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ANNOTATION

The main objective of the Doctoral Thesis is to develop a new solution for the Earth gravity field
determination based on spherical-cap-harmonic modelling, using both digital-zenith camera and
gravimetric measurements’ hybrid data. In first instance digital zenith cameras provide astronomic
coordinates (@, A)ast as information to the true gravity potential W of the Earth, in analogy to
gravity values (9). (&, 4)ast give the direction vector in the observation point P of the true potential,
and often called the geometrical information, while g is called physical information on W. Digital
zenith camera is a new kind of astrogeodetic instruments, employing recent advancements in
several technology areas (GNSS positioning, digital imaging, extensive and accurate astrometric
reference star catalogues, and high resolution electronic tiltmeter technology) to obtain direct
measurements of vertical direction (&, 4) and derived vertical deflection (& #) values. Over
several years Institute of Geodesy and Geoinformatics (GGI) was engaged in design of the digital
zenith camera. Presently the camera and data acquisition control and processing software are
finished, and field measurements are actively done now. The intention is to use vertical deflection
measurements along with GNSS/levelling and gravity data to improve a local gravity field and
thus a local quasi-geoid model computation including both physical and geometrical data.

The method of Digital Finite Element Height Reference Surface software (DFHRS) is applied for
this purpose, allowing the use of both physical observations and geometrical observation types.
Main aspect is concerning the implementation of Spherical Cap Harmonics (SCH) modelling to
local model of the potential, developing a general parameterization of gravity field related
coefficients for a least squares’ estimation. Terrestrial gravity measurements, deflections of
vertical, height fitting points with known ellipsoidal and normal heights, and the use of the
available global gravity models as additional observations will be used for quasi-geoid model
determination. One of the aims is regarding the computation of a high precise local potential model
W with the ability to derive all components related to the potential W. These observation
components are gravity g, quasi-geoid height ¢, the geoid height N, deflections of the vertical in
the east and north direction (), &), the fitting points (A ,¢, h | H) and apriori information in terms
of coefficients of a local potential model derived from the developed methods of a mapping of a
global one. There are different types of Spherical Cap Harmonics, such as: Adjusted Spherical Cap
Harmonics (ASCH), Translated-Origin Spherical Cap Harmonics (TOSCH) and the Revised



Spherical Cap Harmonics (RSCH) and the ASCH is chosen for the local gravitational potential
modelling. The Spherical Cap Harmonics modelling encounters problems on the boundary,
requiring application of the solution using an oversizing of the cap area with respect to the area of
interest, but due to a lack of data near the borders, this is complicated task that still exist and should
be investigated and solved.

The first chapter provides the fundamental theory of Earth gravity potential and quasi-geoid
modelling, including the types of gravity data and methods of its processing and adjustment using
both standard Least Squares and Robust estimation techniques. The height systems are described,
and its physical differences are explained.

The second part introduces the development of Digital Zenith Camera at the Institute of Geodesy
and Geoinformatics (GGI), the basic principle of vertical deflection determination, as well as its
construction, measurement technique and data postprocessing is widely described in this chapter
including all stages of data processing.

In the third chapter the principles of quasi-geoid determination are introduced, starting from
DFHRS method and its stages of development and finishing with collocation method.

The fourth chapter concerns spherical harmonics and global gravity modelling, introducing
spherical cap harmonic modelling and one of its methods — Adjusted Spherical Cap Harmonics
modelling. The next part of this chapter concerns the basic principle of development of global
gravity models and its techniques.

The fifth chapter introduces the results and analysis of quasi-geoid of Latvia based on new solution,
where both vertical deflection data and gravity data are used. The summary results and conclusions
of the fulfilled thesis are also discussed in this chapter.

The Thesis includes 39 figures, 127 formulas, and 7 tables. The total amount of PhD Thesis is 104
pages.



ANOTACIJA

Promocijas darba meérkis ir izstradat jauno risindjumu Zemes gravitacijas lauka noteikSanai,
balstoties uz sfeérisko-segmenta harmoniku (SSH) modelésanas iesp&jam izmantojot
gravimetriskos un digitalas zenitkameras hibrid-datus. Vertikales nolieCu vértibas, kuras izraisa
gravitacijas lauka anomalijas, tiek aprékinatas izmantojot digitalas zenitkameras meérfjumus.
Digitala zenitkamera ir jaunas paaudzes astrogeodéziskais instruments, kur§ apvieno jaunakas
tendences no dazam tehnologiju jomam — GNSS pozicioné$ana, digitala attéla veidoSana,
paplasinatie un augstakas precizitates astrometriskie zvaigznu katalogi, un augstakas izskirtsp&jas
elektroniska ITmenraza tehnologija, lauj aprékinat vertikales nolie¢u veértibas. Geodézijas un
geoinformatikas institiits pie digitalas zenitkameras izstrades stradaja vairakus gadus. Sobrid
instruments un datu apstrades programmatiira ir gatava un lauka merijumi tiek veikti visa Latvijas
teritorija. Vertikales nolieces kopa ar GNSS/nivel€Sanas datiem un gravimetriskiem mérijjumiem
tiek izmantotas kvazi-geoida precizitates uzlabo$anai, apvienojot gan fiziskos, gan geometriskos

datus.

Digitalas galigo elementu augstumu atbalsta virsmas programmatira (DFHRS — Digital Finite
Element Height Reference Surface) tiek izmantota §im noliikam, laujot izmantot gan fiziskos gan
geometriskos noveérojumus. Viens no aspektiem ir sferisko-segmenta harmoniku model&$anas
principa ieklauSana potenciala lokalaja modeli, péc mazako kvadratu metodes izstradajot
koeficientu parametrizaciju, un optimizgjot datus, kuri ir nepiecieSami koeficientu aprékinam.
Gravimetriskie dati, vertikales nolieces, savietotie punkti ar zinamiem elipsoidaliem un normaliem
augstumiem, globalie geopotenciala modeli tiek izmantoti kvazi-geoida noteik$anai. Galvenais
meérkis ir aprékinat lokalo potencidla modeli ar iesp&ju atvasinat visas komponentes, kas attiecas
uz W potencialu. STs novérojumu komponentes ir: gravimetriskie dati g, kvazi-geoida augstums ¢,
geoida augstums N, vertikalas nolieces ziemelu un austrumu virziena (&, n), savietotie punkti (A
,0, h | H) un primara informacija par lokala potenciala modela koeficientiem, kuri ir atvasinati no
globaliem modeliem. Pastav dazadi sférisko-segmenta harmoniku tipi: izlidzinatas sfeériskas-
segmenta harmonikas, transformétas izcelsmes sfériskas-segmenta harmonikas un koriggtas
sferiskas-segmenta harmonikas. Izlidzinatas sferiskas-segmenta harmonikas tika izvelétas lokala

gravitacijas potenciala noteikSanai. Sis model&Sanas princips saskaras ar robezproblému, un prasa



pielietot risindgjumu, izmantojot lielaku segmentu, neka interesgjosais regions, bet arpus robezam

datu triikuma dg&l, tas ir sarezgits uzdevums, kuru ir jaizpéta.

Pirmaja nodala tiek sniegts fundamentals teorétisks izklasts par Zemes gravitacijas potencialu,
ietverot gravimetrisko datu tipus, un to apstrades un izlidzina$anas metodes, izmantojot standartu
mazdko kvadratu metodi un robustas tehnologijas. Ir aprakstitas augstumu sist€mas un

paskaidrotas to fizikalas atSkiribas.

Otraja nodala tiek aprakstita Geodézijas un geoinformatikas institita izstradata digitala
zenitkamera, vertikales nolieces noteikS§anas pamatprincips, zenitkameras konstrukcija, m&rfjumu

tehnologija un datu apstrade, ka ar1 vertikales nolie¢u izmanto$ana kvazi-geoida noteik$ana.

TreSaja nodala tiek demonstréti kvazi-geoida noteikSanas principi, sakot ar DFHRS metodi, un ta

izstrades posmiem, ka arT ,,remove-compute-restore” un kolokacijas metodes.

Ceturta nodala skar sferiskas harmonikas un globala gravitacijas lauka model&Sanu, aprakstot
sferisko-segmenta harmoniku model&$anu un vienu no tas metodém — izlidzinatas sferiskas-

segmenta harmonikas.

Picktaja nodala tiek atspoguloti p&tijuma rezultati un Latvijas kvazi-geoida analize, kur§ balstas

uz jauno risinajumu. Saja nodala tiek aprakstiti kopgjie promocijas darba rezultati un secinajumi.

Promocijas darbs ietver 39 attélus, 127 formulas, un 7 tabulas. Darba kopgjais apjoms ir 104

lappuses.
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ACRONYMS

ASCH — Adjusted Spherical Cap Harmonics

BHS-77 — Baltic Height System 1977

CCD - Charged Coupled Devices

DTM - Digital Terrain Model

DTU — Technical University of Denmark

DoV — Deflection of Vertical

DZC - Digital Zenith Camera

DTM - Digital Terrain Model

DFHRS - Digital Finite-element Height Reference Surface
EGG97 — European Gravimetric Geoid 1997

EIGEN6C4 — Global Gravity Field Model by GFZ-Potsdam
EGM2008 — Earth Geopotential Model 2008

EGM2020 — Earth Geopotential Model 2020

ERS-1 - European remote sensing satellite

ETRS89 — European Terrestrial Reference System 1989
EVRF2007 — European Vertical Reference Frame 2007

FFT — Fast-Fourier Transform

FOD - First-order design problem

GGl — Institute of Geodesy and Geoinformatics

GNSS — Global Navigation Satellite System

GGM - Global Geopotential Model

GPM - Global Potential Model

GOGRA - Gravity geoid model developed from GOce and GRAce data
GLONASS — GLObalnaya NAvigatsionnaya Sputnikovaya Sistema — Global Navigation
Satellite system by Russian Federation

GRAVSOFT - GRAVity field modelling SOFTware

HSKA — HochSchule KArlsruhe — University of Applied Sciences
HRS — Height Reference Surface

IAG — International Association of Geodesy
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KTH — Royal Institute of Technology in Stockholm

LAS —2000.5 — Latvijas Augstumu Sisteéma — Latvian Height System epoch 2000.5
LatPos — Latvian Positioning System

LAV — Local Astronomical Vertical

LGV — Local Geodetic Vertical

LGIA — Latvian Geospatial Information Agency

LV’14 — Latvian Geoid Model 2014

LV98 — Latvian Geoid Model 1998

LS — Least Squares

LSC — Least Squares Collocation

LSE — Least Squares Estimation

NAVSTAR GPS- Navigation Signal Timing and Ranging Global Positioning System
NGA — National Geospatial-Intelligence Agency

NKG — Nordic Geodetic Commission

RTK — Real Time Kinematics

RWLSE — Robust Weighted Least Squares Estimation

SH — Spherical Harmonics

SCH — Spherical Cap Harmonics

UL — University of Latvia

VESTA — VErtical by STArs
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INTRODUCTION

Subject topicality and formulation of the problem

The most important theoretical works on geoid determination using gravity observations belong
to Stokes (1849) who proved that for theoretical studies of the Earth surface it is important to
determine the gravity potential W on its surface and outer space and the equipotential surfaces,
which have a form of approximately ellipsoidal shape. According to Stokes’ theory, all the masses
must be under equipotential surface which is called geoid. Besides, gravity measurements are
carried out on the physical surface which does not coincide with geoid. The main task was to
include corrections in measured gravity values, which would move all masses under sea level,
without changing the equipotential surface, thus referring gravity measurements to the sea level
(geoid). This problem has been widely discussed in scientific literature and is called the problem
of the Earth regularization. But it was discovered that it is necessary to know the internal structure
of the Earth for successful regularization.

In 1945, the Russian scientist M. S. Molodensky (Molodensky, 1945, Molodensky et al., 1960,
Molodensky, 2001) proved that all the possible regularization solutions are quite similar but do not
solve the problem strictly and offered an alternative solution for precise Earth figure and height
determination. According to his theory, the heights (since than the term of “normal heights” has
been used) are not determined in relation to the geoid, but to another surface, which is close to the
geoid, and called it “quasi-geoid”.

The first quasi-geoid in Latvia was developed in 1998 by Kaminskis (2010), and the
estimated precision of this quasi-geoid was 6-8 cm. For the computation of this quasi-geoid various
kind of data were used — satellite altimetry data obtained by ERS-1 as well as ~500 terrestrial
gravity measurements and ~12000 digitized gravimetric points that were included in modelling.
In 2014 in Latvia normal height system was changed from BAS-77 to LAS-2000.5, thus the need
for a new more precise quasi-geoid model was obvious, therefore in the same year, the Latvian
Geospatial Information Agency (LGIA) developed a new quasi-geoid LV’ 14 based on the remove-
restore technique which is implemented in GRAVSOFT software. As input data, 4886 relative
gravity measurements, 84 GNSS/levelling points, free air gravity anomaly model DTU13 from
satellite altimetry, DTM model and GOGRAO02s GGM were used, and it is the only quasi-geoid
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which can be used in Latvia now, though the estimated precision of this quasi-geoid is 3-4 cm.
Further (1-3 cm) quasi-geoid model has been computed for Latvia in 2012-2013 (J&ger et al.,
2012, Janpaule et al., 2013). Of course, this precision is not sufficient anymore, e.g. Galileo
positioning system has been launched and operated now and, as a result, the precision of GNSS
observations has also been improved; many other satellite missions are also taking place now.
Many countries have already achieved the precision of up to 1 cm level of quasi-geoid model
(Ellmann et al., 2019), (Farahani et al., 2017), challenging project has been performed in Colorado
(Wang et al., 2021) and others. Moreover, with the development of digital zenith camera in the
institute of Geodesy and Geoinformatics (GGI) it became possible to use vertical deflection data
for the quasi-geoid improvement, combining the deflection of vertical data, gravity data and fitting
points. The solution of combining both geometrical (®, A)ast and physical data (g) has not been
implemented yet, and was not found by the author in scientific literature.

Objective and tasks of the Doctoral Thesis

Nowadays, due to the fast developments of GNSS techniques, the development of a high accuracy
(up to 1 cm) quasi-geoid model is very important and actual task because it allows to determine
normal height (or orthometric height) directly from ellipsoidal height which is performed by GNSS
and, of course, this method is much faster and easier for land surveyors in comparison to levelling
measurements. The aim of the PhD Thesis is to offer a new solution for gravity field determination
in terms of spherical-cap-harmonics modelling as a carrier function of the gravity potential (W)
and to compute a precise quasi-geoid model, using all available data for it: both vertical deflection
observations, gravity values and fitting points. Precise quasi-geoid model can be used in civil
engineering, road and bridge constructions, as well as engineering geodesy and topography, etc.

So, in order to carry out this research, the following tasks were defined:

e to investigate all possible terrestrial data for gravity field modelling and quasi-geoid
determination, such as GNSS/levelling points, astronomical directions (@, A)ast and
derived vertical deflection (£ #) observations, as well as gravity values g, and to
implement them in DFHRS software in terms of integrated geodesy by applying spherical-
cap-harmonics parameterization of W;
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to describe the method of vertical deflection determination and data processing using the
developed in GGI software;

to evaluate the results of vertical deflection values in comparison to Global geopotential
models (GGMs);

to investigate different methods for gravity field and quasi-geoid determination and
compare the modelling methods;

to analyse the obtained results using the territory of Latvia as a test area and to make

conclusions and summarize PhD Thesis.

