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THESIS OVERALL REVIEW 
 

Relevance of the topic 
 

The rapid progress of computer technologies has facilitated the development 
of various fields, among them numerical methods and their application for the 
solution of the mathematical models of complex mechanical systems. As a 
result, the development of modern engineering solutions is based on the 
numerical methods implemented in computer simulation software. The design of 
complex systems, for example, an automobile or a plane, is a highly resource-
consuming task that frequently involves several engineering disciplines. An 
integral part of effective engineer design is optimization which nowadays is 
based on simulation software. Regardless of the increase of computer calculation 
power, the complexity of the tasks to be solved and simulation software – for 
example, finite elements and numerical fluid dynamics software - is increasing 
as well. For example, the simulation of one car accident takes from 36 to 160 
hours. The optimization of two variables requires approximately 50 iterations, 
and, assuming that each iteration requires a separate simulation, the total 
computing time would be from 75 days to 11 months. 

The doctoral thesis is dedicated to the development of metamodeling 
methods and their application for the analysis and optimization of various 
mechanical systems. In order to decrease time necessary for numerical methods, 
approximation methods are used and models of the mathematical model 
(metamodels) are created. Such metamodels are being successfully applied for 
the analysis and optimization of engineering design. 

In order to effectively apply metamodeling methods, it is crucial to choose 
the most appropriate experimental design and the most effective approximation 
method. The design and approximation of numerical experiments differs 
considerably from the methods of design and analysis of physical experiments. 

In the scientific literature a consensus has been reached that for numerical 
experiments points should fill the experimental space as uniformly as possible. 
To obtain such experimental designs, Latin Hypercube (LH) experimental 
designs optimized according to a space filling criterion are used. Optimization of 
experimental designs is a computationally complex and time-consuming task, 
but once designs are found, they may be published and used repeatedly. 

Approximation methods of numerical experiments must be capable of 
interpolation of experimental points, since, in contrast to physical experiments, 
mathematic experiments do not possess random error, and furthermore the 
results of the numerical calculation software frequently have complex response 
surfaces. 
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The optimization of engineering designs frequently involves multiobjective 
optimization with continuous and discrete input factors which must comply with 
nonlinear constraints. The objective and constraint functions frequently are 
based on complex mathematical models. Solving such tasks using traditional 
optimization methods is ineffective. In cases of multidisciplinary optimization, 
numerical calculations from various engineering fields are used. For the solution 
of such tasks, approximation models allow significantly decrease the time 
needed for optimization. Approximation models also allow integrate the results 
of simulation programs from various disciplines that frequently are based on 
proprietary and protected data standards. The mixed numerical-physical 
experimentation approaches are also used for the solution of various problems, 
for example, the solution of parametric identification tasks. 

Metamodeling methods are used in various engineering fields. Among them 
is the optimization of topology and structure of various composite panels. The 
research of panel topology or the effectiveness of the form, number and 
placement of stiffening ribs, is directly connected with the potential weight 
decrease of the construction, which in turn reduces construction costs and 
increases the industrial competitiveness of the manufacturer. Such untraditional 
structural (composite) solutions are used in combination with innovative joining 
technologies, for example, laser beam welding. 

The application of composite unidirectional reinforced laminate materials 
(particularly in the aviation industry) already has attained nearly 30% of all 
supporting structure solutions. In the near future it is planned to begin the mass 
construction of airliners (Airbus 350 and Boeing 787) which are almost 
completely designed from composite constructions. These constructions are 
mainly created from thin-wall ribbed panels which, in regard of capacity/weight 
ratios, are more effective in comparison with the traditional metal alloy 
predecessors. The successful introduction of such materials and constructive 
solutions significantly depends on the consistency of mathematical and physical 
models. 

Objective of the thesis 
 

The objective of the doctoral thesis is to develop and improve metamodeling 
methods and tools for the design, analysis and optimization of engineering 
elements. 

Research tasks 
 

The problems to be solved and the tasks to be completed in this doctoral 
thesis: 
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To develop optimization methods for LH-type experimental designs and 
apply them for the creation of engineering experimental designs. 

To create a data base of experimental designs for mechanical design 
engineering and publish the obtained optimal experimental designs on the 
Internet. 

To develop methods and algorithms for effective application of the kriging 
method in metamodeling. 

To develop methods for the application of non-parametrical approximations 
in inverse metamodeling. 

To test the created methods and software in practical direct and inverse 
metamodeling and optimization tasks. 

