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Abstract: In this research, we focused on testing the physical and mechanical properties of the devel-
oped polyacrylonitrile (PAN) composite nanofibers with succinite (Baltic amber) and SiO2 particles
using standard methods of nanofiber testing (physical and mechanical properties). Polyacrylonitrile
composite nanofibers (based on the electrospinning method) were coated on an aluminum substrate
for structural investigation. SEM was used to determine the average fiber diameter and standard
deviation. The mechanical properties of the fibers were determined using a universal testing ma-
chine (NANO, MTS). We observed that constant or decreased levels of crystallinity in the ultrafine
composite nanofibers led to the preservation of high levels of strain at failure and that the strength
of nanofibers increased substantially as their diameter reduced. Improvements in PAN composite
nanofibers with succinite and SiO2 nanopowder are feasible with continuous decreases in diameter.
The drastically decreased strain at failure demonstrated a substantial reduction in viscosity (tough-
ness) of the annealed nanofibers. Large stresses at failure in the as-spun nanofibers were a result of
their low crystallinity. As a result, decreasing the diameter of PAN nanofibers from approximately
2 micrometers to 139 nanometers (the smallest nanofiber tested) resulted in instantaneous increases
in the elastic modulus from 1 to 26 GPa, true strength from 100 to 1750 MPa, and toughness from 20
to 604 MPa.

Keywords: succinite and SiO2 nanoparticles; strength of nanofibers; nanofiber composite

1. Introduction

In the past, one of the main engineering challenges was the development, intro-
duction, and mass production of efficient materials in all industrial areas. Different fiber-
reinforcement options are used in various fields [1–5], including the use of various materials
and technologies [6–9]. Due to its superior physical characteristics, such as low density,
thermal constancy, high strength, and modulus of elasticity, polyacrylonitrile (PAN) is a
commercially important semicrystalline polymer [10,11]. The fabrication of PAN compos-
ites, also known as polymer nanocomposites (PNCs), is a relatively new area of study that
has the potential to considerably enhance the mechanical characteristics of PAN. PAN,
a typical material for electrospinning, is carbonized with various organic nanoparticles.
Alternatively, inorganic components, such as MgO or ZnO, may be included [12].
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PAN is often used in a two-step procedure to create carbon nanofibers. In particular,
nanographite-filled polymers can be used to create conductive areas on textile fabrics. Most
commonly, polyurethane is used for this purpose. Graphite-filled polyacrylonitrile has the
advantage of not requiring toxic precursors, which is not true of polyurethane. Generally,
such PAN/graphite coatings can be applied to textile fabrics. Additionally, PAN is one
of the few nontoxic, solvent-spun, water-resistant polymers [13]. In general, nanofillers,
such as nanoclays (layered silicates), are characterized as having at least one dimension
in the range of 1–100 nm. Due to their nanoscale size, high specific surface area, and
related preponderance of interfaces, trace quantities of nanofillers (usually 1–4 vol %) are
capable of substantially altering the structure and morphology of PNCs at the molecular
level [14,15]. This implies that they can influence material characteristics at a scale at which
conventional micron-sized fillers cannot. The resultant PNCs have property profiles that are
suitable for a broad variety of industrial applications, including high stiffness, chemical and
heat resistance, dimensional stability, decreased water absorption, and enhanced electric
and optical characteristics [16,17]. The purpose of nanofillers in structural applications
is to improve the stiffness of the polymer matrix while increasing the toughness through
novel energy-dissipation processes [18,19]. As a result, developing PNCs with an optimal
balance of characteristics requires a high degree of connection between processing and
morphological and micromechanical control. Nanofillers often agglomerate inside the
polymer matrix. Due to their high agglomeration propensity, their capacity to bind with
the matrix is substantially reduced, lowering the effective aspect ratio of the reinforcement.
Furthermore, when an external load is applied, stresses easily concentrate around such
agglomerates, resulting in the system failing prematurely. Electrospinning has been used
as a substitute method to combat the agglomeration propensity of nanofillers [20–22].
Electrospinning results in a homogenous dispersion of nanofillers, such as layered silicates,
carbon nanotubes, and many others, inside the fibers, as well as a dramatic reduction in the
fiber diameter to several tens of nanometers. The resultant nanofibers are continuous and
therefore have a high aspect ratio, as well as a high specific surface area, which strongly
interacts with the environment, especially exposure to ultraviolet radiation.