Scientific novelty of the Thesis

There are different techniques for gravity field and quasi-geoid determination, but all of
them are based mostly on gravity data as a function of the quasi-geoid based on the theory
of Stokes. The extended and improved method of Digital Finite element Height Reference
Surface software (DFHRS) allows to compute Height Reference Surface (HRS) in the
context of GNSS and in terms of an integrated approach allowing the combination both of
gravity data (g) and vertical deflection observation data (&, ), using in first instance the
computation of the gravity potential W in its parameterization by spherical-cap-harmonics
coefficients and then applying Molodensky theory to derive Ngg.

Digital Zenith Camera (DZC) VESTA (VErtical by STArs) which has been developed in
Latvia at the Institute of Geodesy and Geoinformatics (GGI) and has acquired an
operational status allows to determine vertical deflection values. It is also quite a unique
instrument and at the moment only about 5 such instruments are known in the world (e.g.
in China, Germany, Switzerland and Turkey). The advantage of VESTA in comparison
with other cameras is its precision —about 0.1 arcsec, moreover, it is portable, and therefore
it is convenient for field observations. The measurement technique of vertical deflection
and data processing software are presented in this Thesis. For the first time terrestrial
vertical deflections have been used for quasi-geoid determination in Latvia.

The above mentioned technique allows to compute up to 1 cm precise quasi-geoid model
for the whole territory of Latvia, which has not been done before, and, of course, this

solution can be applied not only in Latvia, but also in any other country or separate territory
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in the world. It would be especially interesting to use the developed camera in mountain
areas, where vertical deflection values would be bigger and their impact on quasi-geoid
would be higher.

e The provided results and their analysis are unique, as the presented research which
combines both physical observations (gravity data) and geometrical data (GNSS/levelling
points and vertical deflection observations) has not been introduced and implemented
before.

Practical relevance of the Doctoral Thesis

The new developed method allows to compute a high precision quasi-geoid model which can be
used in civil engineering, road and bridge construction and other similar fields for precise normal
height determination. According to the legal acts of the Cabinet of Ministers of the Republic of
Latvia, it is allowed to use any quasi-geoid model the precision of which is higher than the
precision of LV’ 14. This means that the developed quasi-geoid model can be officially used, so to
say, not only for scientific research, but also in practice. It only has to undergo the validation,
which can be done by LGIA.

The method can be very valuable in mountain areas, as well as in the regions of inappropriate
levelling points, or insufficient amount of the points, e.g. Mongolia (Ulaanbaatar), where only one
1st order line goes through the city, which is not providing the polygons for adequate adjustment.
But in this case it would be very useful to make observations by DZC, first of all, to check
independently the levelling data, and secondly, to cover the region of interest by doing a sufficient

amount of observations.
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1. THE GRAVITY FIELD OF THE EARTH

The external gravity field plays a fundamental role in geodesy. This is because the figure of the
earth has evolved under the influence of gravity, and most geodetic observations refer to gravity.
Thus, modelling of observations requires knowledge of the gravity field. In addition, the analysis
of the gravity field yields information on the structure of the earth's interior; in this way geodesy
contributes to geophysics (Torge, 2001).

The force acting on a body at rest on the earth’s surface is the resultant of gravitational force (v)

and the centrifugal force (z) of the earth’s rotation:
g=v+z (1.1)
The force of gravity F is obtained by scaling g by the mass m:
F =mg (1.2)
The Earth’s gravitation is obtained by Newton’s law of gravitation:

v(r) =G f ﬂ l:_%%dm (13)

Earth

where ' and r are the geocentric position vectors of the source point P’ (mass element dm) and

the attracted point P (unit mass m = 1), respectively. The value of gravitational constant is:
G =6.673 x 10711 m3kg1s~2 1.4)

The mass element dm can be expressed by the volume density p = p(r") and the volume element

dv as:
dm = pdv (1.5)

The centrifugal acceleration, as an inertial acceleration in a rotating system, is given by the vector

of Earth rotation w and the perpendicular distance to the rotation axis d:
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z(r) = (w X7) X w = w?d (1.6)
Where the angular velocity of the Earth:
w =7.292115 x 1075 rad s ! 1.7

is known to a high degree of accuracy from astronomy (Torge, 1989).

1.1. Fundamentals of potential

The representation of the gravity field and related computations are simplified if we consider the
scalar quantity “potential” instead of the vector quantity “acceleration”. The corresponding
potentials V and Z exist for the gravitational and centrifugal fields with the relationships (Torge,
1989):

v =gradV,z = gradZ. (1.8)

For the gravitational potential of the Earth we have with (1.3) and (1.5)

V) =6 fﬂ|p(_) dv, lim V = 0 (1.9)

r—o0w
Earth

and for the centrifugal potential with (1.6)
wZ
— 20 —
Z(r)=—d% limV =0. (1.10)
The sum of the potential functions is the gravity potential of a mass point rotating with the earth:

W) =V(@E) +Z(). (1.11)

The unit of the potential is m?s~2. The potential may be considered as work required for the
displacement of a unit mass within the gravity field.

In analogy to (1.8) the relationship between gravity and gravity potential is:
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g = gradWw. (1.12)

The gravity components in a certain direction are obtained as partial derivatives of W. In the global
X, Y, Z system we have (Torge, 1989):

g" = Wy, Wy, Wy) (1.13)

. ow ow ow
WIthWX:a_X'WYZO_Y' ZZB_Z

and |g| = VW& + W2 + WA

1.2. Terrestrial gravity measurements

Terrestrial gravimetry consists of point measurements of the earth’s gravity field on its physical
surface. Terrestrial gravity on a complex physical surface contains all spectral information of
gravity (Yang, 2013). There are two methods for the determination of gravity values — absolute
and relative one. In this chapter both methods are described, and the determination of gravity
values are introduced.

1.2.1. Absolute gravity measurements

Absolute measurements can be done by two different methods. The pendulum method is based on
measuring the pendulum time T of a pendulum with length | very accurately. The accuracy of this
observation is increased by observing the pendulum during a long time. The gravity value g is
found with formula (Ogorodova et al., 1978) (1.14):

T = Zn\/z (1.14)
g

The length of the pendulum and the influence of the suspension point need to be known very
precisely. With a pendulum it is possible to determine absolute gravity values with a precision of

some milligal. After 1975 the pendulum method was superseded by the ‘free fall method' and the
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“rise-and-fall method”, which is based on a falling prism in a vacuum tube (Crombaghs et al.,

1999). Through the integration of z = g for a free-fall experiment, one obtains the basis formula:
- o190
Z—ZO+ZOt+Et (1.15)

Between the path z and the fall time t. The constants of integration z,, z, represent the position
and velocity of the body at t=0. If the body falls through at least three planes (Figure 1.1a), z and
Z, can be eliminated. We get:

(23 —z)(t; —ty) — (23 — z1)(t3 — t1)
(3 — ;) (t — ) (t3 — 1) : (1.16)

g=2

For a symmetric rise and fall (Figure 1.1b), it is sufficient to measure the crossing times t;, t, ts, t4

at only two planes (separated by the distance Az). (1.16) then yields:

8Az
g =
(ta —t)* = (ts — t2)? (1.17)
zZ(m) a) zm b)
o 04l APEX
i . $
— &
0.2
0.2
| \
I | I 0 I I I |
0 0.2 t(s) 0 0.2 04 0.6 ts)

Figure 1.1. Distance-time diagram a) free-fall method b) symmetrical rise and fall method
(Torge, 1989)

Absolute gravimeters now in use measure the free fall of a body in a vacuum, using lasers and

optical interferometry, to obtain accuracies of better than 0.01 mGals under favourable conditions
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(i.e. Niebauer et al., 1986 and Torge, 1989). Whereas, these devices are transportable, they are
still quite bulky and time consuming to set up and read. Typically, only one absolute reading per
day can be made. Nevertheless, such absolute gravimeters are being routinely employed in
establishing the absolute values of gravity at selected stations, which then may serve as base
stations for relative gravity surveys, so that the results of the latter may then be expressed in
absolute gravity terms, with almost the same accuracy as the values for the absolute stations
themselves. Absolute gravity measurements are necessary as a base for relative gravity
measurements, for the calibration of relative gravimeters, and for determining the drift of relative

gravimeters (Parseliunas et al., 2011).

1.2.2. Relative gravity measurements

Relative gravity measurements are based on a completely different principle: the elongation of
springs with a small weight attached to them is measured. The most popular relative gravimeters
are Scintrex CG3, CG5, CG6 (Canada) and LaCoste Romberg (The US) (Lobanov, 2017). Taking
measurements at different locations yields differences in elongation. These differences can be
converted to gravity differences, on the condition that the instrument is calibrated on stations with
known absolute gravity values. One relative measurement takes about 15 minutes, while a
complete absolute measurement takes at least half a day. Well calibrated instruments can measure

gravity differences with a precision up to 5 microgal (Crombaghs et al., 1999).

Relative gravity measurements allow to define only the difference of gravity between two stations
(Ag) and these measurements are fundamental for determination of gravity values (Ogorodova &
Yuzefovich, 1980). It is a common practice to collect redundant observations to ensure a better
quality of gravity determination, and then gravity observations must be adjusted using an adequate
mathematical and stochastic model (Hwang et al., 2002). Gravity measurements may contain gross
(also called outliers), random and systematic errors. Systematic errors are basically caused by

gravimeter drift and calibration factor.

20



1.2.2.1. Relative gravity data processing and its adjustment

There are different ways of gravity network adjustment and in this chapter some methods are

introduced: the most common is based on least squares and more precise based on robust

estimation.

The relative gravity observation equation is written as (Hwang et al., 2002):
I(t)+v=g+Ny+AF(z) + D(t), (1.18)

where t is the time of the measurement; I(t) — the observed gravity value (z) multiplied by a
calibration factor, v — is the residual of I(t); g — gravity value at the reference station; N, — constant
bias; AF(z) is the calibration function; z — gravimeter reading, D (t) — the drift of the gravimeter.

For the stochastic modelling AF(z) and D(t), in Eq. (1.18) are called systematic errors of the

gravimeter. Here we model AF(z) as in (Torge, 1989):

S
AF(z) = bzt + ) (xcosw,z + y,sinw,z), (1.19)
=1

-
=1 l
where b;, x;, y; — are the coefficients, w; — the frequency of the reading z and r, s are the

numbers of terms to model. The drift of gravimeter can be modelled as a polynomial:
a
D(®) = z dy(t — to)?, (1.20)
p=1
where t, is an initial epoch and a is a degree of the polynomial. So, the observation equation
between two stations i and j is:
Alyj+v; =g — gi + (AF (z;) — AF () + (D(¢) — D(ty)), (1.21)

where v; ; —is the residual of Al; ; and Al; j = I; — [;, t; and t; — measurement times. Assuming

that n is the number of observations, in matrix form we get the observation equation:
I’ +v=Ax (1.22)

17 is n x1 vector of relative observations, weight matrix of constraints is W, v -isn x1 vector of
residuals; A, is design matrix, and x is the vector of unknowns (gravity values and gravimeter

parameters). By inspecting the structure of A, the solution by least squares method is not possible
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without constraint because A has rank defect of 1 (Hwang et al. 2002). In order to obtain a unique
solution in the least squares sense, e.g. method of weighted constraints can be used (Touati et al.,
2009):

- -1
x = (AW oA+ AgW 4A,) - (AW 4l° + AGW Ly (1.23)

Where
X — estimates of x;

1, — absolute gravity vector (Hwang et al., 2002).

1.3. Introduction to height systems

The geoid is used in geodesy, cartography, and oceanography as a reference surface for heights
and depths (continental and ocean bottom topography, as well as sea surface topography). A point
P can be attributed to a specified level surface by its gravity potential W (Figure 1.2). With respect
to the geoid potential Wo, the “height” of P is given by the negative potential difference to the
geoid, which is called the geopotential number C. We get from (Hofmann-Wellenhof and Moritz,
2006):

dW = —gdn (1.24)
P
C=W0—WP=—de=fgdn (1.25)
Po

The integral is independent of the path: hence, Pois an arbitrary point on the geoid. C can be

determined from geometric levelling and gravity measurements along any path between Po and P.
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Figure 1.2. Geoid, mean sea level, continental and sea surface topography (Torge, 2001)

The geopotential number is an ideal measure for describing the behaviour of masses (e.g. water
masses) in the gravity field. It could be used as a “height” in several applications, as in hydraulic
engineering and oceanography. A more general use is limited by the potential unit m?s2, which is
in contradiction to the obvious demand for a metric height system that employs the “meter” unit.

In order to achieve a certain agreement with the numerical value of the height in meters, the
geopotential unit (gpu) 10 m?s, is also used for the geopotential number. With g~9.8 m/s?, the

values of C are about 2% smaller than the corresponding height values.

1.3.1. Dynamic heights

The dynamic height H®" is obtained by dividing the geopotential number through a constant
gravity value. The normal gravity for the surface of the level ellipsoid at certain latitude, usually
45° latitude is used (Hofmann-Wellenhof and Moritz, 2006):

Hn = i
y(;ts (1.26)

The surfaces HY" = const. remain equilibrium surfaces. Hence, points located on the same level
surface have the same dynamic height. Unfortunately, a geometric interpretation of the dynamic
heights is not possible, and larger corrections are necessary to convert levelling results into

dynamic height differences:
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a a
A" = Angp + kg (1.27)

Where

A B
_ 45 _ .45
K 9g—7o dn ~ 9 —7o sn (1.28)

AB = 15
Yo

is a dynamic correction.

That is why dynamic heights have not been widely used in Geodesy. National or continental height
systems, and terrain-data based on them (topographic maps, DTM), use either orthometric or
normal heights (Hofmann-Wellenhof and Moritz, 2006).

1.3.2. Orthometric heights

The orthometric height H is defined as the linear distance between the surface point and the geoid,
reckoned along the curved plumb line (Figure 1.2). This definition corresponds to the common
understanding of “heights above sea level”. Expanding the right-hand side of (1.25) in H and
integrating along the plumb line from Po (H=0) to P (H) we obtain (Hofmann-Wellenhof and
Moritz, 2006):

H
c 1
0

g is the mean gravity along the plumb line; gravity values inside the earth are required for its
calculation. This is performed by introducing a model of the density distribution of the topographic
masses. As this distribution is known only imperfectly, the accuracy of computed orthometric
heights depends on the accuracy of the density model. In addition, points of equal orthometric
height deviate slightly from a level surface, which is due to the non-parallelism of the level
surfaces. These drawbacks are compensated by the fact that orthometric heights represent the
geometry of the topographic masses. Geometric levelling only needs small corrections for the

transformation into orthometric height differences (Hofmann-Wellenhof and Moritz, 2006).

