
Citation: Mahnicka-Goremikina, L.;

Svinka, R.; Svinka, V.; Grase, L.;

Juhnevica, I.; Rundans, M.;

Goremikins, V.; Tolendiuly, S.;

Fomenko, S. Thermal Properties of

Porous Mullite Ceramics Modified

with Microsized ZrO2 and WO3.

Materials 2022, 15, 7935. https://

doi.org/10.3390/ma15227935

Academic Editors: Andres Sotelo,

Zhifeng Wang, Weiqing Zhang and

Yichao Wang

Received: 20 October 2022

Accepted: 7 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Thermal Properties of Porous Mullite Ceramics Modified with
Microsized ZrO2 and WO3

Ludmila Mahnicka-Goremikina 1,*, Ruta Svinka 1, Visvaldis Svinka 1, Liga Grase 1 , Inna Juhnevica 1,
Maris Rundans 1, Vadims Goremikins 2, Sanat Tolendiuly 3 and Sergey Fomenko 4

1 Institute of Materials and Surface Engineering, Faculty of Materials Science and Applied Chemistry,
Riga Technical University, Paula Valdena St. 3/7, LV-1048 Riga, Latvia

2 Institute of Structural Engineering and Reconstruction, Riga Technical University, Kipsalas St. 6A,
LV-1048 Riga, Latvia

3 Space Engineering Department, AUPET Named G. Daukeev, Baitursynov St., 126/1,
Almaty 050013, Kazakhstan

4 Institute of Combustion Problems, Bogenbay Batyr St. 172, Almaty 050012, Kazakhstan
* Correspondence: mahnicka@inbox.lv

Abstract: Mullite ceramics are well known as materials with a high temperature stability, strength
and creep resistance. In this research, the effect of a modification with magnesia-stabilized zirconia
and yttria-stabilized zirconia, separately, as well as in a mixture with WO3, in 1:1 and 1:2 ratios on
the thermal properties of porous mullite ceramics was investigated. The porous mullite-containing
ceramics were prepared by a slip casting of the concentrated slurry of raw materials with the
addition of a suspension of Al paste for the pore formation due to the H2 evolution as a result of
the reaction of Al with water. The formed samples were sintered at 1600 ◦C and the holding time
was 1 h. The materials were characterized using X-ray diffractometry, scanning electron microscopy,
mercury porosimetry, the laser flash contactless method, thermal shock resistance testing and the non-
destructive impulse excitation method for determining the elasticity modulus. The modification of the
porous mullite ceramic with a mixture of ZrO2 and WO3 oxides had a positive effect by decreasing
the thermal conductivity, due to the increased porosity, in comparison to the undoped samples
and samples with only ZrO2. The doubling of the WO3 amount in the modifying oxide mixtures
improved the ceramic thermal shock resistance. The porous mullite ceramics which were modified
with magnesia-stabilized zirconia (2.8 mol% MgO) and WO3 had a lower thermal conductivity and
improved thermal shock resistance than the samples with yttria-stabilized zirconia (8 mol% Y2O3)
and WO3.

Keywords: mullite; porous ceramic; zirconia; tungsten oxide; thermal conductivity; thermal shock

1. Introduction

Special materials are needed to save thermal energy in the working space of thermal
high-temperature units and prevent it from flowing into the environment. Such materials
are called high-temperature thermal insulation materials. Thermal energy losses during
high-temperature processes often exceed its theoretical need by several times. Climate-
neutral manufacturing aims to boost the efficient use of fossil and energy resources by
reducing air and water pollution, reducing heat losses and slowing down climate change.
The investigation and use of porous high-temperature ceramics for thermal insulation help
to achieve the goals of climate-neutral manufacturing and decrease the environmental
degradation [1–4].

Ceramic materials such as corundum, cordierite, zirconia, mullite and multiphase
composite ceramics are used for high-temperature engineering applications. In order to
apply these ceramic materials, it is important to take into account their thermal properties
such as their thermal conductivity, specific heat capacity, thermal expansion coefficient,
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resistance to sudden changes in temperature, thermal shock cracking and thermal shock
induced fracture, as well as their mechanical properties [5–13].