 

Thesis scientific novelty 
 

Within the framework of the doctoral thesis, the algorithm of optimization of 
Latin Hypercube designs has been developed. The algorithm is based on the 
coordinate exchange procedure and is combined with the regulated permutation 
and multiple start global optimization method. Various space filling criteria were 
compared for the LH experimental designs and the MSE criterion was chosen 
for the measurement of LH experimental design space uniformity. The 
continuous MSE design optimization algorithm was modified and adapted to the 
proposed LH experimental design optimization algorithm. For the optimization 
of MaxiMin LH experimental designs a criterion was proposed that is based on 
mean distance that is calculated for all experimental design points in relation 
with their closest neighboring points, and the standard deviation of the distance 
of the experimental design points and the nearest neighboring points. This 
criterion and developed optimization algorithm was used for the optimization of 
LH experimental designs. LH experimental designs that have been optimized in 
this way have better MaxiMin criterion value and also values of other space 
filling criteria, in comparison with the LH experimental designs obtained by 
other authors that have been optimized according to the MaxiMin criterion. 

The doctoral thesis proposes an algorithmic scheme for the speed up of the 
creation of kriging model in the case of multiple responses. There is no unified 
approach or methodology for the choice of the covariance function and the 
values of optimal parameters for kriging method in the scientific literature. 
Detailed research was conducted regarding various strategies for the 
determination of covariance function parameters for several test functions and 
practical tasks. 

The promotion thesis proposes an inverse metamodeling method as an 
alternative to the discrepancy method or as a supplementary instrument for the 
solution of inverse tasks. The main theoretic and practical problems that must be 
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faced when applying the developed method have been considered. The inverse 
metamodeling method is applied and compared with the discrepancy method for 
the identification of carbon-epoxy plate elasticity parameters. 

The developed methods of experimental designs and approximation have 
been used to predict behavior and obtain optimal design variants of metal 
sandwich panels. 

The practical value 
 
The developed optimization algorithm and the obtained and published 

experimental designs may be used for the practical design of numerical 
experiments. 

The approach for determination of the hyperparameters and speed up of the 
creation of kriging model may be practically employed in the creation of high-
precision metamodels for multidisciplinary analysis and optimization tasks, 
including the design of engineering elements. On the basis of the obtained 
results, software tools have been developed for the analysis and optimization of 
mechanical systems. 

The inverse metamodeling method can be employed as an alternative to the 
discrepancy method or as a supplementary instrument for the solution of 
identification tasks. 

The obtained sandwich panel stiffness, weight and cost optimal solutions 
may serve as a basis for the acceleration of design processes and improvement 
of manufacturing effectiveness. 

Propositions for the defense 
 
• Metamodeling methods for the design of mechanical systems, which include 

optimization methods of computer and natural experimental designs, 
improved nonparametric approximation methods as well as a new inverse 
metamodeling method. 

• Optimization algorithm of Latin Hypercube experimental designs, its 
application for the obtaining of MSE and MaxiMin optimal experimental 
designs. 

• A method for the determination of kriging covariance function 
hyperparameters that is based on the cross-validation criterion. 

• A scheme for improving the speed of the kriging method in the case of 
multiple response functions. 

• Inverse metamodeling method for the solution of identification tasks. 
• Metamodels of various core ribbed sandwich panels for the analysis and 

optimization of weight, costs and stiffness, as well as practical 
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recommendations for the finding of optimal panel plate thickness and core 
stiffener thickness and location. 

• Solution of the carbon-epoxy plate elasticity module identification task with 
the inverse metamodeling method. 

The structure and volume  
 
The promotion thesis consists of a preface, 5 chapters, conclusions and 

literature references. The volume of the thesis is 191 pages, 94 figures, 67 tables 
and a literature references, containing 261 publication titles. 

Thesis approbation and publications 
 

The results of the promotion thesis have been reported and discussed in 
international conferences and scientific meetings:  
• 6th ASMO-UK/ISSMO International Conference on Engineering Design 

Optimization (Oxford, UK, 2006); 
• 9th US National Congress on Computational Mechanics (USNCCM9) (San 

Francisco, USA, 2007); 
• 7th World Congress on Structural and Multidisciplinary Optimization 

(WCSMO7) ( Seoul, Korea, 21-25 May 2007); 
• 14th International Conference on Composites and Nano Engineering 

(Colorado, USA, 2006); 
• RTU 46th and 48th International Scientific Conference (Riga, Latvia, 2005, 

2007); 
• 5th International DAAAM Baltic Conference (Tallin, Estonia, 2006)); 
• Combined RTU Institute of Mechanics and LNMK seminars (Riga, Latvia, 

3.10.2006, 11.12.2007, 01.04.2008). 
The main results of the thesis have been expounded in 14 publications. 
 