24



1.3.3. Normal heights

The normal heights (geometric heights) are not supposed to describe the heights above the geoid
(Tenzer et al., 2012). They relate the points to another surface known as quasi-geoid, which is
close to the geoid, but not a level surface (Sjoberg, 2018), in order to avoid any hypothesis on the
distribution of the topographic masses (Vanicek, 1976, Foroughi & Tenzer, 2017). Normal heights
HN have been introduced by Molodensky and are used in many countries (Vanicek et al, 2012).
The mean gravity g in (1.28) is replaced by the mean normal gravity y along the normal plumb

line, which is only slightly curved:

C 1
HNz?,Vsz- deN (130)
0

y can be calculated in the normal gravity field of an ellipsoidal earth model. The quasi-geoid
deviates from the geoid on the mm to cm order at low elevations and may reach one-meter
deviation in the high mountains. On the oceans, geoid and quasi-geoid practically coincide
(Sanchez, 2013).
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2. DIGITAL ZENITH CAMERA

The digital zenith camera is a portable astrometric instrument for vertical deflection
measurements — angular difference between gravity field direction and normal to reference
ellipsoid that can be used for local quasi-geoid precision improvement, Earth crust movement
monitoring, local geological structure qualities determination, etc. There are only several DZC
known in the world, e.g. TZK2-D or DIADEM (Hirt et al., 2005; Hirt et al., 2010a; 2010b), but
in comparison to these cameras, our camera is portable and more convenient for field observations.
At present the camera system developments have been completed, and more than 400 observations
have been done in Latvia. The principle of digital zenith camera is based on the determination of
plumb line by astronomical coordinates (@, A). The stars serve as orientation and approximately
20 stars around zenith frame should be used for observations. The precision of the developed
digital zenith camera is about 0,1-0,2 arc seconds. The advantage of using deflections of the
vertical observations for quasi-geoid determination is the provision of terrestrial gravity field
information, which is independent from errors in local vertical datum (Featherstone & Lichti,
2008), (Voigt et al., 2009). GNSS techniques allow to determine geodetic (ellipsoidal) coordinates
(Celms et al., 2017), as well as the exact time of positioning, which is needed for the astronomical
zenith camera observations (®, A) for the modelling of the precession, nutation and Earth rotation

terms.

2.1. Basic principle of Vertical Deflections determination

Astronomical coordinates (®, A) define positions on earth surface and equatorial coordinates (5,
a) define positions of stars on the celestial sphere (Figure 2.1). The relationship of unreduced
deflections related to the Earth surface, and the quasi-geoid is shown in Figure 2.2.

Both coordinate systems are linked by Greenwich apparent sidereal time — GAST (the hour angle
of the vernal equinox) regarding the Earth’s rotation (Hirt & Burki, 2003). The astronomic latitude
® and longitude A determine the direction of the tangent to the plumb line and is defined by digital
zenith camera and the geodetic coordinates (¢, ) define the direction of the ellipsoid normal using

GNSS techniques (Halicioglu et al., 2012a, Haliciolgu et al., 2012b).
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Figure 2.1. Basic principle of the determination of the plumb line (@, A) by imaging the stars in
zenith direction (Hirt & Burki, 2003).
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Figure 2.2. The relationship of unreduced deflections of vertical related to the Earth surface and
the quasi-geoid (author)
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Deflection of the vertical is the angular difference between plumb line direction and normal to the
surface and consists of north and east component (&, ) (Ceylan, 2009). Deflections of the vertical
can be calculated using astronomical coordinates (®, A) and geodetic (ellipsoidal) coordinates
reading (Torge, 2001):
E=0-o, (2.1a)

n=(A-X) -cosp (2.1b)
The component ¢ in the azimuth a can be computed using & and 1 components:
(2.2)

= cosotnsina

Equations (2.1a, b) and (2.2) are valid for all definitions of the deflection of the vertical.
The differential relationship between geoid height and deflection of the vertical is defined through
the following formulae (Heiskanen & Moritz, 1984, Vanicek, 1976):

dN
—dN =¢-dsore=—— (2.3)
ds
By combining formulae (2.2) and (2.3) we obtain:
N .
i &cosa + nsina or (2.4)
AN ,
v Ecosa + nsina (2.5)
2.2. Construction of Digital Zenith Camera

The design of digital zenith camera was started in 2010 by Institute of Geodesy and Geoinformatics
(Abele et al., 2012). Zenith camera consists of a rotating assembly, placed on a roughly (a few arc
minutes) levelled platform (see Figure 2.3). Any rotation position can be used. Camera assembly
is levelled with a few arc second accuracy in each rotation position using 3 linear actuators. After
that a number of zenith area star images are obtained together with high resolution tiltmeter
readings. An on-board GNSS receiver is used to obtain geocentric site coordinates and support
accurate image timing. Hardware control and data acquisition is done by an on-board control
computer. An observation session typically lasts 20-40 minutes.
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Figure 2.3. Digital Zenith camera (VESTA — VErtical by STArs) (author)

2.3. The principle of measurement method

GNSS provide geocentric coordinates (15-20 cm) in precise UTC time (10 mks) in order to
compute the direction of normal to reference ellipsoid in astrometric coordinate system.
Observations of reference stars provide instrument position of main axis relatively to normal of
reference ellipsoid. Indications of tiltmeter provide corrections of inclination for base axis of the
instrument relatively to plumb line. The difference between these positions should give vertical
deflection, in case when all options and zero points of tiltmeter are precise. In practice, range of

measurements should be done in different positions in order to exclude estimation errors.

The basic component are imaging sensors (CCD cameras) to track the camera-platform p or an
object (b), on which p is mounted by stars S. For the unification of Astronomical Directions and
Deflections of the Vertical by a camera platform p and the attitude determination REV (7, p, y) of
the body (b), the imaging sensor system and platform p are taken here as being axe-parallel to the

body system (b). In case that the camera system p is not mounted axe-parallel to the body (b) the
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additional so-called lever-arm matrix R5(ey, €,,€,)can always be considered to rotate the

resulting attitude matrix RECV (r, p, y) of the camera-system (p=b) to the true physical body (b).

Figure 2.4. Modern Startracker CT-602 Camera System for Navigation of Aircraft, as produced
by Ball Aerospace's CT-602

So we have for the 3D platform-based vector p coordinates with p=b and the related normalized

direction vector 2 of the body system:

X — Xo

Y=Y
f

bS _ )
p Wl il

X — Xgo
and so, the direction vector rPS = £ = L [y - }’o] (2.6)

with

(x,¥)¢ yrc — observed image coordinates of a star S(6, @) at time t_UTC;

(%0, Vo) — principal point of the image;

f —focal length of the sensor (see Figure 2.4) (Hofman-Wellenhof et al., 2003).

The transformation of the image star image-based vector r®S from the body-system to the local

astronomical geodetic vertical system (LAV) system reads:

rlAVS = REAV(r p,y) - rPS 2.7)
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cospsiny sinrsinpsiny +cosrcosy cosrsinpsiny —sinrcosy

COSpPCOSy SINTSINpcosy —cosTsiny cosrsinpcosy + sinrsiny
RLAV = (2.8)
—sinp sinrcosp COST COSDP

where p, y and r are the pitch-, yaw- and roll-angle of the zenith-camera platform p as body with
respect to the LAV. On the other hand, we get for an observed star S(a, §) transformed from its

Cartesian coordinates from the ECIF inertial system (i)

is = (Eﬁi ?ié’;f;) @9)
sind
to the ECEF at time t by
R{(t_UTC) = Rpoiar * Rearth—Rotation * RNutation " Rprecession * REigen (2.10)
and we get
r®S(t_UTC) = R¢(t_UTC) - r(a, 8)*S (2.11)

By the astronomical coordinates (@, A) and the rotation matrix

—cosA-sin® —sinA-sin® cos®
R (@, A1) = —sinA +cos A 0 (2.12)
cos /A -cos® sinA-cos® sin®

we get finally arrive at
rtAVS(¢e_UTC) = RV (@, 1) - RE(L_UTC) - 1(a, §)*S (2.13)
(2.6) and (2.13) lead to
RV (r, p,y) - S — REAY (0, A) - RS(t_UTC) - (e, §)5= 0 (2.14)
The matrix RL47 (@, A) in (2.14) can be replaced by
REV(®,1) = RIAY - RESY .19
With

—cosL-sinB —sinlL-sinB cosB
RLEV(B,L) = —sinL cos L 0 (2.16)
cosL-cosB sinL-cosB sinB
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And
RESY = REV - (RE)T= RIY = RIY(B,1,0,1) =

sinBsin® cos(A—L) + cosBcos® sinBsin(A—L) cosBsin® — sin¢ cos @ cos(A—L) T
—sin®sin(A—L) cos(A—1L) +cos ®sin(A—L)
sinBcos ® — cosBsin® cos(A—L) —cosBsin(A—L) cosBcos® cos(A—L)+sinBsin®

(2.17)

1 n-tanB § T
RMY = (—n -tanB 1 —n) (2.18)
=% n 1

(Jekeli, 2001)

With (2.15) to (2.18) we get from (2.14):
Ry (r,p,y) 1% — RiGy(B,Em) - RE™ (B,L) - R{(t_UTC) -7(a,8)**=0  (219)

and, as an alternative in the LGV:
REYV(r,p,y) - 1?5 — RLEV(B, L) - RE(t_UTC) - 1(a, 8)*5=0 (2.20)
Use of the equations (2.14) and (2.19), (2.20):

1) The equation (2.14) can be used for the determination of the astronomical position and
absolute vertical directions (&, 4) at position P by zenith camera measurements r®S to
stars S. Here an inclinometer is needed to determine the tilts (r, p). The yaw angle is (also)
common to the measurements of all stars S, and can remain as an unknown in the equation.
The GNSS position (P) is only needed for a georeferencing, namely to relate (&, 4) to a
gravity field model V (W = V(P) + Z(P)) in case of a further use of (&, A) for gravity field
determination V(r,¢, 1) as (B,L,h) & (B,L,h) < (r,¢,1).

2) The equation (2.19) can be used - like (2.14) but now together with an early use of the
GNSS georeferencing P(B,L,h) - to determine the vertical deflections (§,n) at location P
for gravity field determination and quasi-geoid determination by astronomical levelling.
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3) Equation (2.20) can be used for navigation, namely attitude determination (r,p,y), as (r,p,y)
in navigation are related to the LGV = n-frame (n-frame = Navigation frame). Here (B,L,h),

more precisely only (B,L) for GNSS are actively used.

2.4. Control Software

The data and control processing software is designed as a single program under Windows system.
It can be run either in measurement or post-processing mode. Difference between modes is mainly
in data acquisition hardware treatment. On-board control process is monitored and controlled by
remote terminal via “RemoteDesktop” connection. Though data processing and vertical deflection
determination can be done in real time, this kind of mode is time-consuming and not practical.
Generally, measurement data are saved in file system and processed later using post-processing
mode. Exceptions are some critical data quality indicators, such as tiltmeter data dispersion and
quality of star images on CCD image, which always are calculated in real time. Several control
parameters, involved in measurement process, are stored in software configuration file and can be
adjusted by operator (Zarins et al., 2016).

2.5. Raw data processing

Though the post-processing can be carried out within the control computer, downloading of the
raw observation data to a safe location on a hard disk for a post-processing is a better option.
Results of the observation session are stored in a numerous text and image files, contained in a
specific directory of the session.

Technically, post-processing consists of:

. complementing the data with the Earth Orientation Parameters (EOP) and site coordinates;
. setting of the processing modes and parameters;

. execution of astrometric reduction of frames;

. calculation of ellipsoidal zenith position on frames;

. calculation of tiltmeter corrections;

. calculation of session model parameters.

Though the reasonable predicted values of EOP are available only in some days after measurement

session, e.g. ftp://cddis.gsfc.nasa.gov/pub/products/iers/ the use of corrected values is beneficial
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for accuracy and credibility of the results. Therefore, post-processing is better to be done after this

period of observations.

2.5.1. Processing settings

Raw data contain site coordinates, available to the control program, but they can be replaced by

more accurate values in several ways:

. Site coordinate values can be edited directly in the session information file;
. Site coordinates can be entered in a sites database entry;
. Average values of site coordinate messages, obtained from on-board GNSS, can be set to

session data.
Following processing settings are most likely to be modified:
. Batch processing mode includes such options as:
= what kind of data subset should be processed: astrometric and/or leveling;
= if the existing star image and identification data should be used or ignored;
= if the existing solutions should be cleared (both astrometric and leveling; no any
calculations in this mode);
= which frame subset must be recalculated: all / those without astrometric solution / those,
for which number of identified stars is less than indicated;
. star image recognition settings;
. autolmg and autolD modes: if set, star image recognition and/or identification will be
performed on frame loading, if have not been done successfully before. For batch processing this
mode is set by default;
. Identification mode — first option:
e solution of the previous frame is attempted first. May make process considerably faster,
but may also promote false identification to all subsequent frames of a position;
Second option:
e geometric similarity identification is attempted. It is the basic choice, but in some cases
may produce false identification.
. Identification and star association tolerances: minimum star number, number of brightest
images, used in ID, which accept RMS star association tolerance (“star from image”), ID timeout;

. Reference star selection parameters:
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= maximum magnitude: generally, value of 13.5 to 14 is optimal, but in case of bad sky
conditions or bad focusing quality may be beneficial to decrease it to 11-13.
= radius of star selection area: generally, 0.23 dg is enough, but if zenith is far away from the
center of frame, it should be slightly increased to ensure full coverage of image. It can be
changed by slider or in radius edit field of the main dialog.
. Focus distance value, especially if focusing has been significantly changed. The value is
taken from the configuration, and it can be adjusted for the session needs by entering the value;
. Level correction settings: linear drift can be estimated, and it slightly improves the
accuracy, but tiltmeter timing must be accurate at least within one second.
. Model residual outlier rejection limits (separate for stars and tiltmeter); values 2 - 2.5 are
found to be optimal.

2.5.2. Frame processing

Frame processing can be done manually, frame by frame, or in batch mode (all frames below the
current frame list selection, satisfying batch settings). In regular situation, batch mode is the first
choice, after batch calculations are done; unsuccessful or suspicious frames can be reviewed
individually, selecting a frame in the list for processing. When frame data is loaded, the image file
should be displayed with star image and reference star marks on top. If there are more than 6 stars
on the image and no major errors in data, automatic identification should be successful. If it fails,
comparison with the other frames of the same position can reveal the problem. Often, trying
astrometric solution of one of nearby frames for the same position is enough for identification. If
identification is successful, frame astrometric model parameters are calculated by described below
algorithm.

The purpose of astrometric reduction of star field images is to find the transformation, linking
CCD coordinate system with inertial reference frame, defined by star positions. When such
transformation is found, geocentric zenith point can be projected to CCD coordinate system,
providing data for calculations of vertical deflection value.

Turner transformation with 6 or 4 parameters is used:
X=Xo+Ax+B-y (2.22a)

Y=Yy+C-x+D-y (2.22b)
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where X, Y — CCD coordinates,
X, y — topocentric apparent places of stars:
x = z-sin(4) (2.23a)
y = —z-cos(4) (2.23b)
where z — apparent zenith distance,
A — apparent azimuth,
X, Yo, A, B, C, D — parameters of transformation. In case of 4-parameter transformation 4= —D
and C=B.
Interpretation of parameters is:

Xo, Yy — offset;
FE,=\/(A? + B?) — image scale (focus distance) along x axis;
F,=/(C? + D?) — image scale (focus distance) along y axis;

tg(Ax —m) = %— CCD X-axis orientation azimuth;

tg(Ay —m) = — % — CCD Y-axis orientation azimuth.

The values of transformation parameters are calculated using Least Squares algorithm on the set
of normal equations (2.22a, 2.22b), composed of data for all identified stars and images.

As, because of shutter and star movement, there is small difference of scales along X and Y axes,
6—parameter model fits a little better then otherwise quite sufficient 4-parameter variant.

When transformation is acquired, ellipsoidal zenith point coordinates on CCD can be calculated,
inserting x=0, y=0 in (2.22a, 2.22b), respectively, Xz=X,; Yz=Y,. For convenience Xz and Yz are
reduced to the center of CCD.

Frame model calculation process is controlled and visualized in Astrometric groupbox of Session

dialog (Figure 2.5).
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Figure 2.5. Astrometric groupbox of Session dialog

2.5.3. Tiltmeter data processing

As processing of tiltmeter data is much simpler than astrometric, a variant of residual tilt
corrections (interpolated tilt values for exposure moment) is calculated already during frame
acquisition and saved in frame information file along with raw tiltmeter readings. It can be used
as it is or can be recalculated during the post-processing. Controls for manual operations with

tiltmeter data are located in “Level” groupbox of Session dialog (Figure 2.6).
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Figure 2.6. Level groupbox session dialog
The listbox contains list of tiltmeter readings (copy of it is located in the frame information file).