In the scientific literature, no approach has been applied to combine succinite and
silicon oxide nanoparticles with PAN to prepare an ultraviolet (UV)-resistant and protective
material. Polyacrylonitrile fibers are UV-resistant [23]. Succinite particles (0.8–3 µm)
were able to defend against UV-C in a 100–280 nm area [24], and silicon oxide particles
(200–400 nm) were able to defend against UV-B in a 280–315 nm area [25].

In this research, we tested the physical and mechanical properties of the resulting PAN
nanofibers with succinate and silicon oxide nanoparticles.

2. Materials and Methods
2.1. Materials and Fiber Fabrication

Succinite and silicon dioxide nanoparticles were used to prepare PAN composite
nanofibers. Succinite (Baltic amber) powder (JLU Technologies Ltd., Riga, Latvia (LV1082);
CAS: 9000-02-6) of 105–188 µm was ground to a particle size of 5 ± 1 nm. SiO2 nanoparti-
cles (Sigma-Aldrich chemicals, Merck KGaA, Darmstadt, (64287) Germany; CAS Number:
7631-86-9) of 5 ± 0.5 nm were employed in the solution by stirring at ambient conditions
for 2 h (room temperature = 22 ± 1 ◦C; moisture content, 60%). The solvent was used
for the production of PAN composite nanofibers from 16-20 wt % solution of the PAN
polymer at ambient conditions (Pfaltz and Bauer, Inc., Waterbury, (CT06708), USA; cat#
P21470, MW 150,000) in dimethylformamide (DMF) (Sigma-Aldrich, Merck KGaA, Darm-
stadt, (64287) Germany; cat# 271012). Then, the suspension was maintained in a Branson
1800 Series ultrasonic bath (Fisher Scientific Company, LLC; Cpx1800h Digital Ultrasonic
Bath, Danbury, (CT06811), USA) for 5 h to grind microparticles into a nanostructure. PAN
nanofibers containing 3% wt/wt succinite and 1% wt/wt SiO2 nanoparticles were elec-
trospun (Fisherbrand™ Single Syringe Pump, a needle-based electrospinning machine,
Danbury, (CT06811), USA) with a spinning-chamber temperature of 22 ± 1 ◦C and 36%
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relative humidity using a 20 Ga needle from the 16–20 wt % solution of the polymer. The
PAN composite nanofibers were gathered on a stationery collector. The applied voltage was
10,000 to 12,000 volts, with a resulting current of ~0.1 mA, a carriage speed of 110 mm/s,
and a distance between the spinneret needle (electrospinning device) and target (covered by
aluminum foil; thickness, 35 µm; Vireo.de, Merseburg, (06217) Germany) of 20 cm. The di-
ameters of the fibers were changed by changing the voltage and PAN concentration. Similar
electrospinning settings were used to produce as-spun and annealed fibers. Annealing was
carried out for 1 h at 130 and 180 ◦C in air in order to avoid overoxidation, with a heating
rate of up to 5 ◦C/min2 (forced-air oven, SKU F019140, Cornelius, (OR97113), USA).

2.2. Preparation of Specimens and Mechanical Testing

The mechanical properties of individual PAN composite nanofibers were determined
using a universal testing machine (NANO) at a constant strain rate of 0.005 s−1. Electrospun
PAN composite nanofibers with a length of 3 ± 1 cm were created using a split electrode.
A wire fork was used to pick up individual fibers. A 7 ± 4 mm piece of the PAN composite
nanofiber (the gauge length used in this research) was bonded to special carton grips using
an epoxy adhesive and transferred for mechanical testing on a universal testing machine
(NANO, New York, (NY10027), USA). A segment of adjacent nanofiber was investigated
to determine its morphology and diameter with a Hitachi High-Tech TM Series TM3030
Plus scanning electron microscope (The Netherlands) using ImageJ software (software
version 1.53e, 2021, National Institutes of Health, Bethesda, MD, USA). To determine its
mechanical characteristics, the diameter was measured in at least three spots along the
body of the nanofiber. This measurement was required in order to calculate the diameter of
nanofiber distribution by number and volume. As-spun fibers were elastoplastic, exhibiting
significant deformations until failure. We converted measured load and displacement
fluctuations to engineering and real stresses and strains; the resulting stress–strain graphs
are presented in subchapter Results. True stress and strain are often employed to explain the
behavior of composite polymer materials when subjected to significant deformations. From
the resulting stress–strain diagrams, the modulus, strain at failure, failure stress (strength),
and toughness (area under the curve) of the PAN nanofiber were determined. Modulus
and toughness were calculated using stress–strain diagrams from engineering stress. A
total of 152 tests were performed on the as-spun nanofibers, and 124 and 150 tests were
performed on the nanofibers annealed at 130 and 180 ◦C, respectively. In total, 426 tests
were performed on the nanofibers.