CONTENT OF THE THESIS 
The first chapter consists of a survey of literature on the role of 

metamodeling in the design of mechanical systems, the design of numerical 
experiments, approximation and optimization, as well as inverse problems and 
methods of their solution, employing physical and numerical experiments. 

Development of modern engineering solutions includes extensive use of 
computer simulation software. The design of complex systems, for example, 
cars or planes, is a highly complex optimization task that frequently involves 
various engineering disciplines, several criteria and computationally complex 
simulation software. In order to simplify the complex numerical models for the 
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last two decades approximation methods or metamodels have been successfully 
employed. 

The design optimization is necessary to find the best, or a good engineering 
solution. During optimization, the best solution from various alternatives is 
chosen according to a certain criterion. Optimization tasks for engineering 
problems are frequently complex, since objectives may be nonlinear and design 
variables have to comply with many constraints. Such global optimization tasks 
require multiple calculations of objectives or constraints that frequently are 
based on highly complex and computationally intensive simulations. 

Almost all real-life engineering designs should be optimal according to 
several criteria that frequently are mutually competitive. In such cases a 
Multiobjective Optimization (MOO) task must be solved  

Modern engineering designs involve problems from various engineering 
disciplines and the MOO task criteria may originate from various engineering 
fields. For example, during design of an aircraft wing, the optimization task 
involves both wing structure and aerodynamic calculations. Such analysis and 
optimization tasks are called Multidisciplinary Optimization tasks (MDO). Often 
the task of each separate discipline itself may be very complex and 
computationally-intensive. 

Practical engineering solutions should not only be optimal, but they must be 
robust (with reduced sensitivity) to slight changes in the parameters of the 
designed system or the characteristics of the environment. In order to estimate 
the robustness of the designed system Probabilistic Design Optimization and 
Analysis is used [Wang and Shan (2007)]. The solution of such optimization 
tasks with local and global (both determined and stochastic) methods is 
complicated and ineffective. During the last twenty years, global optimization, 
multiobjective, multidisciplinary robust optimization tasks have been solved 
employing metamodeling methods [Wang and Shan (2006)]. The main 
advantages of using metamodeling in optimization are: 1) the reduction of the 
time necessary for the optimization procedure, using both criteria and constraint 
approximations, 2) possibility to obtain experimental data in parallel, 3) during 
the approximation process, knowledge of the significance of the design factors 
and their influence on the optimal solutions may be obtained, 4) the use of 
metamodeling allows to work both with continuous and discrete variables. 

The Taguchi method and the Response Surface Method [Ramberg and 
Pignatiello (1991)] have gained popularity and extensive practical use. These 
two methods have become the basis for several modern engineering design 
methods, such as the Robust Concept Exploration Method [Simpson (1998)], 
[Chen et al. (1996)], Variable Complexity Response Surface Modeling [Giunta 
et al. (1994)], [Giunta et al. (1996)], Concurrent Sub Space Optimization 
[Renaud and Gabriele (1993)], [Renaud and Gabriele (1994)], Robust Design 
Simulation [Mavris et al. (1995)] , NORMAN/ DEBORA [Cartuyvels  and 
Dupas 1993], Probabilistic Design System [Fox, E.P. (1996)], etc. 
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The role of metamodeling in optimization of engineering designs is shown in 
Fig. 1. 

 

 
Figure 1. Metamodeling and its role in the optimization of engineering projects 

 
The main advantages of using metamodels are [Jin et al. (2000)] the 

possibilities:  
• To model and understand the mutual relation of input and output 

parameters. 
• To investigate the design variable space, anticipate the design 

compromises, modify constraints and, if necessary, reformulate the 
optimization task, visualize the response surfaces. 

• Use fast optimization procedures, conduct global, multiobjective 
optimization. 

• Integrate the calculations of various disciplines (that are frequently based 
on protected standards) and, possibly, distributed and parallel 
calculations more easily.  

The use of metamodels in design optimization usually consists of four 
stages: 

• Choice of effective experimental design.  
• Choice of correct mathematical model, in order to be able to approximate 

experimental data and describe the relation between process input and 
output.  