“Calculate” button starts approximation of tilt values with 1-parameter (average value) or 2-
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parameter (linear dependency on time; if checkbox “lin” is checked) model. Residual rejection
tolerance in field “rej.lim” (in rms units) is used to discard outliers. “all” button can be used to
reverse all rejections. “remove 0” checkbox is meant for discarding all near-zero values for case
of malformed data exchange. “-<>+” button inverts status of the selected reading. Resulting
average values and RMS are displayed next to listbox. “Plot” button opens model visualization
dialog (Figure 2.7). Two modes of visualization are supported: XY plot and time dependency. In
case of time dependency (“drift” checkbox checked) horizontal (X) coordinate is time from the
first reading of the frame (range indicated below graph, usually 4-8 seconds); Y coordinate shows
tilt values (channel X: red, Y: blue) in arc seconds, exposure moment is marked with vertical line,
interpolated tilt values for that moment are marked by horizontal lines. Approximated linear trends
are shown by lines of respective color. Marks for rejected outliers have thinner lines.
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Figure 2.7. Model visualization dialog

2.5.4. Residual tilt corrections

To find corrected ellipsoidal zenith coordinates dX and dY measured residual tilt values X, y must
be transformed to CCD coordinate system. For that purpose, model of CCD and tiltmeter relative
orientation (Figure 2.10) is used. It assumes, that CCD axes are fairly orthogonal; tiltmeter axes
are oriented in some angles (dAx, dAy) relative to corresponding CCD axes. The transformation
is:

dX=X+S—(x-Sx-cosdAx —y - Sy sindAy) (2.24a)
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dY =Y -5 —(y-Sy-cosdAy + x - Sx - sindAx) (2.24b)
where
X, Y — zenith coordinates on CCD (in pixels);
X, y — tiltmeter readings;

S — CCD scale factor (pix. size / focus distance);

Sx, Sy — tiltmeter scale factors, introduced because of approximate nature of their factory
calibration.
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—
Y
Figure 2.8. Model of CCD and tiltmeter relative orientation
Scale factor S is obtained by astrometric processing of the frame. Sx, Sy, dAx and dAy are
instrument calibration constants, determined by special calibration measurement procedure (see
2.8).
Values of x, y, X, Y and S are stored in frame information file. Other calibration constants are stored

both in session information file and program configuration. The transformation (2.24 a, b) is
performed every time when processing of the session is requested.

39



2.5.5. Calculation of session model parameters

In order to find vertical deflection value, an approximating model is used, describing dependency
of ellipsoidal zenith coordinates (corrected for residual tilt) on rotation angle (instrument

orientation azimuth) in rotating CCD coordinate system:
dY =Yy +dZy-cosA+dZx-sinA+Yt-dT (2.25a)
dX =Xy —dZy-sinA+dZx - cosA + Xt-dT (2.25h)

where

dX, dY — corrected ellipsoidal zenith coordinates;

X,, Yy — center of trajectory, representing location of plumb line projection on CCD;

dZy, dZx — components of vertical deflection (same as & in North-South and 1 in West-East
directions respectively; positive if geoid height increases in S and E directions);

A — frame orientation (negative direction of CCD Y axis) azimuth;

Xt, Yt — drift, represents linear part of dependency of X, Y, on time;

dT — time (from the first frame exposure moment);

Drift is included in model only on request (“drift” checkbox checked).

A Least Squares algorithm is used to determine model parameters X,,Y,, dZx, dZy, Xt, Yt. As
always, outliers are removed, and model calculation repeated until all residuals are smaller than
rejection tolerance.

Button “Model” of Session dialog is used to initialize model calculation. It opens Model dialog,
calculation results and more control elements are located there. Mode “diff a-1” must be selected
to use model (2.24 a, b), the other two modes are meant for approximation of only astrometric or
only tiltmeter data for calibration or diagnostic purposes.

2.6. Model visualization and controls

The model (2.25 a, b) represents circle on CCD coordinate plane, moving in time if drift
components are included. In order to visualize it (Figure 2.9), marks of corrected zenith points are
connected with residual lines to corresponding places on solution trajectory, forming bunches of
measurement positions along model trajectory. For model itself only one circle, corresponding to
driftless situation at the moment of the first position, is drawn. From the center of this circle
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(representing projection of plumb line in that moment) a line is drawn to the point, representing
model position with CCD orientation azimuth 0. As it can be seen from formulas (2.25 a, b),
relative placement of such point illustrates value of vertical deflection (but in topocentric, non-
rotating coordinate system, which might be a little confusing to comprehend with other contents
being in rotating CCD system. Axes of topocentric system are drawn in the center of circle).
Drift, if present, can be easily visualized only in the case if orientation azimuth has been linear
function of time, what practically never happens. In real situation, orientation azimuth is wildly
jumping along session. Nevertheless, an evenly moving spiral, representing linear dependency
case, can be drawn (checkbox “drift”), however, it will coincide with real positions only
occasionally.

There is a number of drawing options, controlled by checkboxes in the upper right corner of dialog

window:

. “residuals” (by default on): drawing of residual lines and lines, connecting consecutive
positions;

. “E-W?: lines are drawn for all measurements, indicating E-W direction on CCD;

. “astro & 1vI”: marks for raw measurements (both astrometric and tiltmeter);

. “connect”: lines, connecting consecutive measurements are drawn;

. “all”: also measurements, not included in current subset, are drawn;

. “frame #” (by default on): frame numbers are indicated beside marks;

. “pos #”: position numbers and azimuth values are indicated beside corresponding places;
. “outline”: draws solution outline for astro/level model types;

. “drift”: draws model spiral; number of turns must be indicated;

“Redraw” button redraws the picture with actual options.

41



&1 Ellipsoid normal on CCD / tiltmeter corrections X ‘

4 # X Y dx,dy-avg [arcseq] ~ [ resduds [V fromez
3 1 2017 1899 6.0 30 PE-W ‘Mr"_' posk)
" 2 2015 190.3 6.2 -2.6 asto out
scole: 8.6 [Fmodel —— = o0 | [ mitModel = 5 | Fanges Htmeter scale 3 2016 189.9 6.1 3.0 I comnect
vo: 8909 | Cacutate || expse || caatate | 5 16 |[9Ax 915 || [X comect=> ) 200 set|[ [4 2015 1899 6.2 -30 Ca M
X0: w52y = ,z_r.;m = C6F 20||dAy 89045 ||y [ Toso || |5 2014 1897 63 32 i
T eject | ve| Dol 24|l aa 6 2014 190.1 6.3 28 v )
Vad A Caladate mode=4 DA=0
124 n 13¢ 12 6
25
N=229 of 240, rms=0.548 ! =
X0=207.19 ¥0=192.11 4 < \ }
Drift X=1.3678 Y¥=2.1854 "/h 7 Nk
. 22 42
Vertical deflection: X=1.06", Y=§.61"% 10 S e
32 N 190
< 191
4 1
r - ~ X - 192
) \ 15 193
115
0 1
e | 1194
3 195
.:.]:
3¢ 196
1 238
2 ;3 197
5 s 12. n
i I8 11ipsoidal 2 47] 2
T : , 198
» 7
210 i R ! <:(:I]'§s

Figure 2.9. Model visualization and controls

The text block contains site and date information, used calibration constants, Earth rotation
parameters, number of measurement points and model residual RMS, CCD coordinates of model
center (place of plumb line projection at the time of the first position), drift values and estimated
vertical deflection components.

Initially the graph is scaled and located so, that it fits in the area, available for painting. Sliders
along upper and left edges of the window support changing scale and location of graph; “center”
button places the graph close to window center. Parameters of screen coordinate system (scale in
pixels per arc second, zero point in pixels) are shown in the upper left corner.

Controls of model calculation are located in the “model” groupbox. “Calculate” button repeats
calculations (with drift option if “drift” checkbox is checked), using outlier rejection tolerance as

specified in “reject” field. “+” button activates all rejected outliers.
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2.7. Data subset selection

The model (2.25 a, b) incorporates only that part of effects of several essential perturbations of
measurement process (most notably, effect of anomalous refraction variability and thermal
expansion effects in instrument construction), which can be described as linear dependency on
time. Approximation of long sequences of measurements often show presence of unlinearity and
other influences, manifesting as systematic trends in residuals and increase of residual RMS value.
In order to outline effect of model inadequacy on vertical deflection estimates and, possibly, find
out nature of these influences, approximation of various subsets of full session data have proved
useful. Such approach is also efficient in identifying and isolating occasional measurement errors.
Mechanism of subset selection is implemented using frame status flags. If a frame is currently
active, it is marked with “+” in the first column of frame list (Figure 2.10).

# pos tme stars: A N rms Ivii N rms

+166 16 19:40:33 100.8 51 0.26 52 0.06 A
+167 16 19:40:39 100.8 50 0.24 47 0.07

| +168 16 19:40:44 100.8 47 0.21 47 0.06
+169 16 19:40:50 100.8 55 0.24 41 0.08
+170 16 19:40:55 100.8 56 0.24 62 0.06

{+172 17 19:42:14 279.5 48 0.24 42 0.07 V¥

|} session results
<| >+| N=0->-| -<>+ [V curr pos
[| >+ frmjpos #f0 >>[2  -> |active 240 of 2

Figure 2.10. Frame list dialog

Processing (“Model” button in Session dialog; “Calculate” buttons in Model dialog) uses only

active frames. Controls for manipulating frame statuses are located in the “session results”

groupbox:

. “-<” button makes all frames inactive;

. “>+"button makes all frames active;

. “N=0 ->-“ button makes inactive all frames without astrometric or leveling solution;

. “-<>+ button reverses status of the selected frame (or selected position if “curr pos” is
checked);

. “>+ frm/pos #” activates frames or positions within number interval, indicated in the fields

to the right (initial #; number of frames/positions);
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. “->” button moves the above interval ahead one step; it (and the previous as well) also

invokes “Process” button.

2.8. Multi-model mode

In order to make analysis of different subsets of data more convenient, the multi-model calculation

mode is implemented. In this mode models for a number of data subsets of different extent and

time location are calculated. Results are presented as series of graphs (Figure 2.11), showing

dependency of estimated vertical deflection components on subset parameters — number of

included positions and represented time interval.

1=3.723 T=4.78
13,721 124,797

Figure 2.11. Visualisation of results

To complement the picture, also dependencies on time of drift estimates, approximation accuracy,

source data accuracy, number of stars in frames and ambient temperature are shown.
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Controls for multi-model mode in “multiModel” groupbox of Model dialog (Figure 2.12) consist
of “Calculate” button and series of checkboxes for represented model sizes (number of represented

consecutive positions).

multhode{r S
Caladlate [T 4V 16
[ 6]v 20
2] wal 24
v i all

Figure 2.12. MultiModel dialog
For each requested size model parameters are calculated for a number of data subsets and
visualized in specific color. Time moments are average for included positions, for smallest subsets
they span almost all session duration while for largest — only middle interval; the subset, including
all positions, is only one and is represented on graphs with one point.
On vertical deflection values graphs the area +/-0.1 arcsec around average is colored light-red.
Except for cases of really big anomalous refraction variations, most of results for models with
more than 6 positions should be inside that area.
All multiModel calculations are done using full model (2.25 a, b), including drift estimations.
Duration of calculation depends on number of positions in session and selected set of model sizes,
it can reach several seconds.
When interpreting the results, following considerations should be regarded:
. Small subsets are prone to big random fluctuations of model parameters, ranging up to
~arcsec for 2 positions;
. Random component decreases with more positions and longer time interval; systematic
effects start to dominate typically at 8 positions (~15 minutes);
. Longer subsets show increasing of approximation errors due to unabsorbed systematic
differences from model, mainly with non-linear drift and anomalous refraction origin.
. Value of drift often is big (tens of “/h) at the beginning of a session, especially, if instrument
before session was stored at conditions, noticeably different from ambient. Drift rapidly decreases
and after 10-20 minutes typically is down to a few “/h.
. Effect of variability of anomalous refraction on approximation errors is relatively small

(~0.1 arcsec) and becomes noticeable only in conditions of low and stable drift.
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. Variations of anomalous refraction have typical amplitude of up to 0.1-0.2” with periods
of 0.5-2 hours, amplitude decreases for longer periods. Variability with shorted periods probably
has bigger amplitudes, but it is difficult to estimate because of little number of measurement
positions, each having systematic shift caused by variability with even shorter periods.

. Model accuracy starts to deteriorate if frame astrometric and/or leveling RMS increases
above ~0.5 arcsec level. Possible reasons of that may be bad focusing, high microseismics level,
wind, etc. Risk factor is also small (below ~10) number of stars per frame, especially if it is
consequence of bad focusing quality.

. If attachment of some component of the instrument has become loose and some extent of
free movement is present, measurement results can split into several subsets, each with own model
(differient mainly in parameters Xo, Yo). Indication of such situation is rejection of data for whole
positions or solution with huge RMS and opposite directions of residuals for different positions.

2.9. Results of vertical deflection determination

A multitude of approximating models can be obtained from the results of an observation session,
representing, besides vertical deflection value itself, also behavior of anomalous refraction and
thermal expansion of instrument components during session. Which of these models is the best
representation of actual vertical deflection value, is a matter of some assumptions and speculations.
Presently it seems, that, although thermal drift increases the value of model residuals, it is fairly
well averaged across session and do not contribute much in systematic shift. The main concern is
about variations of anomalous refraction, causing apparent time dependency of estimated vertical
deflection values. Typically oscillations with period around one hour and amplitude of 0.1-0.2
arcsec are found. Observations, covering at least half of that period are needed for averaging. Even
then, shift of average value for up to about half-amplitude is possible. Therefore, we consider that
~0.1 arcsec accuracy for this kind of vertical deflection measurements with short (an hour or less)
observation time is a reasonable estimation, even if formal dispersion of results is smaller. Longer
sessions can reveal behavior of anomalous refraction more fully, possibly giving several times
more accurate vertical deflection estimates. However, possibility of presence of anomalous
refraction effects of very long period (e.g., seasonal) or even permanent nature, cannot be ruled

out.
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In order to obtain on the basis of an observation session data a reliable estimation of vertical
deflection, average values for models of all sizes, included in multiModel mode are calculated. On
the results graphs, these values are marked with crosses of corresponding color. Finally, an average
of averages is calculated, marked on graphs with a bigger, slanted red cross, and component values
of it shown above XY graph. Also a list of average component values for all model sizes is shown,
along with variability (half of max-min).
When “Save” button in multiModel groupbox of Model dialog is pushed, a text line with results
of current calculations (average of averages in case of multiModel mode) in format:

#=Kolka_#1 DATE=2019-09-18_21:44 F=57.751164 L=22.595641 H=25.3 ZX=3.377 ZY=1.804 ERR=0.10
is added to file.
The time corresponds to the first frame of the session. Site coordinates are those, which were
present in session information file (unless changes were made after reading it). Error estimate is

fixed at 0.1 arcsec and should be changed manually if that is deemed necessary.

2.10. Calibration session

A special observation session is needed to determine instrument calibration constants: orientation
of tiltmeter axes relative to CCD and scale of tiltmeter readings. For that purpose, star observation
are performed in a number of instrument leveling positions along trajectories, close to tiltmeter
axes, so that readings of one axe are changing as little as possible in the process. In this way, tilt
change along the other axis can be compared with zenith point projection trajectory on CCD, and
both relative axes orientation and scale factor calculated.