2.3. Structural Investigation

PAN composite nanofiber mats were electrospun on an aluminum substrate for struc-
tural investigation. Optical images of the PAN composite nanofiber mats, including those
annealed at 130 and 180 ◦C, are shown in Figure 1. SEM was used to determine the average
diameter of the PAN composite nanofibers as well as standard deviation. At least 200 PAN
composite nanofibers from multiple locations were evaluated for each examined sample.
A wide-angle X-ray diffraction study of the PAN composite nanofibers was carried out
using a Rigaku Multiflex X-ray diffractometer with Cu Kα radiation and a wavelength
between 10 and 50 degrees. After removing the background, the crystalline peak (or peaks
in the case of annealed samples), and amorphous halo were fitted using Lorentzian peak
morphologies, as shown in Figure 2. For each nanofiber family, at least three samples with
varying average nanofiber sizes were examined (i.e., as-spun nanofibers and nanofibers
annealed at 130 and 180 ◦C; optical images are shown in Figure 1).
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The color of the nanofiber mat darkened with increasing temperature as a result of 
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cations, changes in color are used as a qualitative indicator of the progression of the sta-
bilization process [26]. 

The XRD spectra of composite nanofibers annealed at 130 and 180 °C were qualita-
tively comparable. 

 
Figure 2. Schematic illustrating XRD spectra analysis for (A,B) as-spun and (C,D) annealed com-
posite nanofiber specimens. 

The crystallinity of the XRD patterns was determined by dividing the area under the 
crystalline peaks by the total area beneath the curve as follows: %crystalinity = 𝐴 𝐴𝐴 𝐴 𝐴 ∙ 100 (1) 

The coherence length from the width of the primary crystalline peak was estimated 
using the Scherer equation as follows: 

Figure 1. Optical images of 16% electrospun PAN composite nanofiber mat heated to different
temperatures in air: (a) as spun; (b) annealed at 130 ◦C for 1 h; (c) annealed at 180 ◦C for 1 h.
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Figure 2. Schematic illustrating XRD spectra analysis for (A,B) as-spun and (C,D) annealed composite
nanofiber specimens.

The color of the nanofiber mat darkened with increasing temperature as a result of the
different mixtures of the structures produced during stabilization. In industrial applications,
changes in color are used as a qualitative indicator of the progression of the stabilization
process [26].

The XRD spectra of composite nanofibers annealed at 130 and 180 ◦C were qualita-
tively comparable.

The crystallinity of the XRD patterns was determined by dividing the area under the
crystalline peaks by the total area beneath the curve as follows:

%crystalinity =
Ac1 + Ac2

Ac1 + Ac2 + Ac3
·100 (1)



Textiles 2022, 2 166

The coherence length from the width of the primary crystalline peak was estimated
using the Scherer equation as follows:

C.L.
(

Å
)
=

Kλ

βcosθ
=

0.9·1.542√
(FWHM(Rad)2 − 0.0022) cos θ

(2)

where the form factor was set to 0.9, the wavelength λ (standard) for a copper (Cu) source
was 0.002, the instrumental peak widening was estimated using a single-crystal Si stan-dard,
and the Bragg angle for the crystalline peak was 2θ~17◦.