Several layers of ceramic refractory material with different thermal resistances and
thermal conductivities or ceramic composite materials with gradient properties are applied
often in attempt to meet the aim of limiting the heat loss of certain equipment. For example,
the cement kiln body can be divided into three layers, the working layer, the thermal-
preservation layer and the thermal-insulation layer [6,7,14,15]. Layers can be made from
different ceramic materials. Each layer has different thermal properties and its own role.
The main properties of the working layer are its high thermal shock resistance, low thermal
conductivity, high strength and long lifetime. The thermal-preservation layer must also
have a high strength and lower thermal conductivity. The thermal-insulation layer has an
ultra-low thermal conductivity to prevent heat loss and ensure the thermal protection of
the other layers. The same situation is encountered in the thermal insulation of a spacecraft,
where the thermal insulation consists of several layers [8–12,14]. Chen al. investigated the
specific facing from composite material–multilayer mullite-based brick and porous plates,
in which the thermal properties change along a gradient [6]. It is difficult to choose layers of
materials or form a composite material such that the materials’ components are physically
and chemically compatible with one another. In addition, layering increases the load on
the construction. It is important that there is no peeling or destruction during the operation
under elevated temperature conditions [6–9]. In the case where thermal-insulating ceramics
are used at high temperatures or extreme conditions, such as rapid increase and decrease
in temperature, the introduced thermal shock may produce microcracks, whose growth
and development can cause the structural failure of the component [10,11].

In terms of the economy and technology, it is beneficial when the insulation part of the
thermal technical equipment and spaceships consists of one type of material with a low bulk
density that combines a lot of functions and properties. There are difficulties in searching
for ceramic candidates for thermal insulators. The first is the selection of a ceramic material
oxide or composition of oxides that will have a low thermal conductivity. The second
difficulty is achieving a low bulk density due to the certain porosity. The presence of pores
with an effective pore size leads to a significant reduction in the thermal conductivity
compared to a dense material. The third difficulty is obtaining ceramic materials that will
simultaneously have low parameters, such as linear thermal expansion coefficients and
thermal conductivity coefficients [13,16]. The use of multi-phase polycrystalline ceramics
can solve this problem. It is also important to take into account the specific heat capacity
of heat insulation ceramics. The specific heat capacity is defined as the quantity of heat
absorbed per unit mass of the material when its temperature increases by 1 K [17]. More
heat energy is required to increase the temperature of materials with a high specific heat
capacity than ones with a low specific heat capacity. Depending on the purpose of the
ceramics, the high or low specific heat capacity and thermal diffusivity of the ceramics
must be taken into account [17–19].

Porous mullite-containing refractory ceramics are good candidates for a high-temperature
thermal insulation and for reducing heat losses. Porous mullite-containing ceramics have a
significant share in the field of technical ceramics for industrial and space fields [1,2,5]. The
catalyst supports, filters for hot gases and molten metals, parts of burners, heat insulators
of industrial furnaces, technical equipment and spaceships are produced from this type of
ceramic. The choice of a refractory material for an application will be determined by the
type of required functionality of the furnace, heating unit or refractory insulator component
and the prevailing conditions, e.g., the gaseous atmosphere, the presence of slags and the
type of metal charge [1,15,16,20–22].

In order to improve the mullite-containing ceramics, researchers investigated the
influence of modifying such ceramics with different oxides on the thermal properties. Xu
et al. sintered a cordierite–mullite–corundum composite with added Sm2O3 and achieved
an increase in the thermal shock resistance and a decrease in the thermal conductivity
(6.81 W/mK) and thermal expansion (5.96× 10−6 ◦C−1) [23]. Li et al. synthesized columnar
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self-reinforced mullite porous ceramics by adding V2O5 at 1350–1550 ◦C and achieved a
porosity of about 63% and a thermal conductivity of about 1.04 W/mK [24]. The use of
Ho2O3 [25], Gd2O3 [26] and HfO2 [27] improved the thermal shock resistance and thermal
durability of mullite-containing ceramics. There is still ongoing research related to the
investigation of and improvement in the thermo-mechanical properties of mullite and
alumina–mullite ceramic composites with zirconia or zirconia–zircon components [28–33].
The thermal conductivity, thermal diffusivity and specific heat capacity of ceramic samples
could be obtained using different international test standards, provided in Table 1.

Table 1. Thermal analysis tests.

Thermal Analysis Tests References

Standard test method for thermal conductivity and thermal diffusivity by
modulated temperature differential scanning calorimetry. [34,35]

Standard test method for determining specific heat capacity by differential
scanning calorimetry. [36,37]

Hot-plate system.
Guarded hot-plate systems are used to measure steady-state heat flow

through materials with low thermal conductivity (insulators).
[38–42]

Heat flow system.
Guarded Comparative–Longitudinal Heat Flow Technique. [42,43]

The laser flash method and laser pulse:
Laser Flash Thermal Conductivity. [42,44,45]

The application of WO3 as an additive or raw component for the formation of an addi-
tional crystalline phase is relevant in different fields such as gas sensing, chromogenic, pho-
tocatalytic and emerging applications (biomedical, antibiotic and artificial intelligence) [46].
The use of WO3 for a ceramic modification has not been extensively investigated. The
main aim of the research work was the formation of the thermal-insulating mullite ceramic
material with a high porosity, a high thermal shock resistance, at the same time as low linear
thermal expansion coefficients, low thermal conductivity coefficients and a low specific
heat capacity. The main tasks of the investigation were the modification of porous mullite
ceramic with ZrO2 and WO3 oxides and the analysis of the thermal properties depending
on the chemical compositions, structural features, porosity and pore morphology. Such
ceramic materials will help reduce the heat loss and withstand the rapid temperature
fluctuations [9,12–16].