In order to calculate movements of leveling actuators for such trajectory, approximate orientation
of tiltmeter Al is necessary (Figure 2.13). It is supplied in configuration constant Az #1:
orientation of the 1% actuator radius relative to tiltmeter X (radial) axis. To keep readings of one

axis constant, actuator positions should be proportional to: cos - (Al +120°- (i — 1)) for x and

sin- (A1 +120°- (i — 1)) for y, where i — number of actuator.
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Figure 2.13. Scheme of actuators
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Figure 2.14. Tiltmeter close to X axis (xl); zenith close to CCD Y axis (Ya). Coordinate system
of tiltmeter is left-handed. Trajectory of tiltmeter zero is matched with trajectory of zenith.

Calibration observation session is performed starting from leveled position. As the first step
actuators are moved along the selected tiltmeter channel almost to the limit of tiltmeter range. Then
a series of observation positions are visited moving back along the same trajectory, until tilt is
close to the opposite end of tiltmeter range. Scenario of such sesssion must contain symbols DA_X

or DA_Y; what in normal scenario is rotation angle, is here interpreted as tilt step (in arc seconds).
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Processing of DA session results includes calculation of zenith point CCD coordinates and
tiltmeter corrections just like for any other sessions. After that, however, process is quite different.
Session data must be processed first in “astro” mode, calculating parameters of zenith trajectory
on CCD, then in “level” mode, calculating parameters of tilt trajectory. When both trajectories are
got, relative angle between them and tiltmeter scale factor is calculated.

The result of processing of DA session are parameters of line Y =Y, + k - X, approximating
trajectory of zenith projection or tiltmeter zero-point. Formula tg(dA) = k gives angle dA of this
line to X axis. When these angles for both zenith and tiltmeter zero are obtained they must be
combined so, that trajectories coincide, to get relative orientation of CCD and tiltmeter. Figure
2.15 illustrates the geometrical disposition; perpendicularity of respective axes and mixing of right

and left coordinate systems can make the process a little confusing.
Level model dA:X |reject [2 ™ = ¥ dasesson J 7T —— ——

site 1887 Riga LSU 2 2016 Feb 23 17:07:06 UT |[Lviscales dra=212.53 dRg-201.39 Sd=1.055

F=56.950462 L=24.116314 DAx=-93.23 DAy=-93.23 LScale X=1.0000 ¥=1.0000
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Figure 2.15. Trajectory of tiltmeter close to yl axis (direction negative); trajectory of zenith close

to Xa axis.

The result of calibration calculations are two orientation angles between respective axes of CCD
and tiltmeter. Due to inaccuracies in tiltmeter axes direction adjustment, difference between them
can reach several dg. Other result is tiltmeter scale, it may quite noticeably (up to ~10%) differ
from passport value, possibly can depend on time and/or other external factors, like ambient
temperature, humidity, pressure, voltage of power source. Due to this, it is desirable to perform
measurements as close to the tiltmeter zero-point (or any other fixed value), as possible, avoiding

scale or orientation error transfer to tilt corrections in coordinate transformation (2.24 a, b).
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Resulting angles and scales must be entered in configuration data in order to be saved in session
information file for subsequent sessions. At processing of a session, values, stored in that file are
used. However, if necessary, they can be edited in Session dialog (angles) and Model dialog
(scale). Modified values will be used in subsequent calculations and written to session information

file, if it is saved.

2.11. The use of vertical deflections in Riga region

In case of the DFHRS software v. 4.3 the height reference surface is modelled by mesh-

wise (i= mesh index), but overall continuous polynomials pi. So, we have (Jager, 2010):

N; = [1|B,L|B?,BL, 12|B3, B2L, BI2, [3]..]. (2.26)

[P00|P10:P01|P20'P11'P02|P30:P21'P12'Po3]iT =f(B, L)T "Pi

In (2.26) the parameters (B, L) mean the ellipsoidal latitude and longitude at position P.
Considering that in case of computing a quasi-geoid (Nog), we have to use surface vertical
deflections instead of the Helmert type. These are related - according to the Molodensky theory -
to the so-called Telluroid point Q;, which is in a height hgj = hpj - Nga,j below the surface point P;.
For the j-th couple of vertical deflections measured in the i-th mesh, we arrive at the the following

observation equations:

Ny 0B;  0B; dNyg 1
$ii = =3B, 'a_jz_a_J' 3B~ TP (2.27a)
0L ONgg -1 .
T =T 95 oL, T (N, + hy) -cosB; Tb P (2.27b)

M and N mean the radius of the curvature of the ellipsoid to the direction of the meridian and the
prime vertical, respectively.

The Riga region was chosen as test area and includes 35 GNSS /levelling points (h,H) and
10 deflections of the vertical data points (n,£) observed by the developed digital zenith camera.
The GNSS observations were partially provided by Latvian Geospatial Information Agency, as
well as being carried out in 4 hours sessions and processed using Bernese GNSS software v 5.2
(Dach et al., 2015) as fiducial stations using the EUREF Permanent Network (EPN) stations

(Haritonova et al., 2015) The postprocessed results were transformed to epoch 2017.0 using
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Helmert transformation (Balodis, et al., 2017). Besides field data observations from the developed
zenith camera and GNSS/levelling points, quasi-geoid data N and vertical deflections data (n,&)
were derived from EGM2008 (Pavlis et al., 2008a; Pavlis et al., 2008b, Pavlis et al., 2012) and
EIGEN6C4 (Forste et al., 2014; Kostelecky et al., 2014) geopotential models http://icgem.gfz-
potsdam.de/ICGEM/ (Ince et al., 2019) Both models are of the same degree and order n=m=2159.
The graphical display of the polynomial mesh (thin blue lines) and patch design (thick blue lines)
and the observed data (fitting points and deflections of the vertical) of the DFHRS software 4.3
are depicted in Figure 2.16.

m A 2m

Figure 2.16. Riga region observations (green triangles — GNSS/levelling points, black squares —

deflections of the vertical).

Different computation results are depicted in Figure 2.17, Figure 2.18 and Figure 2.19. Figure 2.17
shows the difference of the quasi-geoid models N based on EGM2008 and EIGEN6C4
geopotential models. In most parts of Riga region, the amplitude of difference in geoid heights is
in range from -1 up to +1 cm. The difference in the north of Riga region can reach up to 3 cm. The
Figure 2.18 depicts the use of deflections of vertical data derived from EGM2008 model and its
impact on geoid heights determination. This difference can reach from -3 up to +3 cm. Figure 2.19
shows the differences of deflections of vertical observations from digital zenith camera in
comparison without using this data. The range of differences varies from -7 up to +5 cm, what
proves significant impact of the use of deflections of the vertical (3, &) on a quasi-geoid

determination. The standard deviation of the deflections of vertical data is equal to 0.09 arcsec for
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& (North- South) component and 0,14 arcsec for 1 (East-West) component. Other statistics is

performed in Table 1.
Table 1

Statistics of vertical deflections observations (arcsec).

Mean RMS Min Max

g 0.072 0.09 -0.100 0.162
n 0091 0.14 -0.311 0.226

The calculations based on the preliminary results of vertical deflections observations approve the
successful use of digital zenith camera and instrument readiness for further collection of
observations. The computations using the DFHRS software v.4.3 allowed to carry out additional

control and software’s check for modelling and data errors in the frame of the data processing.
24° 25°

57°

Q] 2017 Fev 15 1306 10

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 003 0.04
m

Figure 2.17. The difference of quasi-geoid model for Riga region in comparison to EIGEN6C4
and EGM2008 geopotential models.
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Figure 2.18. The difference between using derived deflections of vertical data and without this

data.
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Figure 2.19. The impact of vertical deflections data from digital zenith camera.
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The residuals of standard deviations are depicted in Table 2. As it is seen from the Table 2 the
difference of the solutions is equal to 0.0001 m if we compare the results computed using
EGM2008 model and EIGEN6C4 model. It can be explained by the fact that the same terrestrial
data for these models were used in the territory of Latvia. The use of vertical deflection
observations from digital zenith camera improves standard deviation twice. This shows favourable

tendency for quasi-geoid improvement and also sustainability of digital zenith camera.

Table 2
Different solutions for Riga region quasi-geoid
Used data Standard
deviation (m)

EGM2008 model + observations from digital zenith camera 0.0050

EGM2008 model 0.0109

EIGEN6C4 model 0.0110

EGM2008 model with derived vertical deflections 0.0127

The residuals of some vertical deflection measurements are depicted in Table 3.

Table 3

The values of VD and its residuals.

Point ()

number ") ")
Riga 140 -0.060
560 -0.086

Daug -045 0.075
6.30  0.226

ksl -1.40 -0.100
500 -0.014

1ks2 -1.15  0.029
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Luni

Kang

Ceku

Salp

Vaiv

Zalv

5.15
1.80
6.30
-0.40
6.72
-1.72
6.55
-1.18
5.88
2.90
8.20
1.55
6.20

-0.009
0.162
-0.311
-0.016
0.059
-0.094
0.108
-0.087
0.011
0.042
-0.022
0.053
-0.059

The mean standard deviation after estimation is found to be about 0.11”. The observations from

digital zenith camera were continued in order to cover whole territory of Latvia and all

“suspicious” places were checked and are discussed in the further chapter of this PhD thesis.
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3. METHODS FOR QUASI-GEOID DETERMINATION

In this chapter several methods of quasi-geoid determination are introduced, as well as stages of
development of DFHRS software, as well as new method of DFHRS including both vertical
deflections and gravity measurements. Examples of quasi-geoid determination for Ulaanbaatar and
Riga cities are introduced and the obtained results are performed. In order to compare the
performed method of DFHRS and “classical” method performed by GRAVSOFT Riga region has

been chosen and the results are introduced.

3.1. Geoid determination by DFHRS v 4.3.

DFHRS (Digital Finite element Height reference surface (HRS)) v4.3. software has been
developed by Karlsruhe University, Institute of Applied Research. It is based on parametric
modeling of the HRS as a continuous polynomial surface. The access to the parametric HRS model
is enabled by DFHRS_DB data-bases and access-software, which allow direct conversion of
GNSS-heights h into physical normal heights H. DFHBF_DB stores HRS polynomial parameters
p and the scale difference (p, Am) together with the mesh-design information. The principle of a
GNSS-based height determination H requires submitting the GNSS-height h to the DFHRS (B, L,
h)-correction N, reading (Jéger, 2000-2022):

H=h-N=h-DFHRS (p|B, L, h) =h-NFEM (p|B, L, h) (3.1)

Oceans H = h - N

Figure 3.1. The principle of GNSS-based height determination (J&ger, 2000-2022)
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The mathematical model for observation groups in a common least squares computation (GauB-
Markov-Model) for the evaluation of the DFHRS_DB parameters p and Am is given by formulas
(3.2 — 3.5) (Jager, 2000-2022; Jager et al., 2012, Schneid, 2006)) where functional model for
uncorrelated ellipsoidal heights h:

h=v=H+h-Am+ NFEM(p|x,y) (3.2)
with NFEM (plx,y) =:f(x,y)T - p.
Functional model for correlated geoid height observations:

Ng(B, L) +v =f(x,y)T - p + aNg(d)) (3.3)
With a given real covariance matrix Cy,, or Cy,, evaluated from a synthetic covariance function.

Functional model for correlated observations of deflections from the vertical (& 7).

T

§v=gt et () (3.4a)

_ —fi
" (N(B) + h) - cos(B)

W+ -p+an(dl,) (3.4b)

Pairwise correlated or uncorrelated in case of astronomical observations. Correlated if derived
from a gravity potential model.
Uncorrelated standard height H observations:
H+v=H (3.5)
with covariance matrix:
Cy = diag(of,) (3.6)
Continuity condition equations introduced as uncorrelated so-called pseudo observations with ac-
cordingly small variances and high weights:
C+v=C(p) (3.7
With f; and f, we introduce the partial derivatives of f(x(B, L), y(B, L)) (3.4 a, b) with respect
to the geographical coordinates B and L. M(B) and N(B) mean the radius of meridian and normal

curvature at a latitude B. The continuity of the resulting HRS representation NFEM (p|x,y) =
f(x,y)T - p over the meshes (Figure 3.2, thin blue lines) is automatically provided by the
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continuity equations C(p) (3.7). A number of identical fitting-points (B, L, h; H) are introduced by
the observation equations (3.2) and (3.5) (Figure 3.2, green triangles). In the practice of
DFHRS_DB evaluation, one or a number of different geoid-/GPM such as the EGG97 or
EGM2008 are used in a least squares estimation related to the mathematical model (3.2 — 3.7),
which is implemented in the DFHRS-software 4.4. To reduce the effect of medium- or long-wave
systematic shape deflections, namely the natural and stochastic “weak-shapes”, in the observations
N and (&, n) from geoid- or GPM models, these observations are subdivided into a number of
patches (Figure 3.2, thick blue lines). These patches are related to a set of individual parameters,
which are introduced by the datum parameterizations AdN;(d’) (3.3) and
0&(d/¢,); an(d’¢,) (3.4 a, b). In this way, it is of course possible to introduce geoid height
observations and vertical deflections from any number of different geoid- or GPM models in the
same area, or observed vertical deflections (Jager, 2000-2022; Jéger et al., 2012).

Continuity conditions should also be considered, boundaries between two meshes should be the
same, so that meshes represent the whole continuous area (Younis, 2013). DFHRS v4.3 includes
all types of geometrical input data: both ellipsoidal and normal/orthometric heights, geoid/quasi-
geoid heights, vertical deflections, derived from Earth Gravity Model (EGM2008) or grids, and
observed vertical deflection measurements from digital zenith camera, as well as gravity data
derived e.g. from EGM2008.

As an example, in order to compute the DFHRS DB for Ulaanbaatar 94 Identical points
(ellipsoidal heights h and normal heights H in Baltic Height system) together with the EGM2008
geopotential model data were used. EGM2008 is a spherical harmonic model of the earth’s external
gravitational potential in degree and order of 2160, with additional spherical harmonic coefficients
extending up to degree of 2190 and order of 2160 that offers a spatial resolution of 9 km. EGM2008
incorporates improved 5x5 min gravity anomalies, altimetry-derived gravity anomalies and has
benefited from the latest GRACE based satellite solutions (Pavlis et al., 2008a; Pavlis et al.,
2008b).
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[

Figure 3.2. Computation design of DFHRS (meshes — thin blue lines, patches — thick blue lines,
fitting points — green triangles)

For meshing the area, mesh size of 5x5 km was chosen. Total amount of meshes — 1536. The
total number of patches is 5 (Figure 3.2). One patch must contain at least 4 fitting points. As points
of the region are not homogenously located, patches, were not introduced in approximately the
same size, but according to the location of the points. As geoid datum 3 translations and 3 rotations
were introduced, additionally derived deflections of the vertical from the EGM2008 model were
used.

The identical points and the EGM2008 geoid undulations were introduced together with the
continuity conditions into a least squares estimation of the so-called “DFHRS production”. The
calculation has been done using the DFHRS v. 4.4 software. 88 normal height points H of the
Baltic heights system could be used and were confirmed in the statistical testing (data-snooping)
with the assumed standard deviation of 1 cm. 6 points — 4039, 216, 230, 5051, 509 and 22 were
excluded from the computations because of gross errors. For 4 points (270, 1710, 1757 and
GR70/70) the normal heights H were changed in comparison to the previous data package provided
in 2017, the normal height for one point (1682) was used from previous data package. The partial
adjustment protocol of the DFHRS-software 4.4 with the observation residuals, statistical testing
of the height fitting points is depicted in Figure 3.3. (Morozova et al., 2018).
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Characteristics:

EV: Redundancy factor

NV: Normalized residuals, test size a priori

t_post: Test size a posteriori

GF: Estimated gross error is issued in case of exceeding

the critical value by NV, bzw. T post.