3. Results

The stress–strain graphs of typical as-spun composite nanofibers with various diame-
ters are illustrated in Figure 3E. As the nanofiber diameter decreased, modulus and ultimate
strength increased, whereas strain at failure remained relatively unaffected by the diameter.
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ter, particularly for strain at failure (the most defect-sensitive experimental parameter in 
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of strain at failure, with decreasing composite nanofiber diameter are clearly visible in 
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Figure 3. Effects of PAN composite nanofiber (with succinite and SiO2 nanopowder) diameter and
annealing on crystallinity and mechanical behavior. Wide-angle X-ray diffractograms for (A) as-spun
and (B) annealed composite nanofiber mats with different average fiber diameters (XRD spectra for
composite nanofibers annealed at 130 and 180 ◦C were qualitatively similar); variations in (C) XRD
crystallinity and (D) coherence length as functions of average fiber diameter; representative stress–
strain diagrams for (E) individual as-spun and (F) annealed PAN composite nanofibers (with succinite
and SiO2 nanopowder) of different diameters. The same strain scale is used in panels (E,F) for easier
comparison and evaluation of annealing effects.

The experimental scatter in mechanical studies of individual composite nanofibers
reported to date has been quite high. This is typical in fiber research and is particularly
true in the case of experimental fibers. The number of individual fiber specimens tested in
this study (sample size) is the largest reported to date. Despite large experimental scatter,
particularly for strain at failure (the most defect-sensitive experimental parameter in this
study), the trends of increasing modulus and strength, as well as relative insensitivity
of strain at failure, with decreasing composite nanofiber diameter are clearly visible in
Figure 2A–C. These trends led to a remarkable increase in toughness, as shown in Figure 2D.
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The observed improvements in elastic modulus and, to a lesser extent, strength may
be ascribed to the improved macromolecular orientation of nanofibers; other mechanisms
may also affect strength, such as reduced concentration, size of defects, and increased
defect insensitivity with confinement. Extensive evidence of macromolecular orientation
in electrospun PAN composite nanofibers has been reported [27–31]. The majority of
researchers used bunches of nanofibers with large diameters (thousands of nanometers).
Alignment further decreases diameter to the sub-200 nm range, which has shown the
highest performance in this and other mechanical studies.

An enhanced macromolecular orientation, usually obtained via drawing, leads to
increased crystallinity in traditional polymer fibers and films. Drawing PAN sheets was
found to cause the amorphous halo to vanish in XRD diffractograms [32]; the XRD spectra of
PAN material and undrawn cast film closely resembled the spectra obtained in the current
study (Figure 2A,B). X-ray analysis of PAN composite nanofibers (with succinite and
SiO2 nanopowder) with different diameters demonstrated that the crystallinity of as-spun
nanofibers did not increase with decreasing nanofiber diameter but was reduced, resulting
in finer diameters (Figure 3C). Others reported low crystallinity in electrospun nanofibers,
often ascribed to rapid solvent evaporation from electrospun jets, resulting in quick jet
solidification. PAN/DMF jets were recently subjected to theoretical study [33], which
confirmed ultrafast solvent evaporation from sub-micrometer jets, supporting the possible
link between solvent evaporation and low crystallinity. Another possible mechanism is a
high concentration of polymer macromolecules located near the fiber surface. Although
most surface and confinement effects reported for polymer films were not observed in
films thicker than 30–40 nanometers, the effects may be more severe in nanofibers due to
the two-dimensional nature of their confinement. Thus, we hypothesized that constant or
reduced levels of crystallinity in ultrafine nanofibers lead to the preservation of high levels
of strain at failure when nanofiber strength increases significantly with decreasing diameter.