2. Materials and Methods
2.1. Materials

Two types of aluminas, α-Al2O3 (d50 = 2 µm) and γ-Al2O3 (d50 = 80 µm), were
purchased from Nabalox, Nabaltec AG, Schwandorf, Germany. Kaolin (d50 = 1.5 µm;
SiO2—56.5 wt.%, Al2O3—31.0 wt.%) was purchased from MEKA, Amberger Kaolinwerke,
Hirschau, Germany. The magnesia-stabilized zirconia (2.8 mol% MgO) with d50 = 0.8 µm
was obtained from Goodfellow, Huntingdon, UK. The yttria-stabilized zirconia (8 mol%
Y2O3) with d50 = 0.5 µm, SiO2 amorphous with d50 = 3–5 µm and WO3 with d50 = 5 µm
were acquired from GetNanoMaterials, Saint-Cannat, France. Aluminum paste (solid
content of 70 ± 2%) with d50 = 12 µm was purchased from Aquapor-9008, Schlenk Metallic
Pigments GmbH, Roth, Germany.

2.2. Material Proportions

The base of the mullite ceramic was prepared from two types of aluminas (α-Al2O3
and γ-Al2O3), amorphous SiO2 and kaolin. The ratio of Al2O3 to SiO2 was 2.57:1 due to the
mullite stoichiometric composition. The quantity of γ-Al2O3 was three times more than the
quantity of α-Al2O3. Kaolin was used at 30 wt.%. Oxides such as yttria-stabilized zirconia
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(8 mol% Y2O3), magnesia-stabilized zirconia (2.8 mol% MgO) and WO3 were used for the
ceramic modifications. Both oxides were also used together in a mixture for modifying the
mullite ceramics. The ratios of the different stabilized zirconia and tungsten oxide were 1:1
and 1:2.

2.3. Sample Preparation Methods

A slip casting of the concentrated slurry of raw materials was used for the sample
preparation. The water content of the concentrated slurry was 38–40 wt.%. First, the dry raw
materials were mixed in a dry state. Then, its suspension was created with distilled water
and mixed for 10 min with a mechanical mixer to obtain a uniform particle distribution in
the slurry. The suspension of aluminum paste was added into the raw material suspension
and mixed for about 7–10 min. Then, the raw material slurry was slip casted into the mold.
The porosity of the mullite ceramics was obtained due to the hydrogen gas evolution as
a result of the reaction between the aluminum paste and water. The formed initial pores
became visually noticeable 15–20 min after the slip casting. The pore formation took 1 to
3 h. After that, the samples were dried for 24 h at 20–25 ◦C and then for 24 h at 100 ◦C. The
dried samples were sintered at 1600 ◦C with a 250 ◦C/h (4.2 ◦C/min) heating rate, and
the holding time at the maximum temperature was 1 h. The cooling process of the fired
samples was as slow as the heating process.

2.4. XRD Analysis

The phase compositions of the sintered materials were characterized by X-ray diffrac-
tion analysis (XRD; Rigaku Ultima + (Japan)) with CuKα radiation, a voltage on the Cu
anode of 30 kV, a current intensity of 20 mA, a range of the measurement angle of 5–60 2θ◦

and a speed of the goniometer of 2◦/min).

2.5. SEM Analysis

The morphology of the prepared samples was observed by using scanning electron
microscopes: a TableTop SEM Hitachi TM3000 (Japan) at an electron beam energy of 5
keV and 15 keV, and a high-resolution SEM FEI Nova NanoSEM 650 (the Netherlands)
at an electron beam energy of 10 keV. Metal coating sputtering was not used because the
structures were observed in the low vacuum mode.

2.6. Apparent Porosity

The apparent porosity was mathematically calculated and based on the Archimedes’
principle (European standard EN 623-2) after soaking the samples in distilled water. The
apparent porosity P is the ratio of the total volume of the open pores in a porous body to its
bulk volume. The apparent porosity P was calculated as a percentage using the following
Equation (1):

P = ((m3 −m1)/(m3 −m2)) × 100, (1)

where m1 is the mass of the dry test piece in grams, m2 is the apparent mass of the immersed
test piece in grams and m3 is the mass of the soaked test piece in grams.

2.7. Hg Porosimetry

The pore size distribution of the porous mullite ceramic was analyzed by a mercury
porosimeter (Quantachrome, Pore Master 33, USA). Mercury intrusion porosimetry makes
it possible to obtain data on the pores in a material in a limited range from 0.006 µm to
1000 µm.