• Model-fitting. 
• Use of approximations for the fast optimization procedure.  
Design of experiments is a process that results in the choice of an optimal 

experimental design. Each experiment (numerical or physical) is related to 
certain costs. Therefore it is necessary to choose effective experimentation 
strategy which with minimal costs would allow obtaining the maximum amount 
of information about interested process. In an effective experimentation strategy, 



Development and Application of Metamodeling Methods for Analysis and Optimization of Mechanical Systems 

 
 11 

the number of required runs (experimental points) is minimized, and their 
distribution is such that the information obtained from the experiments is as 
complete as possible. Computer experiments, in contract to traditional physical 
experiments, do not have random error since repeated observations with an 
unchanged input set give identical responses. The design of computer 
experiments is based on two basic principles, which for the first time were 
formulated in 1977 by the RTU (then RPI) scientist Vilnis Eglajs: 

• Designs do not require more than one observation for a given input 
set. 

• Experimental points must be distributed as uniformly as possible in 
the experimental region.  

Modern design of computer experiments often is conducted using Latin 
Hypercube (LH) designs that are optimized according to some space filling 
criteria. As of this moment, the literature does not present results that 
conclusively prove the superiority of any single criterion. However many 
authors believe that the maximum entropy and distance-based criteria give the 
best results [Jin et al. (2001)], [Santner et al. (2003)], [Bursztyn and Steinberg 
(2006)]. Popular space filling criteria that are not based on a previous 
assumption of the input-output functional form are the MaxiMin, MSE, 
Discrepancy, Entropy and Eglajs criteria. A significant amount of literature 
exists on the optimization of experimental designs without constraints on levels 
according to the MaxiMin and MSE criteria, while the LH design optimization 
algorithms have received significantly less attention. 

Regression analysis employs two different approaches [Härdle (1990)]: 
parametric approximation and nonparametric approximation. Computer 
experiments, in contrast to traditional physical experiments, do not have random 
error, therefore approximation of computer experiments should employ methods 
that interpolate experimental data. The most popular methods for computer 
experiment approximation are Gaussian process regression (GPR) or kriging 
(see [Barton (1998)], [Booker (1998)], [Currin 1991], [Sacks (1989)], 
[Rassmussen and Williams (2006)]), Locally Weighted Polynomial 
approximations or Moving Least Squares (see [Cleveland (1979)], [Levin 
(1998)], [Fan and Gijbels (1996)] etc.), Radial Basis Functions [Dyn (1986)], 
[Powell (1987)], Neuron Networks (see [Cheng and Titterington 1994], [Haykin 
1994], Smith and Mistree (1993)], Support Vector Regression [Clarke et al. 
(2005)], etc. In practice, approximations of numerical experiments do not always 
go directly through the experimental points. Frequently Response Surface 
Methods (RSM), are employed although from the point of view of statistics this 
approach is not completely correct. 

Kriging is a popular computer experiment approximation method. Kriging is 
based on the Bayesian approach in statistics and is well suited to the processing 
of determined computer experiments for an average number of input factors. The 
kriging method generates all possible Gaussian process realizations with a given 
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mean value and covariance function. The realizations that do not correspond to 
experimental data are discarded [Rasmussen and Williams (2006)]. 

To employ kriging method in practice, the parameters of the covariance 
function must be determined. The scientific literature considers two methods: 
Cross-Validation (CV) and the Maximum Likelihood Method (MLL), the most 
frequently used method for hyperparameter determination is the MLL method. 

Despite the vast amount of various approximation methods, there is no 
consensus in the scientific literature on which of the methods is the best. 
Recommendations are given in some studies depending on the problem scope, 
response non-linearity and amount of experiments. 

Inverse engineering problems are solved in cases when model parameters are 
to be determined on the basis of data obtained in experiments. In practice, such 
tasks are solved, using the Mixed Numerical–Experimental Techniques 
(MNET). In this method, the solutions of the inverse task are the model 
parameters for which the least difference exists between the physical and the 
numerical experiment. In the engineering practice of the last two decades, 
MNET methods have been used for parameter identification tasks in various 
fields: engineering mechanics, to identify heat conductivity [Trujillo et al. 
(1997)], determine acoustic [Panneton et al. (2003)], damping [De Visscher 
(1995)], [Tudor (2003)], plasticity [Furukwaw and Yagawa (1998)], [Yoshida 
(2003)] properties, in civil engineering, to identify soil permeability [Javadi et al 
(1999)] and elasticity properties [Hikawa et al. (2004)], in electrical engineering 
to identify piezoelectric properties [Ferin G. (2004)], in biomedicine to 
determine the mechanical properties of skin [Hendriks et al. (2003)] and liver 
[Kauer (2001)]. The basic problems that have to be solved when employing the 
MNET approach are: the inaccuracies of the mathematical model and the 
existence of several alternative solutions. 