P

Probability of error Alpha: 5 %

Critical value a priori: 3.841552 degrees of freedom: infinity
Critical value a posteriori: 3.841549 degrees of freedom: 102887
Point number Height/Target sys. Res. EV NV t_post REPRO
[m] [m] [%]
137 1168.601 0.00009 18.88 0.0 0.5 -0.001
253 1441.619 0.00449 22.69 1.3 22.2 -0.020
268 1459.774 -0.00176 21.66 0.5 8.9 0.008
282 1318.717 -0.00275 19.97 0.9 14.5 0.014
505 1433.682 -0.00366 22.85 1.1 18.0 0.016
1598 1418.122 0.00106 16.46 0.4 6.1 -0.006
1710 1478.901 0.00345 22.20 1.0 17.3 -0.016
1731 1608.961 0.00347 20.96 1.1 17.9 -0.017
1747 1313.276 -0.00114 23.60 0.3 5.5 0.005
1757 1220.986 0.00231 20.85 0.7 11.9 -0.011
2324 1263.574 -0.00330 23.20 1.0 16.1 0.014
2329 1246.173 -0.00198 23.35 0.6 9.6 0.008
4750 1456.719 -0.00098 21.87 0.3 4.9 0.004
5006 1419.172 0.00655 23.67 1.9 31.8 -0.028
5019 1425.403 0.00617 23.32 1.8 30.2 -0.026

Figure 3.3. Final DFHRS software adjustment protocol at the example of Ulaanbaatar

The present DFHRS was calculated on the basis of the EGM2008 geoid and 88 identical reference
points. The accuracy of the identical points was confirmed with 1.0 cm, so the geoid of the
Ulaanbaatar region has an estimated 1-3 cm accuracy within the area of the outer ring polygon-
line of the fitting-points. The DFHRS_DB can be used by the software DFHBF-Tools to compute
the geoid height N, and so the normal heights H from the input of a 3D GNSS-position (B, L, h) or
(X, Y, Z), and in order to set up a respective geoid 2018 grid for the Baltic Height System (BHS-
77) in the Ulaanbaatar Region. Especially for the borders of the Region (Figure 3.2) additional
vertical deflection observations made by digital zenith camera (Zarins et al., 2016), (Morozova et

al., 2017) are recommended. In that way, the 1-3 cm accuracy will hold for the whole area.

3.2. Geoid determination by DFHRS v. 5.0

The DFHRS software 5.0 can process in addition also gravity observations. The mathematical
model of the integrated adjustment approach of the DFHRS software, version 5.0 parameterizes
the gravity potential W in a regional Spherical Cap Harmonic (SCH) representation, namely by
the SCH-coefficients (Ch, Snin)- As observation data the input the coefficients (Cppm, Snm) Of @
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global geopotential model (GGM), such as e.g. EGM2008 can be used, which are mapped to
regional SCHA-coefficients (Cym, Snm) (Younis et al., 2011). Further observations of the least
squares adjustment with the parameters p = (Cym, Snm) are observed gravity values g(B, L, h),
vertical deflection observations (& #), e.g. from zenith-cameras, and identical points (B, L, h | H).
The HRS results from the computed SHA parameters p = (Cypm, Snm) and W(Cpom, Srm),
respectively basically by the theorem of Bruns, namely as quasi-geoid. Quasi-geoid can be further
evaluated to a geoid N model. The results of quasi-geoid heights and geoid heights can be mapped
again to the HRS, which is represented by the above polynomial parameters p or by a traditional
HRS Grid.

Figure 3.4. Scintrex CG-6 relative gravimeter (author)

The extension of DFHRS concept and software to physical observation types — such as terrestrial,
air- or space-borne gravity measurements (for terrestrial gravity meter see Figure 3.4), or physical
observation types taken from geopotential models, e.g. EGM2008 — is based on a regional
spherical cap harmonic parameterization (SCH) of the Earth’s gravitational potential (V). The
benefit of an SCH-parameterization (3.8) with a local cap pole and a limited cap size area, instead

of an ordinary global spherical harmonic (SH), is that the same resolution of V can be achieved
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with SCH by a much smaller number of parameters than with SH. Thus, for a 2 mm resolution for
the HRS, a degree of 7200 for the SH parameterization by (Cy,n, Snim) IS required, while for a cap
size area of 100 km a degree of only k,,,,,=80 is enough in the case of an SCH parametric model.
Therefore, SCH is the key model for enabling the computation of high resolution HRS in the 2"
stage of the DFHRS research and development, meaning an integrated over-determined HRS-
computation for all types of geometrical and physical observations. The representation of

gravitational potential V of the Earth in terms of SCH with parameters (Cy, ) m» Sy m) réads:

k max k

a
V(i x,0') = z (;)"(k)+1 Z (Crgom * cosmA’ + Sy 4y m * sinmA’)
k=0 m=0 (3.8)

. P,’l(k),m(cose’)

Here the space position refers to the triple of spherical cap coordinates (r, 1°, €°). In the following,
the observation equation for terrestrial and air- or space-borne gravity observations g, is briefly

worked out.

The gravity observation g, at the Earth surface point P (taken with a gravity meter, see (Figure
3.4) is referring to the local astronomical vertical (LAV) system, and, therefore, for the respective

observed 3D gravity vector we have in total:
g=10,0,—gp] " 3.9)

— Original gravity observation and vector.

n

os(B)
deflections — from the vertical (& #). The original vector g“4" (3.9) is first rotated to the Earth-

The astronomical vertical (®=B+¢, /1:L+C )is set up by the ellipsoidal vertical (B, L) and the

centered Earth-fixed system (ECEF) using the astronomical direction (&, A) from a geopotential

model. In that coordinate frame, the centrifugal part of g“4" (3.9) is removed.

LGV _—

gret = [9n 98, 9r1" (3.10)
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The observation vector g;5¢ (3.10) is then further rotated in 3 components of the sphere as g5¢4,

to the SCH-representation frame (3.8). The SCH-related representation of the gravity vector (3.10)
reads:

s LAV 1 avav,

Ggrav = 1" 507 7 sing" 91" or (3.11)

The principal component of the rotated observed gravity observation g:SY (3.10) is related to the
third component of (3.11), and the accuracy of the vertical component of the SCH-transformed
observation vector (3.10) is nearly unaffected. So, in the so-called integrated DFHRS approach we

have the following observation equation for a gravity observation:
SCH GM | kemax (@) '
Ggrav, TV, =72 " 4k=0 (;) (Tl(k) +1)- Zm 0( n(k),m -cosmA’ + (3.12)
+Sn(k)m sinmA") + Py m(cos6")

With v, (3.12) we describe the observation correction of the gravity observation in the integrated

adjustment approach. By introducing the disturbance potential:

Tp = (V(C;L(k),mr §7’L(k),m) = Vier)p (3.13)

applied to the Bruns theorem and Molodensky’s theory, we obtain the observation equation for
fitting-points (h — H) converted to quasi-geoid heights (see 3.14) and vertical deflections
(&,)p (3.15 &, b) observed at point P as:

(V VTEf ) TP

h—H = Ngg = — (3.14)
Normal QG = Yo yQ
dNgg 9B 9B dNpg -1 1 @
§=——2 o —% 27,
9B 03Sy 0SB (M +h) y, 0B (3.15a)

-1

_ AL ANy -1 E -1 T
n= " 9S oL T (N+h)- cosB yQ ‘oL yQ (N + h) - cosB (BL)P (3.15b)
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In a new adjustment-based approach has been reported, which enables estimation of coefficients

(Chgioy,ms Sngo,m) Tor regional SCH model V (3.8) as functions of coefficients (Cpm, Spm) Of @
GGM. The estimated coefficients (Cyxy n» Snc)m) (YOunis et al., 2011) can be introduced as so-

called direct observations in the integrated approach, and we thus have:
C‘)IL(k),m +v= é and S‘r,l(k),m +v= g (316)

The integrated DFHRS approach, represented by formulas (3.9 — 3.16), is a far-reaching alternative
to the model described by (3.1-3.8), because it allows both “geometrical” and “physical”
observations and is free from a reduction. The integrated approach is presently being investigated

and implemented in the DFHRS software version 5.0.

The DFHRS v. 5.0 needs no reduction on topography or interior masses, and (3.9) can be directly

gp +Vy, = /m2+Wy2+Vl/ZZ
(3.17)

= \/(Vx(crllm' Sam) + Zx)? + (Vy (Coams Sam) + Zy)? + (Vo (Cams Srom) + Z5)?

modelled as:

and direct relation of (@, A)astr from zenith cameras reads:

W,

\/W) (3.18)

Dyser + Vo, = tan™"(

W,
Aastr + VAp = tan_l(Wy) (3'19)

X

Formula (3.14) is used to derive the quasi-geoid from the estimated SCH-parameters. The quasi-
geoid model or a grid (computed by the DFHRS approaches (3.1-3.8) or (3.9-3.16), respectively)
can be transformed to a geoid-model by the equation:

NG=NQG+‘9;V-H (3.20)
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The mean true gravity: g along the plumb line can be taken from a density model or a geopotential
model, while the mean reference gravity value: 7 - from the closed formulas related to the GRS80
(Younis, 2013).

In case of orthometric heights as a national vertical height system (e.g. NAVD88 — North American
Verical Datum 1988), the transformation equation between orthometric height Horth and normal
height Hnorm can be used:

g-v
Hporm — Hortn = Ng — Nog = T H (3.21)

The difference between normal height and orthometric height is depicted in Figure 3.5:

]

P
b —
/\“\_//_’_ﬂ Earth Surface
NQG
—_——
Hon Q Telluroid
p ] Huorn
/____"" - Geoid
Ns
Ql Q) Ellipsoid Uo
A —

Figure 3.5. Orthometric height vs. normal height (Younis, 2013).

3.3. Development of the DFHRS v. 5.1 software

The next development step of the software concerns the use of spherical-cap-harmonics as the
designed carrier function for the DFHRS v.5.1. It enables — in the sense of the strict integrated
geodesy approach, holding also for geodetic network adjustment — both a full gravity field and
geoid determination. In addition, it allows the inclusion of gravimetric measurements, together
with deflections of the vertical from digital zenith cameras, and all the other types of observations.

The advantage of spherical-cap-harmonics (SCH) modelling in comparison to spherical harmonics
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(SH) that less parameters are needed in order to compute local area instead of whole sphere (Younis
et al., 2011), (Younis, 2013). This method was developed by (Haines, 1985a), (Haines 1985b).
The gravitational potential V in terms of SCH for a point P (r, a, 8) within the cap reads (Haines,
1988):

n(k)
Z (Crincosma + Sy sinma) Py ey m (cos6) (3.22)

V(r,a,G)—TM Z ( )

The ¢}, and S, coefficients are unknowns and have to be determined by least square estimation.

The basic concept behind SCH is to expand gravity potential V in two sets of basis functions
which satisfies Laplace’s equation (De Santis &Torta, 1997), (De Santis et al., 1999) within the
spherical cap and are mutually orthogonal in each set. The Legendre functions are chosen in order
to satisfy the following boundary conditions (Haines, 1985a);

dP,{';((B:a:)
de

dP7 (8 = a) = 0 for k—m =odd, (3.24)

=0 for k—m =even, (3.23)

where a is the cap half-angle, and k is used to index (in ascending order) the roots nk of (3.23) and
(3.24) at a given value of m (De Santis, 1991).

The local coordinate system is defined by cap opening angle and local pole is depicted in Figure
3.6.

Figure 3.6. Spherical cap area with its own pole located at the origin of area of interest
(Younis, 2013).
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The starting point for the quasi-Geoid based theory of Molodensky implemented in the
DFHRS-approach and software 5.0 reads with:

Tp=( (r, a, B‘Clnm,S;lm) +Z(x,y,2)— U, «a, u))lD (3.25)
(V+Z-U), Tp (3.26)
w“r Yo Rz
6=6(¢n)

Earth Surface

Telluroid

Quasi-geoid

Ellipsoid

Figure 3.7. Deflection of vertical at point P (author)

Consistent with the above quasi-geoid theory of Molodensky and the Bruns theorem, we have
zenith-camera based measured surface vertical deflections at surface point P, referring to the
telluroid point Q (see Figure 3.7):

$p= Paserp — B (3.27 a)
Np = (@gsrp — L) - cOSB. (3.27 b)

Starting with the quasi-geoid formula and introducing again the potential model related Tr we

get the vertical deflections at the Earth Surface P as (see Figure 3.7).

67



g =—WNos __ONgc 0B _ 0BONgs -1 19,
P dSnoreh 0B dsy ds 0B~ (M+h)y,0B "

(3.28 a)

-1 aT
- m (@)P + 6gnorm.curv. -

- -1 _ <6T(Cn(k)‘m’5n(k>’m))> 5
ij : (Mj + hj) aBj P, norm.curv.
=_quc;=_6_LaNQG= -1 iiT
Mp dSgast ds OL (N + h)cosB Yo 3LIP
- -1 oT.
= YoV + hycosB AL

= —1 . (aT(Cn(k).m.S"(k),m))>
Yo, (N; + h)) - cosB; oL, K

(3.28 b)

8¢ norm.curv, 18 the difference between Helmert and Molodensky deflections due to the curvature

of the normal plumb line (Jekeli, 1999) and Yo; is the ellipsoidal normal gravity for a point Q on

the so called telluroid with the same latitude and longitude as the calculation point and an
ellipsoidal height. The telluroid is not an equipotential surface and defined as the surface whose
normal potential is equal to the actual potential at point P (see Figure 3.7).

For above differentiation of Tp in the direction of the ellipsoidal latitude B and longitude L 4
different coordinate systems in Tp have to be handled, as we have (3.25) the solution at first we
bring together the local CAP system and the spherical system, we have:

r=r (3.29%9)
cosgsin(A — 1y)

t = (3.29b)
ana singcos@y — cospsingycos(A — Ag)

cosf = sin@sing, — cos@cosy cos(1 — Ay) (3.29¢)

For the remaining 3 systems for the position of the point P, the common denominator are the
Cartesian 3D coordinates (X, y, z) (Jager, R. 2002-2022):

x rCOSPCcosA
y] = |rcos@sini (3.30)
z rsing
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[(N(B) + h)cos(B)cos(L)]
N(B) + h)cos(B)sin(L) (3.31)

X
[y = b2

z (;N(B) + h) sin(B)
X |[u ,1 + &2 /u? cosﬁcos/ﬂ'
[321] ~u fl + €2 /u? cosPsind

[ usinf ]

(3.32)

With (3.29 a, b, ¢), (3.30), (3.31) and (3.32) and the common relation to (X, y, z) we have
consistency in the georeferencing and we can set up the derivatives (Z—Z) , (3.27a) and (Z—I ,

(3.27b) by applying the chain rule to (3.29 a, b, ¢) to (3.32).

So the vertical deflections parameterize now in DFHRS 5.x the carrier function of the spherical
Cap harmonics potential and respective Cnm°, Sam* coefficients instead of polynomial coefficients
used in the DFHRS approach and software 4.x. By DFHRS 5.x also surface gravity measurements
gr can be included, in opposite the DFHRS 4.x.