Individual nanofibers are difficult to analyze due to the low sensitivity of most an-
alytical techniques, as well as polymer radiation damage. TEM analysis of the ultrafine
nanofibers failed to show any crystallinity. This result is similar to that of an HRTEM analy-
sis of PAN nanofibers performed in [34]. Crystallinity was also lacking in as-electrospun
nanofibers analyzed by a synchrotron wide-angle X-ray diffractometer at room temper-
ature [35]. These results do not necessarily contradict those of the XRD analysis in the
present study. XRD analysis was carried out on PAN composite nanofibers with wide
diameter distributions, as shown in Figure 3 (panel A). We found a substantial decrease
in the average crystallinity of as-spun nanofibers with decreasing average diameter of
the nanofibers (Figure 3C). As the mat findings are dominated by the largest fibers in
the existing sample, the crystallinity of the smallest PAN composite nanofibers may be
considerably lower than the average value obtained for nanofiber mats. To further elucidate
the role of crystallinity in the mechanical properties of composite nanofibers, we attempted
to change crystallinity by annealing. Annealing is often used to improve crystallinity and
attain the perfection of quickly solidified polymers. Two annealing temperatures were
chosen to investigate the range between the glass transition temperature of polyacryloni-
trile (90–120 ◦C) and the oxidation temperature. In [34], a considerable increase in the
rate of crystal formation above 100 ◦C was observed for PAN nanofibers produced from a
polymer with a molecular weight comparable to that used in our research. Polyacrylonitrile
oxidation, a critical step in the conversion of polyacrylonitrile precursors to carbon, is
typically carried out between 200 and 300 ◦C. The two annealing temperatures selected
were 130 and 180 ◦C. Wide-angle X-ray examination of the annealed composite nanofibers
verified the rises in crystallinity and crystal size throughout the range of diameters of the
composite nanofiber (Figure 3B–D). Similar to unspun composite nanofibers, the degree of
crystallinity of annealed samples dropped as the average diameter decreased. This may
have occurred because of the initial structure of nanofibers with varying diameters (see
data for as-spun nanofibers with varying diameters) or to the ongoing confinement effect.
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Mechanical tests of individual annealed composite nanofibers revealed a substantial in-
crease in nanofiber modulus, compared with that in as-spun nanofibers of comparable sizes.
Strength values were comparable or slightly higher. However, the failure strain of compos-
ite nanofibers substantially decreased. The stresses at failure, shown in Figures 2C and 3F,
were within the range of strains seen in commercial polymer fibers, such as polyester,
polyamide 6, nylon 66, and Nomex. Annealed PAN nanofibers (with succinite and SiO2
nanoparticles) retained a significant size effect in modulus but a somewhat lesser effect in
strength. The highest recorded strength values of annealed PAN nanofibers were below
the highest values for as-spun nanofibers. However, the smallest diameters of annealed
composite nanofibers in the current study were slightly larger than those of the finest
as-spun nanofibers, so further improvements are possible with further reduced diameter.
The sharply reduced strain at failure led to a significant drop in the toughness of annealed
composite nanofibers (Figure 2D). This corresponds with the enhanced crystallinity found
in these nanofibers and offers further evidence of our theory that high stresses at failure
occur in as-spun nanofibers as a result of their low crystallinity.

We investigated whether a correlation exists between strength and toughness as the
diameter of composite nanofibers decreases. The respective parameters from the same
tests are plotted in Figure 4 for each of the tested nanofiber families (multiple data points
overlap in these graphs, particularly for the as-spun composite nanofibers in panel A; all
tested specimens are represented in this figure). A strong, nearly linear correlation was
observed for as-spun composite nanofibers (panel A). A weaker correlation was sometimes
present for annealed composite nanofibers (panels B and C), albeit with a much higher
slope (higher strength values at lower toughness), as shown in Figure 5, in which the data
are combined for easier comparison.
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Figure 4. Correlation of strength and toughness for (A) as-spun PAN composite nanofibers (with
succinite and SiO2 nanopowder) and composite nanofibers annealed at (B) 130 ◦C and (C) 180 ◦C.

Correlations may be explained in terms of normal material behavior. The majority of
structural materials have a trade-off between strength and toughness, which means that
high strength is often obtained at the expense of low toughness and vice versa (Figure 5,
gray area). The majority of processing methods that increase the strength of initially ductile
materials, such as metals or semicrystalline polymers, cause material characteristics to shift
from the bottom-right to the top-left corner of the figure.

