible to see that varied models and evaluation metrics have been applied to 

the grocery store, e-commerce, apparel and accessory, health and beauty store, shopping mall, and 

alcohol sales forecasts. The DL architectures, used most commonly for sales forecast, are LSTM, 

DNN, and MPL. However, other authors choose to develop their own frameworks (11 cases were 

found). For grocery store sales forecasting, in 4 out of 9 applications, LSTM was chosen, while 4 

out of 9 applications used novel frameworks. For the evaluation of the models, the authors of 

reviewed articles have compared DL applications with non-neural network ML algorithms and 

linear models. Grocery store forecast comparison is most commonly done with the linear 

Regression model (4 instances), SVM (4 instances), and ARIMA (3 instances). For other 

industries, the data pool is too small to draw any tendencies regarding the most prevalent models 

for sales forecasting. The most often used metrics for evaluation are RMSE, MAE, and MAPE; 

however other metrics are accepted and used as well. The most frequently used combination of 

metrics is RMSE and MAE (5 instances). In some of the studies, the particular accuracy measure 

used was not denoted and could not be identified thus pointing to the lack of consistent and 

repeatable research methodology of these studies. Application of DL frameworks proves to 

provide superior sales forecast methods and allows for capabilities not possible with other 

methods; however, most often, they are complex solutions and are harder to implement than other 

ML or linear models. Additional research for improving the models and broadening the application 

areas is needed and it is clear that DL architectures are still developing, and we can expect to see 

more works using DL in the near future. This research can serve as a basis for further development 

of retail sales prediction models, taking into consideration the findings, strengths, and weaknesses 

of up-to-date solutions using DL, other ML, and linear models.  
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