2.8. Thermal Analysis

The specific heat capacity and thermal conductivity measurements and the calculation
of the thermal diffusivity of the samples were carried out using the laser flash contactless
method using the universal equipment table-top instrument Netzsch LFA 457 MicroFlash,
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Germany. The measurements were carried out in the temperature range from 25 ◦C to
1100 ◦C. The sample dimensions were 10 mm × 10 mm and the thickness was 3 mm.

Thermal diffusivity (α with the unit mm2/s) is a material-specific property for charac-
terizing an unsteady heat conduction. This value describes how fast heat diffuses through
the material. The thermal diffusivity was calculated from the following Equation (2):

α = κ/(ρCp), (2)

where κ is the thermal conductivity (W/(m·K)), ρ is the density (kg/m3) and Cp is the
specific heat capacity (J/kg/K) [18,19].

2.9. Thermal Shock Resistance Testing

The thermal shock resistance of the ceramics was determined during 10 cycles of
thermal shock corresponding to the scheme 20 ◦C→ 1000 ◦C→ 20 ◦C with an exposure
for 1 h at 1000 ◦C.

2.10. Elasticity Modulus Determination

The change in the elasticity modulus was measured before and after the 1st, 2nd, 5th
and 10th thermal shock test by a non-destructive impulse excitation method (equipment
Buzz-O-Sonic 5.0; BuzzMac International, LLC, USA). The non-destructive method provides
an opportunity to examine the same sample after each thermal shock cycle, which allowed
for more precise results.

3. Results and Discussion
3.1. Mineralogical Phase Composition

The XRD patterns of the prepared materials are shown in Figures 1 and 2. Comparing
the experimental diffraction pattern with those from the International Centre of Diffraction
Data (ICDD), the crystalline phases of the undoped samples correspond to mullite and
corundum (Figure 1a).
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Figure 2. X-ray diffraction data of the sintered porous ceramic materials: (a) with YSZ:WO3 (1:1),
(b) with MSZ:WO3 (1:1), (c) with YSZ:WO3 (1:2) and (d) with MSZ:WO3 (1:2).

The samples with yttria-stabilized zirconia and magnesia-stabilized zirconia contained
mullite and monoclinic and tetragonal ZrO2 (Figure 1b,c). The corundum phase remained
in the samples with YSZ. The XRD patterns (Figure 2a,b) of the samples with a mixture of
YSZ or MSZ and WO3 in a 1:1 ratio show the presence of mullite, monoclinic ZrO2, WO3
and aluminum tungstate in both the materials of such compositions. Zircon was formed
additionally in samples with MSZ and WO3 (1:1).

The samples with a mixture of YSZ or MSZ and WO3 in a 1:2 ratio have the main phase,
the mullite phase (Figure 2c,d), as well as such phases as monoclinic ZrO2, zircon and
aluminum tungstate. The presence of WO3 in the compositions with MSZ and WO3 (1:2)
was less pronounced than in the samples with YSZ and WO3 (1:2). A detailed description
of the crystalline phase formation was considered in a previous investigation, which was
described in the article [47].

3.2. Macrostructure

The images of the porous mullite ceramic surface were obtained using a Table Top SEM
and ×20 magnification (Figure 3). The pores have a spherical shape and approximately the
same cross section as in the samples without the addition of modifying oxides (Figure 3a).

The pores of the modified samples only with YSZ or MSZ as well as with these oxides
and WO3 mixtures do not have the strong spherical form with a uniform diameter. All
samples with modifying oxide additives are characterized by an elongated pore shape in
the ceramic structure. It is important to note that these elongated pores are characterized by
an expressed orientation in the ceramic structure. Such elongation and orientation occurred
in the direction parallel to the base of the molds, respectively, parallel to the horizontal
plane of the samples or along the sample length. When analyzing the photo of the surface
of the modified samples along the pores and across the pores, it can be seen that to a greater
extent, the pores are isolated from each other. The pores have to slit shapes with a partial
networking because they have a joint intersection and branching, as well as a stomach and
dead ends (Figure 3b–g). The length of the pores is 2–3 times greater than their width and
height. The walls of the pores are not smooth but uneven due to the fact that large pores
are formed from the merging of several smaller pores.
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Figure 3. TableTop SEM micrographs illustrating the macrostructure of the investigated samples,
magnification ×20: (a) view A of the undoped sample surface; (b–g) view B of the modified sample
surface perpendicular to the base of the molds; (b′–g′) view C of the modified sample surface parallel
to the base of the molds; (b,b′) samples with YSZ; (c,c′) with MSZ; (d,d′) with YSZ:WO3 (1:1); (e,e′)
with MSZ:WO3 (1:1); (f,f′) with YSZ:WO3 (1:2); and (g,g′) with MSZ:WO3 (1:2).