From the final potential computed in a least squared adjustment the quasi-geoid can be computed
again by using (3.29) and (3.30). A geoid can be computed afterward by applying:

Ng =Nogg + gH (3:33)
The method of spherical-cap-harmonics modelling in terms of integrated geodesy allows to
compute precise quasi-geoid model to be used for GNSS measurements. Combination of all data
gives an opportunity to define height reference surface using independent measurements (both
geometrical and physical observations). The use of vertical deflections measurements allow to
check/control reliability of heights computed by GNSS/levelling points. SCH in comparison to
ordinary SH is fast method and does not need so much memory for computations (Torge, 2001),
(Vanicek, 1976). The realization of this method combining all data and implementation in DFHRS
v 5.0 version is developed under Visual Studio 2015 using C++ programming language.
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3.4. Geoid determination based on the Stokes Approach

In this chapter the basic principle of Stokes approach is discussed. Though this method is neither
an integrated approach nor Gauss-Markov approach, this method was used for Riga region in order
to compare the results of two methods.

The GRAVSOFT Fortran software for the determination of a regional or local approximation to
the anomalous gravity potential is based on the 3D Least-Squares Collocation (LSC) developed
by (Krarup, 1969; Moritz, 1972) and its principle is described in this chapter. The software also
implements the remove-compute-restore (Hofmann-Wellenhof and Moritz, 2006) method so that
gravity variations outside the region of computation are accounted for by subtracting the
contribution of a Global Geopotential Model (GGM) and so that statistical homogenization is
achieved by removing the contribution of topographic short wavelength features (Tscherning,
2008).

In the RCR technique, the contribution of the long-wavelength component and the terrain effect
are removed from terrestrial gravity anomalies (3.34). Accordingly, the reduced gravity are

obtained by:

Agres = Agra — Aggem — Agrrm (3.34)

where Agr, — the free-air gravity anomaly on the geoid surface;
Ageem — the contribution of the GGM (e.g. EGM2008) to gravity anomaly;
Agrry — the terrain effect on gravity.

Then the reduced gravity anomalies are processed to obtain the geoid undulation, and finally the
long-wavelength contribution and the effect of the topography are restored to the undulation (3.35).
The geoid undulation with restored long-wavelength term and topographical effect can be

summarized by:

N = Ngem + Npg,es T Nrrm (3.35)

where Ngqp — the contribution of the GGM,;
Nyg,,. — the residual geoidal height;

Ngru — the indirect effect of the terrain on the geoidal height.
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The contributions of the GGM on the geoidal height and gravity anomaly are:

MNmax n
GM a\™ _
Ngem = gy (;) Z (CpmecosmA + Sy sinmA) Py, (cosh) (3.36)
Y n=2 m=0
And
nmax
Ageem = Z (n— 1) Z (CrmCOSMA + Sy SINMA) Py (cos6) (3.37)

can be calculated by the GGM coefficients (Heiskanen and Moritz, 1967). In equalities, GM is the
product of the Earth’s mass and the gravitational constant, g is the normal gravity on the reference
ellipsoid, r is the radial distance to the computation point, a is the semi-major axis of the reference
ellipsoid, Cnm and Snm are the fully normalized harmonic coefficients of the anomalous potential,
Pnm is the fully normalized Legendre function, y and | are the geodetic co- latitude and longitude
of the computation point P, respectively. In the RCR application of the study, a grid of reduced
free-air anomalies, Dgred, obtained with the subtraction of GGM contributions from the mean

free-air gravity anomalies, inputs to Stokes’ kernel, then the residual geoid height is calculated by:

R
NAgred = HIU SW)Agreqdo (3.38)

where ¢ denotes Earth’s surface, S(3) is the original Stokes’ function. In gravity reduction,
Helmert’s second method of condensation can be applied. Accordingly, the terrain effect on
gravity is computed as follows (Heiskanen and Moritz, 1967):

GpR? (Hq —Hp)?
Agy = — f

0

do (3.39)

and the terrain contribution on geoid height (N,;,) is calculated with spherical FFT (Schwarz et
al., 1990) evaluation of Stokes’ kernel using Agy in “Compute” step (Erol et al., 2009). Also the
indirect effect on the geoid heights for Helmert’s second condensation method can be computed
(Sideris, 1994):

ANjpg = —

nGpH2 GR2 (H3 H)
P p f Q £ (3.40)

Y
where

p — the topographic density,
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Ly —the planar distance between the points P and Q, Hq, Hp are the heights of the computation and

running points, respectively. Finally the gravimetric geoid height is restored as the summation of

the constituents in the “compute step”.

The Riga region has been computed using the above mentioned method in terms of supervised

master’s thesis. For the computation of Riga quasi-geoid model such data sets were used:

1.

Free-air gravity anomaly data provided by LGIA for the region from 56° 45' 00" to 57° 15'
00" latitude and 23° 30' 00" to 24° 45' 00" longitude;
Spherical harmonic model of the Earth's gravitational potential EGM2008;

3. Digital terrain model DTM developed by LGIA;

15 Fitting GNSS/levelling points for Riga administrative territory and its close

surroundings and 6 GNSS postprocessed points for checking the model.

Using GRAVSOFT software quasi-geoid model RIGA 20 (see Figure 3.7.) (Pahtusovs, 2021) has
been computed with a standard deviation of 16 (68 %) probability — 6mm. To check quasi-geoid

model 6 GNSS postprocessed points (ellipsoidal heights) were used and in the result normal height

differences in range of -0.015 m to -0.007 m, with a mean difference -0.002 m were computed.

23 23.2 23.4 23.6 23.8 24 24.2 24.4 24.6 24.8 25 25.2

Figure 3.7. Quasi-geoid model for Riga region computed by GRAVSOFT software
(Pahtusovs, 2021)

Quasi-geoid model has been checked also in RTK (Real Time Kinematics) mode and in the

result normal height differences using LatPos (Zvirgzds, 2007; Zvirgzds, 2012) were in range

of -14 mm to 26 mm, with a mean difference of 8 mm, and in case of EUPOS-Riga (Balodis

72



et al., 2009) system — the differences were obtained in a range of 23 mm to 27 mm, and a mean

difference equal to 5 mm.

RIGA’20 has been compared with LU GGI’20 quasi-geoid model at 40 GNSS/levelling
points. The results are depicted in Figure 3.8. and Table 4.

57°06'

57°00'

56°54'

56748'

24°18'

24°18'

57°06'

57°00'

56°54'

56°48'

Figure 3.8. Comparison of RIGA’20 and LU_GGI’20 at levelling points (author).

The differences vary from -0.016 m to 0.019 m, and the mean difference is equal to 0.006 m.

As it can be seen from the Figure 3.8. the majority of differences are positive, what means that

quasi-geoid model computed by GRAVSOFT is higher in a mean, especially it can be well

seen from the left bank of the Daugava river.

Table 4

The differences of RIGA’20 and LU_GGI20.

Nr. Point B L AE
1 1 56.857980 24.305300 0.005
2 37 57.008250 24.244450 -0.012
3 75 57.050550 24.172550 0.003
4 173 56.950900 23.984010 0.015
5 249 56.938420 24.097310 0.013
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393
435
728
824
1128
1176
1277
1837
1870
1960
2885
3336
3389
3389
4407
4416
5340
5715
6330
6475
6475
6709
6980
7705
8000
8584
024C
0753i
114B
1272i
366A

57.014300
56.845520
56.887760
56.998530
57.037940
56.978440
56.928160
56.902110
56.956140
57.063800
57.070690
56.942870
56.891000
56.891000
56.965740
56.998010
56.974650
56.905610
56.972420
56.946650
56.946670
56.959380
57.029300
57.034820
56.989990
56.994430
56.828400
57.075410
56.961080
57.000900
56.937010

24.311940
24.048640
24.334430
24.077240
24.038190
24.185100
24.003810
24.133100
24.165860
24.032320
24.102160
24.242950
24.075380
24.075390
24.057210
24.029370
24.254680
24.211070
24.341700
24.154340
24.154290
24.097970
23.998350
24.125140
24.158840
24.258350
24.272770
24.117050
24.302520
23.936600
24.225330

-0.015
0.019
0.007
0.015
0.008
-0.001
0.016
0.011
0.004
-0.003
-0.002
-0.002
0.017
0.017
0.019
0.019
-0.011
0.005
-0.004
0.007
0.007
0.015
0.012
0.007
0.003
-0.016
0.010
-0.001
-0.002
0.016
0.002
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37 661A 56.994800 23.920690 0.017

38 872i 56.910530 24.145840 0.008
39 875A 56.920950 24.299100 0.009
40 RUTK 56.918000 23.993950 0.017

3.5. Geoid determination by KTH method

The geoid calculation by KTH method was developed at the Royal Institute of Technology (KTH)
in Stockholm. It is also well known method and is used in many countries (e.g. Abdalla et al.,
2016). This method is based on the modification of Stoke's formula (Sjoberg 1986; 1991; 2003a;
2003b):

N = %ﬂ; S)Agdo (3.44)

where
R — the mean Earth radius;
y — the normal gravity on the reference ellipsoid;
w — the geocentric angle;
Ag — the gravity anomaly;
do — an infinitesimal surface element of the unit sphere o;
S(w) — the Stokes function which can be expressed as a series of Legendre polynomial
B, (cosy) over the sphere (Heiskanen and Moritz, 1967):
SW) = Y By (cosy) (3.9

n
n=2

Where n is the spherical harmonics degree.

For geoid determination the surface integral in Stokes’ formula (3.45), has to be applied over the
whole Earth. Nonetheless, in practice, the area is limited to a small spherical cap so around the
computational point due to limited coverage of available gravity anomaly. In this case the integral
has to be truncated at the borders of the study area g, Due to the neglection of gravity anomalies
in the remote zone, a truncation error takes place. Molodensky et al. (1962) proposed that this

truncation error can be reduced when Stokes’ formula combines the terrestrial gravity anomalies
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and long-wavelength information from the GGM. The method is called modification of Stokes’
formula (Abbak et al., 2012). The KTH method combines terrestrial gravity data and
longwavelength components of the gravity field in a stochastically modified Stokes’ kernel.
Accordingly, the stochastic KTH method uses the least squares principle to minimize the expected

global mean square error of the modified Stokes formula (Sjoberg, 1984; 1991; 2003b)

~ 4y f f St()Agdo + — Z byAgn (3.46)

where

St () — modified Stokes’ function;

L — Maximum degree of the arbitrary parameters S,, of the modification;
— gravity anomaly derived from GGM;

M — upper limit of the GGM.

The modified Stokes’ function is:

st =3 2 L com) - Z

n=2

m+1 (3.47)
S B, (cosy)

where the first part of the right side of the equation is the original Stokes function, S(3), in terms
of Legendre polynomials. Generally the upper bound of the harmonics to be modified in Stokes’
function, L, is arbitrary and may not necessarily be equal to M, the upper limit of the GGM.

In addition to the least-squares modification, the KTH approach also applies specific additive
corrections. Thus the geoidal height N can be summarized by the following formula (Sjoberg,
2003b):

N=N+8N2P, + SNpywe + SNAT + SN, (3.48)

com

where N is the approximate geoid undulation defined in equation (3), and the additive corrections
are: SN'2P —  combined topographic correction including the sum of direct and indirect
topographical effects on the geoid;

6Npy ¢ — downward continuation (DWC) effect;

SNAT™ _ combined atmospheric correction including the sum of the direct and indirect

atmospherical effects;
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6N,y — ellipsoidal correction for spherical approximation of the geoid in Stokes’ formula to

ellipsoidal reference surface.

The combined topographic correction SN %

can be computed by (Sjoberg, 2007):

2nGpH? 2H
ONLghy = == (1+57) (3.49)

Where G — the Newton gravitational constant;

p — Earth’s crust density;

H — the elevation of the topography.

The downward continuation (DWC) effect § Npyy¢ in its terms can be computed by the sum of its

COmpOnentS:
8Npwe = SNpwe + SNpe + SNjiyc (3.50)
where
Agp N 1 dAg
1 _—JpP 0 _ 2
SNpwe = Y Hp + 3TP Hp 2 or |, (3.51)
DWC = 2y Z [(_)n+2 - 1] Agn (3.52)
and
R dAg
SNE2 ——ﬂ St [—| Hp — H ]da (3.53)
bwe =g " @) o P( P 0)|dag

Where rp=R+H; is the spherical radius of the point P, Hp is the orthometric height of point P. The
gravity gradient at point P is calculated based on (Heiskanen and Moritz, 1967):

0A Ago — A 2
Jag ff gQ gF _ EAQP (3.54)

or

P
where

ly = 2Rsm(1’b Q

is the spherical distance between the computation point P and running point Q.
In the KTH scheme, the combined atmospheric effect can be approximated to topographic height
H (Sjoberg and Nahavandchi, 2000).
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M M
2nGRp® 2 2nGRp“ 2 n+2
o =S (LI S (2 K ), s
comb y n—1 n n y n—1 2n+1Qn n( )
n=2 n=M+1

where p® is the density of the atmosphere at sea level. An ellipsoidal correction calculated by
simple formula (Ellmann and Sjoberg, 2004):
SN,y ~ [(0,0036 — 0,0109sin?@)Ag + 0.0050Ncos? @] Q§ (3.56)

where Q& denotes the Molodensky truncation coefficient.
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4. SPHERICAL HARMONICS AND GLOBAL MODELS

This chapter is devoted to the construction and manipulation of so-called global models of the
anomalous potential. These are basically truncated series of spherical or ellipsoidal harmonics.
These functions are so important in physical geodesy that they need to be carefully introduced and
their mathematical properties have to be known by everyone dealing with gravity field
representations (Pavlis et al., 2006; Barnes et al., 2020). In this chapter the definition of spherical
harmonics definition, Legendre functions, development of global geopotential models are
represented. New global model EGM2020 is about to release soon, and in order to contribute this
model the collected vertical deflection data which were observed on the territory of Latvia has
been provided to NGA.

4.1. Legendre functions

The definition of B,(t) as coefficients of the Taylor series of the function:

1
= —m—mm—-- 4-1
G0 1+ 52— 2st 1)

Also called the generating function of Legendre polynomials.

So, we have

+o0

G(s,0) = Z S"P,(6) (4.2)
n=0
The series being convergent in the interval
0<s<lI.

Note that in the end we want to substitute t = cos, so we can restrict ourselves to study B, (t)

in the interval:
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Corresponding to
O<y<m.

Since (4.2) is a Taylor series, we can compute B, (t) from
1
Pa(t) = —DYG(s,0)ls=o. (46)
In this way for instance we can get:
1 1
Po=1,P(t) =t P(t) = §(3t2 —1), P;(t) = 5(51:3 —30), (4.7

Suggesting that B, (t) are polynomials of degree n, with the same parity as n, i.e. even for n even
and odd for n odd. We shall soon see that this is the case, however we will need a more handy tool

than formula (4.6). In fact consider that G(s,t) satisfies identically the relation
(1482 = 2st)D;G(s,t) = (t — s)G(s, t). (4.8)

If we insert series (4.2) into (4.8) and equate the coefficients of the same powers in s, we find the

remarkable recursive relation:

(n+1) Py (8) = @n+ e B(0) —n Py () (4.9)
Since we already know that P, = 1, P;(t) = t, (4.9) allows the direct computation of P,(t) for
any t.

Furthermore, not only (4.9) provides us with a rule for a very fast computation of B, up to n equal

to several thousands, but also gives us the possibility of better understanding the nature of B, (t).

First of all we now see that if P,,_;, B, are polynomials of degree n-1 n respectively, that P, is
a polynomial of degree n+1; furthermore, if P,_; has a certain parity and B, the opposite parity,

then P, has the same parity as P,_;.