This is true for both established techniques, such as drawing polymers and metals,
and for novel ones, such as metal nanostructuring. Additionally, high-performance fibers
follow this pattern, demonstrating high tensile strength and low viscosity (toughness)
(Figure 2, panel D). The goal is to reach the top-right corner of the figure for safety-critical
applications requiring both high strength and fracture resistance. The proven ability of
electrospun nanofibers to move toward the top-right corner as their diameter decreases is
unique and promising.
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(Figure 2, panel D). The goal is to reach the top-right corner of the figure for safety-critical 
applications requiring both high strength and fracture resistance. The proven ability of 
electrospun nanofibers to move toward the top-right corner as their diameter decreases is 
unique and promising. 
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The strength of the majority of fibrous materials increases as their diameter de-

creases. The discovery of the diameter-dependent strength of glass fibers prompted the 
invention of modern fracture. However, these gains in strength are often modest, and 
toughness normally does not increase but can decrease, as in the case of polymer fibers. 
In this study, decreasing the diameter of PAN composite nanofibers (containing succinite 
and SiO2 nanoparticles) from approximately 2 micrometers to 139 nanometers (the small-
est nanofiber tested) resulted in simultaneous increases in elastic modulus from 1 to 26 
GPa, true strength from 100 to 750 MPa, and toughness from 20 to 604 MPa. Preferred 
nanofibers exhibit properties that far exceed those of commercial PAN fibers and outper-
form, in terms of strength and modulus, the majority of commercial polymer textile fibers 
[37], exhibiting a 6–10-fold increase in toughness. The highest strength ever reported for 
PAN nanofibers is comparable to that ever documented for silk fiber [28,38,39], with three 
times higher toughness. Finally, the most favorable properties of as-spun PAN composite 
nanofiber compare favorably with those of most novel carbon nanotube (CNT) fibers cur-
rently under development (thinnest yarn properties, approaching the highest published 
values of CNT fiber toughness) [36,40–44]. Although annealed composite nanofibers have 
lower toughness than as-spun PAN composite nanofibers, their strain at failure does not 
seem to diminish with reduced diameter, resulting in a steeper but still positive connec-
tion between toughness and strength (Figure 5). As a consequence, altering the crystallin-
ity of nanofibers through annealing or other techniques may be used to modify and fine-
tune nanofiber characteristics and expand the coverage of material design space. We em-
phasize that the observed reduction in the material of polymer crystallinity with de-
creased PAN nanofiber diameter may not be universal. The crystallization process of 

Figure 5. Correlations of normal materials behavior, the structural materials have a trade-off between
strength and toughness; (A) correlation between toughness and strength compared to as-spun PAN
composite nanofibers and annealed composite nanofibers, high strength is often obtained at the
expense of low toughness and vice versa, gray area; (B) comparison of the strength and energy
required for failure of PAN composite nanofibers used in this research (test report) with selected
materials [36].

4. Discussion

The strength of the majority of fibrous materials increases as their diameter decreases.
The discovery of the diameter-dependent strength of glass fibers prompted the invention
of modern fracture. However, these gains in strength are often modest, and toughness
normally does not increase but can decrease, as in the case of polymer fibers. In this
study, decreasing the diameter of PAN composite nanofibers (containing succinite and
SiO2 nanoparticles) from approximately 2 micrometers to 139 nanometers (the smallest
nanofiber tested) resulted in simultaneous increases in elastic modulus from 1 to 26 GPa,
true strength from 100 to 750 MPa, and toughness from 20 to 604 MPa. Preferred nanofibers
exhibit properties that far exceed those of commercial PAN fibers and outperform, in terms
of strength and modulus, the majority of commercial polymer textile fibers [37], exhibiting
a 6–10-fold increase in toughness. The highest strength ever reported for PAN nanofibers
is comparable to that ever documented for silk fiber [28,38,39], with three times higher
toughness. Finally, the most favorable properties of as-spun PAN composite nanofiber
compare favorably with those of most novel carbon nanotube (CNT) fibers currently
under development (thinnest yarn properties, approaching the highest published values
of CNT fiber toughness) [36,40–44]. Although annealed composite nanofibers have lower
toughness than as-spun PAN composite nanofibers, their strain at failure does not seem
to diminish with reduced diameter, resulting in a steeper but still positive connection
between toughness and strength (Figure 5). As a consequence, altering the crystallinity
of nanofibers through annealing or other techniques may be used to modify and finetune
nanofiber characteristics and expand the coverage of material design space. We emphasize
that the observed reduction in the material of polymer crystallinity with decreased PAN
nanofiber diameter may not be universal. The crystallization process of polymer materials
is complicated and highly dependent on macromolecular structure, the solvent used, and a
variety of other factors.