3.3. Microstructure

The microstructure of the porous mullite ceramic without a modifying additive and
only with yttria-stabilized zirconia or magnesia-stabilized zirconia formed from densely
packed and closely bordered crystals is shown in Figure 4.
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Figure 4. SEM micrographs of the microstructure of sintered samples: (a) undoped samples, (b) with
YSZ and (c) with MSZ.

The use of the ZrO2 and WO3 mixtures in a 1:1 and 1:2 ratio for modifying porous
mullite ceramics caused the formation of elongated needle-shaped mullite crystals that
were randomly located in relation to each other (Figures 5 and 6). Mullite crystals slightly
border each other, therefore the structure of the samples is not dense.
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The samples with a mixture of YSZ:WO3 and MSZ:WO3 in a 1:2 ratio have relatively
thinner mullite crystals with a distinct acicular or needle-shaped mullite crystals–crystals
with a narrow thin ending. The samples with a mixture of MSZ:WO3 in a 1:2 ratio differ
from other sintered materials in that they contain the porous mullite crystals. On the SEM
micrographs (Figure 6c), such porous mullite crystals are displayed as elongated needle-
shaped crystals with a round hole at the and. It can be assumed that such mullite crystals
have internal hollow or voids along the length of the crystals. The formation of hollow
mullite crystals occurred due to the formation of the Al2(WO4)3 at 1075–1100 ◦C [48,49] and
the presence of the Al–Si–O agglomerations on the surface of the Al2(WO4)3 particles. This
coincides with the results of the investigations of Liu et al. [49]. The mullitization of such
Al–Si–O agglomerations occurred at about 1200 ◦C, with a simultaneous decomposition of
the aluminum tungstate from within. Thus, the porous crystals consisted of a mullite shell
and a hollow inner part [49].
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3.4. Porosity and Pore Size Distributions

The apparent porosity of the sintered samples is shown in Figure 7. The samples
without a modifying additive and samples with a different stabilized zirconia have a
similar apparent porosity of about 40 ± 2%. The samples with mixtures of modifying
additives have an apparent porosity higher than 59 ± 2%.
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Figure 7. Apparent porosity of the investigated samples.

The use of WO3 in the equivalent ratio to zirconia noticeably increases the apparent
porosity of the samples in comparison with the undoped samples. Porous mullite ceramics
modified with magnesia-stabilized zirconia and WO3 in a 1:1 ratio have the highest appar-
ent porosity (73 ± 2%). The doubling of WO3 in the MSZ:WO3 mixture slightly decreases
the porosity (66 ± 2%) of such samples in comparison with the samples with MSZ and
WO3 in a 1:1 ratio.

The graphs of the pore size distribution after the mercury porosimetry are shown in
Figure 8. The undoped samples have three ranges of pore size distributions: 0.05–0.2 µm,
0.3–5 µm and 7–1000 µm, with the most pronounced size of ≈0.08 µm, ≈0.15 µm and
≈150 µm in these ranges (Figure 8a).

Two ranges of pore size distributions are observed for the samples with yttria-stabilized
zirconia and magnesia-stabilized zirconia (Figure 8a). The biggest pores of these samples
are in range from 20 µm to 500 µm, in which ≈150 µm pores are more intensely expressed.
Such large pores occupy approximately the same percentage for both compositions. The
smaller pores of the samples with the YSZ additive are in the range from 1 µm to 20 µm.
For the samples with MSZ, the range of the smaller pores narrows and occupies from
approximately 3 µm to 20 µm, and such pores occupy a smaller percentage than in the case
of the samples with YSZ. The 5 µm pores are more strongly expressed in the smaller pore
size range for the samples of both compositions.

Additionally, the two pore size distribution ranges are in the samples with the
YSZ:WO3 and MSZ:WO3 mixture in a 1:1 ratio (Figure 8b). The range of the smaller pores
expanded with the addition of WO3, which takes them from 1 to 20 µm, with a pronounced
predominance of a 6–7 µm pore size. It can be seen from the graphs in Figure 8b that pores
of a smaller diameter (1–20 µm) predominate over the larger sized pores (20–500 µm). The
smaller pores of the samples with YSZ:WO3 (1:1) occupy a slightly bigger percentage as
for the samples with MSZ:WO3 (1:1). The 150 µm pores are more intense in the large size
pores range samples with an additional oxide mixture in a 1:1 ratio.

The pore size distributions of the samples with the YSZ:WO3 and MSZ:WO3 mixture
in a 1:2 ratio are shown in Figure 8c. The doubling of WO3 decreases the formation of large
pores. The range of the large pores takes from 20 µm to 1000 µm. The doubling of WO3
caused the formation of small pores. The samples with YSZ:WO3 (1:2) have pores from
≈1.5 µm to 20 µm, with primarily 6 µm pores. The pores from 4 µm to 10 µm occupy a
significant volume of the samples with MSZ:WO3 (1:2). The 3–7 µm pores predominate in
the case of the samples with MSZ:WO3 (1:2).