Moreover, by taking t=t1, (i.e. y=0 or n) in (4.1) and (4.2) we find:
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+0o

ZS"Pn(il) - (115) - Z(:gn; (4.10)
- n=0

n=0
(4.10) has to be an identity in s, so we have proved that

P =1Ak(-D =DM (4.11)

4.2. Fully normalized Legendre functions

The fully normalized associated Legendre functions B,,,,(t) sometimes also called fully
normalized harmonics, can be computed from the conventional associated Legendre functions
B, by (Torge, 1991):

Pum(t) = j k(2n+ 1) %Pn,m(t). (4.12)
. _(Lform=0;
with ke = {Zform # 0.

The associated Legendre functions can be computed with the following recursive formulas (e.g.,

Bronstein and Semendjajew, 1991; Abramowitz and Stegun, 1972):

Pos1,0(t) = (20 + 1)tPy(t) — nPay,0(1) (4.13a)
Pon(t) = 2n — DuPy_1 () (4.13b)
Pum(®) = Py_g () + (20 — DuPy_y -1 (1) (4.13c)

With the starting values if we assume t = sing and u = cos@:

Poo(t) =1
Pio(t) =t,
P 1(t) =y,

3 1
Pyo(t) = Etz -

PZ,I(t) = 3ut,
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Py, (t) = 3u?
However, these recursion formulas become numerically unstable for large m and n (>120) and you
may have to use more sophisticated formulas (Moore, 1999). As example, one method from
(Holmes and Featherstone, 2002) is introduced:

For the fully normalized non-sectorial (i.e., n >m) B, ,,(t) you can use the following recursion:

Bom(®) = apmtPu1m(®) = bymtPn_om(0), foralln >m (4.14)

_ |@Gn-1)(2n+1)
Tl (- m)(n+m)

b = Cn+1)(n+m-1(n—-—m-—1)
m (n—=m)(n+m)(2n—3)

Where

An,m

The sectorial (i.e. n=m) B, ., (t) serve as seed values for the recursion in Formula 4.14. Starting

from Py o(t)=1 and P, ; (t)=V3u, it can be computed from (Moore, 1999):

pm,m(t) =u %pm—l,m—l(t) (4.15)
Bom(t) = u'"\/iﬂ ,Zi; ! (4.16)
i=2

4.3. Spherical Harmonics

For all m>1, so, that:

The solid spherical harmonics are an orthogonal set of solutions of the Laplace equation
represented in a system of spherical coordinates, e.g. (Hobson, 1931; Freeden, 1985; Hofmann-
Wellenhof and Moritz, 2005). Thus, each harmonic potential, i.e. which fulfils Laplace’s equation,
can be expanded into solid spherical harmonics and can be solved e.g. using MATLAB (Bucha
and Janak, 2013; Trauth, 2006). The spherical harmonic (or Stokes”) coefficients represent in the
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spectral domain the global structure and irregularities of the gravity field of the Earth (Barthelmes,
2013).

The equation relating the spatial and spectral domains of the geopotential is as follows:

lmax 1

GM R
W, (1,4, @) = — Z (7)1le(sin(p) - (Cl cosmA + S sinmA) (4.17)

1=0 m=0
Where:
r, 4, @ — spherical geocentric coordinates of computation point (radius, longitude, latitude);
R — reference radius;
GM — product of gravitational constant and mass of the Earth;
I, m — degree and order of spherical harmonic;
P, — fully normalised Lengendre functions;
cl .SV —Stokes’ coefficients (fully normalised).
Formula represents the Earth’s gravity field with an accuracy depending on the accuracy of the

coefficients CJ, , S}, and a spatial resolution depending on the maximum degree L4

4.4. Data and missions for the development of Global Geopotential
models

The recent developments of GGMs have been based on satellite-only solutions or solutions that
combine satellite and terrestrial measurements and, they have been produced in the form of
spherical harmonic expansions (Torge, 2001). Three kinds of gravitational information are

available for the development of high-degree combination models (Pavlis, 1997):

1. Information obtained from the analysis of satellite orbit perturbations, which is necessary for
the accurate determination of the low degree part of the model. The European Space Agency (ESA)
launched the Gravity field and steady-state Ocean Circulation Explorer (GOCE) in order to map
the earth’s gravity field. It carried a full-tensor gradiometer consisting of 6 three-degree-of-
freedom accelerometer pairs oriented in three orthogonal directions over a very short baseline. All
nine components of the differential acceleration tensor were measured independently, though not
all with equal precision. The gravitational gradients are derived from them and angular
accelerations and velocities derived from symmetry properties and star tracker data (Rummel et

al., 2011). The other well known satellite missions for measuring gravity field are CHAllenging
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Minisatellite Payload (CHAMP) (Reigber et al., 1999) and Gravity Recovery and Climate
Experiment (GRACE) (Tapley et al., 2004).

2. In order to solve both long and short wavelength features of the gravity field surface and
airborne gravimetric data are used. This however requires global coverage with dense gravity data
of high accuracy (which is problematic in some regions (Marchenko and Dzhuman, 2015). Though
gravity anomaly data are susceptible to various systematic errors (Heck, 1990) and these errors, in
conjunction with the non-uniformity of coverage, degrade the long wavelength integrity of the
gravitational information which can be extracted from surface gravimetry, nevertheless, surface
and airborne gravimetry presently provide the only data that can resolve short wavelength gravity
features over land. In addition, ship borne gravity measurements help to separate the geoid from

the dynamic ocean topography (DOT) signal when used in combination with satellite altimetry.

3. Satellite altimetery data (Eshagh, 2021) allows to perform the mapping of the field over the
oceans, both in terms of accuracy and in terms of resolution. Satellite altimetry missions began at
1991 by launching ESA satellite ERS-1. The U.S.-French Topex/Poseidon (T/P) (Fu et al., 1994)
was launched from Kourou in August 1992. T/P routinely provides measurements of the sea
surface which, for the first time, are not significantly contaminated by radial orbit error (RMS
radial orbit error at the £ 2 to 3 cm level). However, altimetric measurements are confined over
the ocean areas bounded by the satellite's inclination, and furthermore provide a mapping of the
sum of the geoid undulation plus the DOT. These aspects weaken somewhat the contribution of
altimeter data in the determination of the long wavelength gravitational field and necessitate the
appropriate modeling of the DOT when altimeter data are used in combination solutions. The
complimentary character (both in a spectral as well as in a geographic sense) of satellite tracking,
altimetry and surface gravimetry data, enables the determination of the gravitational field in
combination solutions, over a wider band of its spectrum, with improved accuracy than can be

obtained by using any of the three data types alone (Pavlis, 1997).

84



5. TESTS AND ANALYSIS

The three solutions of the quasi-geoid model for Latvia were prepared using different data sets:
global geopotential model EGM2008 (Pavlis et al., 2008a; Pavlis et al., 2008b; Pavlis et al., 2012)
and GNSS/levelling points; EGM2008, GNSS/levelling points and VD observed by DZC; and
EGM2008 using additionally VD derivatives from the model, GNSS/levelling points and VD
observed by DZC. The results of 3 solutions can be found in the Table 4.

Table 4
The statistical results of 3 solutions for quasi-geoid model evaluation using 3 data sets [in units
of m].
Data set SD Min Max Mean

GNSS/levelling points + VD derivatives
from EGM2008 + observed VD by DZC

EGM2008 (without VD)+GNSS/levelling
points + VD by DZC

0.006 -0.012  0.012 0.000

0.017 -0.068  0.074 0.001

EGM2008 (without VD)+GNSS/levelling 0.038 -0.106  0.246 0.006
points

58°00' i 58°00'
57°30' 57°30'
57°00" 1 57°00'
56°30' 5630’
5600 1 56°00'

Figure 5.1. LU_GGI’20 quasi-geoid model (author)
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The developed quasi-geoid model is depicted at Figure 5.1. The quasi-geoid heights vary from
18.94 m in the North and North-East at Estonian and Russian borders and 24.44 m in the South-
West near the Baltic Sea and the Lithuanian border. The computed quasi-geoid model (A solution)
has been compared with the national Latvian model LV’14 (LGIA homepage) and quasi-geoid
model NKG2015 (Agren et al., 2016) computed by the Nordic Geodetic Commission.

21" 22 23 24 25° 26’ 27" 28"
w T i

57°

21" 22 23 24' 25° 26" 27" 28"

m
-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
Figure 5.2. The comparison of LU_GGI20 quasi-geoid and LV’14
21" 22" 23" 24’ 257 26" 27" 28"
21" 22" 23" 24' 25" 26" 27" 28"
m

-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

Figure 5.3. The comparison of LU_GGI20 quasi-geoid and NKG2015
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The comparison of LU _GGI’20 and LV’14 is depicted in Figure 5.2. The differences between
LU_GGI’20 and NKG2015 are depicted in Figure 5.3. The average differences and standard
deviations are depicted in Table 5.

Table 5

The comparison of LU_GGI’20 quasi-geoid model with LV’14, NKG2015 models.

Min Max Avg STDEV
LV’14 -0.098 0.073 0.009 0.020
NKG2015 -0.065 0.086 0.008 0.017

The comparison of the quasi-geoid heights and geodetic (h) minus normal heights (H) from LGIA
database has also been performed for LU _GGI20 (Figure 5.4), LV’14 (Figure 5.5) and NKG2015
(Figure 5.6). The summary of these differences is depicted in Table 6.

21° 24 27

21" 24 27

Figure 5.4. The difference between LU_GGI’20 quasi-geoid heights and h-H values from LGIA
database (author)
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21° 24" 2r°

Figure 5.5. The difference between LV’ 14 quasi-geoid heights and h-H values from LGIA
database (author).

21" 24° 27"

21" 24° 27"

Figure 5.6. The difference between NKG2015 quasi-geoid heights and h-H values from LGIA
database (author).
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Table 6

The comparison of quasi-geoid heights and h-H values from LGIA database [in units of m].

Min Max Avg STDEV
LU_GGI20 -0.026 0.025 0.000 0.012
LV’14 -0.081 0.082 -0.017 0.026
NKG2015 -0.070 0.040 -0.010 0.021

Terrestrial VDs observed by DZC were compared with VD derivatives from global geopotential
models (see Table 4), e.g. GGMplus (Hirt et al., 2013) and EGM2008, and computed the quasi-
geoid model LU_GGI20. The results show a better correspondence with the GGMplus model by

evaluating the standard deviation: 0.314 and 0.307 arcsec for & and n components respectively in

comparison to 0.346 and 0.358 arcsec for & and 1 components for the EGM2008 model. The

correspondence of terrestrial VD to derivatives computed from the LU_GGI20 quasi-geoid model

is significantly better: the standard deviation is 0.055 and 0.046 arcsec for & and m respectively.

More statistics can be found in Table 7. The comparison of terrestrial VD observations to

EGM2008 and GGMplus are depicted in Figure 5.7 and Figure 5.8 respectively.

Table 7

The comparison of terrestrial VD observations observed by DZC to GGMs, and LU_GGI20 [in

units of arcsec].

Min Max Avg STDEV
g n 3 n 3 n g n
LU GGI'20 -0.348 -0.190 0216 0162 0.007 -0.002 0.055  0.046
GGMplus ~ -1.300 -1.370 1105 1194 0.008 -0.025 0.314  0.307
EGM2008 -1.351 -1.031 1747 2509 0013 -0.024 0346  0.358
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21 24 27
Figure 5.7. The comparison of terrestrial VD and EGM2008 (author)

21" 24 27

21° 24 27"

Figure 5.8. The comparison of terrestrial VD and GGMplus (author)
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For the first time a high number of observations of terrestrial vertical deflections (VD) have been
done on the territory of Latvia. The application of VD observations for the quasi-geoid model
determination has shown the significant improvement of the computed quasi-geoid model. The
standard deviation of the observation residuals after the adjustment, considering both VD
derivatives from GGMs and terrestrial VD observed by DZC is equal to 0.006 m. Terrestrial VD
observations fit the developed quasi-geoid model well, and the standard deviation for & and 1
components are equal to 0.055 and 0.046 arcsec respectively. Comparing the terrestrial VD
observations to GGMs: no significant difference in standard deviation between GGMplus and
EGM2008 was found, though the maximum difference for n component was 2 times less for
GGMplus model. The final LU_GGI20 quasi-geoid model corresponds better to the NKG2015
model: the average difference is equal to 0.008 m in comparison to the LV’14 model, where this
difference is equal to 0.009 m. The quasi-geoid heights have also been compared to ellipsoidal
minus levelling heights: the standard deviation is equal to 0.012 m with minimum and maximum
differences -0.026 m and 0.025 m respectively. As astrogeodetic deflections of the vertical are an
additional observation group, being independent from gravimetric geoid models and gravity
observations, the combination of both gravity data and terrestrial VD observations, together with
the stochastic prior information of the SCH coefficients from a global gravity field model, give a
complete integrated approach for quasi-geoid determination. In this context, the next research step
should deal with the 1st order design problem of the optimal positions of VD and gravity

observations for regional gravity field determination.

The next research step concerning the DZC, is to test the DZC in various environments for the
investigation of anomalous refractions in zenith. It will include long-term observations for seeking
characteristics of anomalous refraction in several test sites during various weather conditions.
Simultaneous observations with two adjacent DZCs will be a method to distinguish instrument-
attributed variations from changes in the measured quantity itself and find the spatial properties of

anomalous refraction effects.

Further in-depth study will be involved aiming at a comprehensive characterization of the DZC
VESTA,; it will include testing of various instrumental settings, such as analyses of the CCD

binning parameter, star magnitude and star colour impacts on accuracy.
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1

2)

3)

MAIN CONCLUSIONS

The improved methodology and software allowed to conclude:

a) The use of terrestrial vertical deflection observations or (®, A)ast instead for quasi-
geoid determination significantly improves the precision of it: the achieved precision
is equal to 0.017 m in comparison to 0.038 m when vertical deflections were ignored.

b) The standard deviation of the observation residuals after the adjustment, considering
both VD derivatives from GGMs and terrestrial vertical deflections observed by Digital
Zenith Camera is equal to 0.006 m.

¢) Terrestrial VD observations fit the developed quasi-geoid model well, and the standard
deviation for £ and 1 components are equal to 0.055 and 0.046 arcsec respectively.

d) The final LU GGI’20 quasi-geoid model corresponds better to the NKG2015 model:
the average difference is equal to 0.008 m in comparison to the LV’14 model, where
this difference is equal to 0.009 m.

e) The quasi-geoid heights have also been compared to ellipsoidal minus levelling
heights: the standard deviation is equal to 0.012 m with minimum and maximum
differences —0.026 m and 0.025 m respectively.

The carried out and post-processed 414 vertical deflection observations fit well the global

geopotential models:

a) no significant difference in standard deviation between GGMplus and EGM2008 was
found: 0.314 arcsec and 0.346 arcsec for & component; 0.307 arcsec and 0.358 arcsec
for n component respectively.

b) average differences are equal to 0.008 arcsec and 0.013 arcsec for & component, and -
0.025 arcsec and -0.024 arcsec for n component respectively.

The used methodology was compared with GRAVSOFT algorithms based on collocation

method and remove-restore technique. The region of Riga was compared and the results

showed the average difference between the LU_GGI2’0 quasi-geoid heights and ellipsoidal
heights minus normal heights from data base equal to 0.017 m in comparison to RIGA’20
quasi-geoid computed with GRAVSOFT equal to 0.022 m, what proves that developed

methodology fits better than remove-restore technique.
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