Peculiarities of crystallization during electrospinning are yet to be studied. Jung and
Sodano [38] and summary in Table 1 reported increases in crystallinity of the polymer
material as the diameter decreased. Low or decreasing strain to failure was also reported in
this study.
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Table 1. Reported size effects in individual electrospun polymer nanofibers.

Polymer Diameter
Range, nm

Property Change with Diameter Decrease Structure

Modulus (E) Strength (σ) Failure Strain (ε) Orientation Crystallinity

PLLA [45] 270–420 Increased slightly - - - -

PCL [46] 250–1300
Increased
significantly for
diameters
<500 nm

Increased
significantly for
diameters
<500 nm

Size effect not
reported, but failure
strain decreased with
increasing
crystallinity

Increased
significantly with
diameter decrease

Increased from
50–56% (XRD) with
average diameter
decrease

PCL [47] 350–2500

Increased slightly,
faster for
diameters
<700 nm

Increased slightly,
faster for
diameters
<700 nm

Limited data, but
failure strain reported
to decrease for
diameters
<700 nm

Increased with
diameter decrease

Increased gradually
from 42–50% (XRD)
with average
diameter decrease

Nylon 6,6 [48] 400–900

Increased
significantly for
diameters
<600 nm

- - Increased
gradually with
average
diameter decrease

Increased gradually
from 35–47% (XRD)
with average
diameter decrease

PA6(3)T [49] 170–3500
Increased for
diameters
<500 nm

Yield strength
increased for
diameters
<1000 nm

Decreased
significantly with
decrease in
diameter (based on
reported stress–
strain diagrams)

Increased
significantly with
average diameter
decrease <1000 nm
(polarized FTIR)

Amorphous

PCL [50]
and PCLEEP

200/300–5000
Increased
considerably for
diameters
<700 nm

Increased
dramatically
for diameters
<700 nm

Large strains to
failure; unaffected
by diameter

- No measurable
change in XRD
crystallinity
(bundles)

PA
MPS [51]

55–250
Increased significantly;
faster for diameters
<70 nm

- - - -

PAN [52] 200–700

Increased
significantly,
especially for longer
spinning distance
(increased
crystallinity,
orientation)

Yield strength
increased significantly

Very large ultimate
strain reported to
depend weakly on
fiber dia-meter;
stress–strain diagram
for a 250 nm fiber
exhibited 150% strain

Increased
significantly with
increase in
spinning distance
(decrease in
average diameter)

Low overall
crystallinity,
increased slightly
with increase in
spinning distance
(decrease in
average diameter)

PAN [53] 140–3000

Increased
considerably
for diameters
<500 nm

Increased
dramatically
for diameters
<500 nm

- - -

The nanofiber diameter threshold at which nanofibers show a substantial increase in
mechanical characteristics (~500 nm) corresponds to the maximum diameter of natural
filaments, such as collagen fibrils (50–500 nm). Natural polymer fibers are widespread
in biological organs, materials, and tissues, to which their higher toughness is often at-
tributed [54].

5. Conclusions

Improvements in PAN composite nanofibers (with succinite and SiO2 nanopowder)
are possible with further reduced diameter. A sharply reduced strain at failure led to a
significant reduction in the toughness of annealed composite nanofibers. The high failure
stresses in as-spun PAN composite nanofibers are a result of their low crystallinity. In this
research, decreasing the diameter of PAN composite nanofibers from about 2 micrometers
to 139 nanometers (the smallest nanofiber tested) resulted in simultaneous increases in
elastic modulus from 1 to 26 GPa, actual strength from 100 to 1750 MPa, and toughness from
20 to 604 MPa. Nanofibers with the most favorable characteristics reported outperform
both commercial PAN fibers in terms of strength and modulus as well as the majority
of commercial polymer textile fibers (as mentioned above in the Discussion Section) in
terms of toughness by a factor of 6–10. The highest recorded strength of PAN composite
nanofibers is comparable to that of silk fiber, with three times higher viscosity (toughness).
The most favorable properties of as-spun PAN composite nanofiber compare favorably
with those of most novel carbon nanotube (CNT) fibers currently under development and
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are close to the highest published values of CNT fiber toughness. The diameter of PAN
composite nanofibers (with succinite and SiO2 nanopowder) is in the 200 nm range, which
showed the highest performance in our mechanical studies.
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