Pores larger than 1000 µm (or 1 mm) are not shown on the pore distribution graphs,
although they are shown in the SEM pictures in Figure 3.
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with MSZ:WO3 (1:2).

3.5. Specific Heat Capacity

Figure 9 shows the temperature dependence of the specific heat capacity of the investi-
gated samples. The approximately 1200–1300 ◦C specific heat capacity curves of the mullite
single crystals and polycrystalline mullite show an anomalous sigmoidal increase [50],
which also corresponds to the specific heat capacity lines obtained for the undoped sam-
ples and samples modified with YSZ and MSZ, as well as for YSZ:WO3 in a 1:1 ratio and
MSZ:WO3 in a 1:2 ratio. These samples have a similar temperature dependence of the spe-
cific heat capacity from 25 ◦C to 1100 ◦C and an anomalous sigmoidal increase. The specific
heat capacity values of the samples with a mixture of YSZ:WO3 in a 1:2 ratio and a mixture
of MSZ:WO3 in a 1:1 ratio rapidly increase at about 1000 ◦C and then decrease due to the
presence of WO3 with a characteristic temperature dependence of the specific heat capac-
ity [51–55]. This can be explained by the fact that the phase compositions of these samples
have the pronounced presence of the WO3 phase and its phase transitions during heating.
Han et al. determined that the WO3 phase transitions tetragonal(t1)→ tetragonal(t2) at
1200 K (927 ◦C) occur with a large increase in the specific heat capacity and with a subse-
quent decrease [52,56–59]. In these works, such an increase in the specific heat capacity of
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the porous mullite ceramics occurs closer to 1000 ◦C perhaps due to the presence of other
phases that can affect the phase transition temperature.
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The samples with a mixture of MSZ:WO3 in a 1:2 ratio have the lowest specific heat
capacity, which does not exceed ≈0.40 J/g/K at all temperature ranges due to the presence
of zircon with a relatively low specific heat capacity.

3.6. Thermal Conductivity

Figure 10 shows the thermal conductivity of the sintered porous mullite ceramic
samples after the laser flash contactless method measurements. From the point of view
of thermal conduction, the porous ceramics can be regarded as a two-phase system [53].
The first phase is the ceramic material skeleton or matrix. The second phase varies as
the porosity, pore size and form, as well as the roughness of the pore walls. The heat
transfer through such phases forms and describes the common thermal conductivity of
the porous ceramic material. The mullite materials are the matrices of the investigated
porous ceramics.
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The thermal conductivity of the dense fully mullite ceramic is 5.1 W/mK and the
thermal conductivity of the air is 0.026 W/mK [53]. The thermal conductivity of the
porous mullite ceramics with a porosity of about 75%, according to the published data, is
0.31–0.42 W/mK at room temperature [53]. The thermal conductivity is directly propor-
tional to the porosity of the investigated samples. Samples with a lower porosity of about
39–40% have the highest thermal conductivity, and porous ceramic samples with a porosity
of about 63–73% have a lower thermal conductivity.
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The undoped samples with a 40% porosity have a higher thermal conductivity in
the temperature range of 25–1100 ◦C compared to all the modified samples. The thermal
conductivity of the undoped mullite porous ceramics with a porosity of ≈40% is 2.1 W/mK
at room temperature. The undoped samples also have a high thermal conductivity due to
the predominance of isolated, large-sized spherical pores, as well as due to the presence
of a corundum phase with a high λT=25◦C = 41.9 W/mK [53,55] that increases the thermal
conductivity of the ceramic matrix. The change in the slope on the temperature dependence
of the thermal conductivity at temperatures greater than about 1000 ◦C is due to a radiative
contribution to the measured thermal conductivity.

The thermal conductivity of the samples modified with YSZ and MSZ and with
a porosity of ≈40% at room temperature is 0.69 W/mK and 0.59 W/mK, respectively.
The thermal conductivity of such samples with these compositions increased to 0.82 and
0.74 W/mK at 900 ◦C. Such parameters as the porosity, microstructure and presence of
mullite and monoclinic ZrO2 in the samples only with YSZ or with MSZ are similar, but the
thermal conductivity is higher for the samples with YSZ due to the presence of a corundum
phase with a high thermal conductivity coefficient. The intensity of the corundum phase of
these composition samples is much less than that for the undoped samples, therefore, its
influence on the thermal conductivity is less than in the case of the undoped samples.

The thermal conductivity of the samples with a porosity of about 59%, 63% and 66%
at room temperature is 0.50 W/mK, 0.40 W/mK and 0.28 W/mK, respectively, for samples
with a mixtures of YSZ:WO3 in a 1:1 and 1:2 ratio and samples with a mixture of MSZ:WO3
in a 1:2 ratio. Its λ at 900 ◦C became 0.41 W/mK, 0.40 W/mK and 0.88 W/mK. The thermal
conductivity of the samples with a mixture of YSZ:WO3 in a 1:2 ratio increases with an
increasing temperature and became about 0.88 W/mK at 900 ◦C. The thermal conductivity
of the samples with a YSZ:WO3 mixture in a 1:1 ratio and with MSZ:WO3 in a 1:2 ratio does
not change intensively with an increasing temperature and remains within 0.40 ± 0.02 at
900 ◦C.

The sintered samples with a MSZ:WO3 mixture in a 1:1 ratio and with a porosity
of 73% have the lowest thermal conductivity of the investigated samples. The thermal
conductivity of these samples does not change with an increasing temperature until 900 ◦C.
It is 0.28 W/mK at room temperature and 0.29 W/mK at 900 ◦C.

Considering the point of view of the so-called mullite ceramic skeleton or matrix, the
thermal conductivity is lower for those samples with a looser texture and its structure
consists of relatively short, thin, randomly located and loosely packed mullite crystals in
the structure. The inclusions of other phase’s crystal grains with a low thermal conductivity
reduce the overall thermal conductivity of the porous mullite ceramics. This is clearly
noticeable in the case of an undoped sample and in the case of a sample with a mixture of
MSZ:WO3 in a 1:1 ratio, respectively, for the samples with the highest and lowest thermal
conductivity. The dependence of the grain-size and crystal size on the thermal conductivity
cannot be ignored. The thermal conductivity is lower for the samples with smaller and thin
crystals, respectively, for the samples with a mixture of MSZ:WO3 in a 1:1 and 1:2 ratio. This
is due to the decrease in the phonon mean free path. As a result, the anharmonic phonon
scattering within the grain is dominated and this decreases the thermal conductivity [60].

In its turn, the thermal conductivity is a little higher for the samples with MSZ:WO3 in
a 1:2 ratio than for the samples with MSZ:WO3 in a 1:1 ratio. The thermal conductivity of
the samples with MSZ:WO3 in a 1:2 ratio is the same at different temperatures, due to the
presence of different phases, that prevent the increase in the thermal conductivity with an
increasing temperature. The stability of the thermal conductivity of the samples MSZ:WO3
(1:2) can also be explained by the chaotic arrangement of mullite crystals, which are weakly
adjacent to each other. The porous mullite crystals of such samples also decreases the
thermal conductivity.

The Increase in the thermal conductivity of the ceramic samples with only YSZ and
MSZ or with YSZ:WO3 in a 1:2 ratio with an increasing temperature from 600 ◦C to 1000 ◦C
could be explained by the expressed content of the monoclinic ZrO2. Such an elevation
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of the thermal conductivity with an increasing temperature is a characteristic property of
zirconium ceramics [61]. For samples with YSZ:WO3 in a 1:2 ratio, such an increase in the
thermal conductivity is also caused by the expressed presence of WO3. The specific heat
capacity and thermal conductivity of WO3 increases with an increasing temperature [52].
Accordingly, it is less pronounced for the samples with a mixture of YSZ:WO3 in a 1:1 ratio
and MSZ:WO3 in a 1:1 and 1:2 ratio due to additional phases such as zircon and aluminum
tungstate that reduce this effect.

The change in the slope on the temperature dependence of the thermal conductivity at
temperatures greater than about 1000 ◦C is due to a radiative contribution to the measured
thermal conductivity.

3.7. Thermal Diffusivity

Figure 11 shows the temperature dependence of the thermal diffusivity of the investi-
gated samples. The undoped samples have the larger thermal diffusivity in comparison
with the modified porous mullite ceramics, due to a higher thermal conductivity and the
similar specific heat capacity in comparison with the modified samples. These undoped
samples potentially faster propagate the heat into the medium.
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The modified samples have a relatively similar thermal diffusivity. The samples
modified with a mixture of MSZ:WO3 in a 1:1 ratio have a lower thermal diffusivity due to
the lower thermal conductivity and relatively low specific heat capacity. The low thermal
diffusivity of these samples means that heat is mostly absorbed by the material and a small
amount of heat is conducted farther.

3.8. Thermal Shock Resistance

The dependence of the relative change in the elastic modulus on the cycle number
of the thermal shock is shown in Figure 12. The undoped samples and samples modified
with YSZ and MSZ already have a lower resistance to thermal shock after the first cycle
of the temperature change corresponding to the scheme 20 ◦C→ 1000 ◦C→ 20 ◦C with
exposure for 1 h at 1000 ◦C. Such samples lose more than 15% of the elastic modulus after
the 10th cycle due to the induced thermal stress after the rapid temperature change. The
reading of the elastic modulus of the samples with YSZ and MSZ improved between the
2nd and 5th cycles due to the process of the crack healing of the ceramic materials. Samples
with YSZ and MSZ have the ZrO2 mainly as a monoclinic (m-ZrO2) modification but
also as tetragonal (t-ZrO2). With a temperature change from 1000 ◦C to 20 ◦C, tetragonal
ZrO2 grains transform into monoclinic grains, thus, the martensitic phase transformation
occurs. This phase transformation is accompanied by a volume expansion of 3–4%, which
is directed opposite to the crack propagation. The growth of the crack and propagation
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were prevented due to the induced compressive stress [21,22,61–64]. However, a further
exposure to thermal shock leads to a decrease in the elastic modulus.
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The thermal shock resistance of the investigated samples improves with the use of
WO3 in the additive mixture. In the case of the samples with YSZ:WO3 in a 1:1 ratio, the
relative change in the elastic modulus is negative already after the first thermal shock
test and proportionally reduces with the increase in the thermal shock tests’ numbers
in comparison with the undoped samples and samples with YSZ and MSZ. The relative
change in the elastic modulus after the 10th thermal shock cycles is ≈11% for the samples
with YSZ:WO3 in a 1:1 ratio.

The samples doped with a mixture of MSZ:WO3 in a 1:1 ratio demonstrate a high
resistance to the thermal shock. The elastic modulus of these samples increases by ≈0.5%
after the 1st thermal shock cycle and decreases within 5% after the 10th cycle.

The samples with a mixture of YSZ:WO3 and MSZ:WO3 in a 1:2 ratio have a high
thermal shock resistance. The elastic modulus of these samples also increases by ≈0.4%
after the 1st thermal shock cycle, but further behavior is different. In its turn, the elastic
modulus of the samples with a mixture of YSZ:WO3 in a 1:2 ratio decreases after the 2nd
cycle and decreases by 0.5% after the 10th cycle. The elastic modulus of the samples with a
mixture of MSZ:WO3 in a 1:2 ratio does not decrease. The elastic modulus of such samples
increases by 0.5% after the 1st thermal shock test and does not decrease after the 2nd and
5th cycle, but it becomes greater than the initial value by ≈0.8% after the 10th cycle.

For samples with a mixture of MSZ:WO3 in a 1:1 ratio and a mixture of YSZ:WO3 and
MSZ:WO3 in a 1:2 ratio, the increased thermal shock resistance can be explained by the
presence of such crystalline phases as zircon and aluminum tungstate [11,65]. The presence
of the aluminum tungstate crystalline phase with a negative linear thermal expansion
(αalumin. tungst. = −1.5 × 10−6 ◦C−1) [48] has an influence on the thermal shock resistance
of the investigated ceramics. In the case of the aluminum tungstate phase, it shrinks
and allows for the expansion of other the crystalline phases of the investigated ceramic
without the formation of the internal stresses in the structure at the thermal shock time.
Zircon with its low thermal expansion (αzircon = 4.1 × 10−6 ◦C−1 from room temperature
to 1400 ◦C) [65] does not increase the expansion of the ceramic samples.

The samples modified with a mixture of MSZ:WO3 in a 1:2 ratio together with the
thermal insulating ability show the best thermal shock resistance. The polycrystalline
structure with chaotic mullite crystals of these samples and a comparable high porosity of
≈63%, as well as the presence of small pores with a pore size range from 4 to 10 µm, do not
cause the localization of stresses at the moment of the thermal shock. The relatively small
branched pores can deflect, slow down or stop the propagation of cracks by its pinning [66].
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The elastic modulus does not decrease as a result of a rapid temperature change due to the
compensation of stresses and a reduction in the probability of crack formation and growth.

4. Conclusions

The influence of the porous mullite ceramic modification with different microsized
stabilized ZrO2 and WO3 on the thermal properties was investigated. The porous mullite
ceramic with a simultaneously low thermal conductivity and high thermal shock resistance
was achieved. The following conclusions were reached:

(a) The use of the microsized ZrO2 and WO3 additive promotes the formation of elon-
gated partially networked pores with an orientation in a direction parallel to the base
of the molds.

(b) The thermal conductivity decreases with an increasing sample porosity and the
randomness of the ceramics structure, as well as with the decreasing mullite crys-
tal thickness.

(c) The formation of the hollow mullite crystals decreases the thermal conductivity of the
ceramics and stabilizes its temperature dependence.

(d) The increase in the zircon content in the phase compositions of the porous mullite
ceramic causes the decrease in the specific heat capacity of these ceramics.

(e) The presence of zircon and aluminum tungstate in the phase compositions of the porous
mullite ceramic improves the thermal shock resistance of the investigated ceramics.

Porous mullite ceramics from raw material compositions with a mixture of magnesia-
stabilized zirconia and WO3 in a 1:2 ratio can be used as a potential thermal-insulating
material in conditions of sharp temperature changes.
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