In the end of this chapter, the dissertation thesis objectives and tasks are 
formulated. 

The second chapter proposes an optimization algorithm for Latin 
Hypercube experimental designs. Its application for LH experiment optimization 
is described. Figure 2 shows the block diagram for the proposed LH 
experimental design optimization algorithm.  

The experimental design optimization algorithm was used for LH experiment 
optimization according to the MSE and MaxiMin criteria. 

For the optimization of experimental designs without LH constraint 
according to the MSE criterion, the so-called NTLBG algorithm exists, which 
allows optimization process to converge to the local minimum. In order to 
optimize LH experimental designs according to the MSE criterion, the NTLBG 
algorithm was modified so that for each cyclic coordinate change it was checked 
whether by reducing the level of a given factor for two runs, the distance from 
the experimental points to the mean value of the supporting point group for each 
experimental point was reduced. 
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Figure 2. Block diagram of LH optimization algorithm 

 
To obtain the so called Maximal-minimum distance (MaxiMin) optimal LH 

experimental designs, a new criterion φ  was introduced and used 
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Coefficient k was taken from interval [0, 1].  
Optimizing designs according to the φ  criterion, and accepting designs that 

have better MaxiMin criterion value lead to a fast optimization procedure for the 
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obtaining of LH experimental designs optimized according to the MaxiMin 
criterion. Such optimized designs have also better values for other space filling 
criteria. 

For LH design optimization, scientific literature describes several space 
filling criteria. To evaluate the effectiveness of space filling criteria, a test 
function was used and the linear correlation of various space filling criteria and 
the test function approximation error was compared. It was concluded that the 
MSE criterion has the largest correlation with the approximation error of the 
given test function. It was therefore concluded that LH experimental designs that 
are optimized according to the MSE criterion can be effectively employed for 
design of computer experiments. 

A data base has been developed and the obtained space filling experimental 
designs have been published on the Internet (www.mmd.rtu.lv). 

The third chapter considers problems and solutions that are to be faced for 
practical application of the kriging method for computer experiment 
approximation. The main problems are computation-intensive model 
development which includes the computation of the inverse matrix of the 
covariance matrix and the finding of the optimal covariance function parameters 
(hyperparameters). The thesis proposes an algorithmic computational scheme 
which allows to decrease the time necessary for the kriging model creation in the 
case of several response functions. This scheme is based on the fact that the 
covariance matrix depends on the experimental design, the covariance function 
and the hyperparameters of the covariance function, but does not directly depend 
on the data of the response function. This scheme was complemented with steps 
for the improvement of the calculation speed of MLL and CV criterions in the 
case of several response functions. 

Additionally questions were considered relating the choice of the covariance 
function, the choice of the covariance hyperparameters and their optimal 
settings. From the literature survey, it was concluded that a unified approach to 
the choice of the covariance function and the number of its hyperparameters 
does not exist. In this chapter, CV and MLL criteria were compared for the 
covariance function hyperparameter optimization for several one and two-factor 
tasks. It was empirically determined that it is possible to effectively solve these 
optimization tasks, using the quasi-Newton method by choosing the initial point 
θi=1. In cases when the quality of the obtained approximation was 
unsatisfactory, the optimization process was repeated, using other initial points 
θi=0.1 and θi=5, as well as using the Particle Swarm global optimization method. 

The second part of the third chapter proposes an inverse metamodeling 
method (see Figure 3) for the solution of inverse tasks. 

Several problems have to be faced when solving identification problems 
using approach of inverse metamodeling. First, it is possible to approximate the 
inverse relation only in cases when the inverse model exists. If the inverse model 
does not exist or the inverse relation is not unique, its approximation usually has 
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low accuracy and therefore the method may give bad solutions. For many tasks, 
the number of responses can be increased, and it is shown that the 
ambiguousness disappears even if each of the responses individually is nonlinear 
with non unique inverse relation. In practice, it is often possible to increase the 
number of the measured responses (greater than the number of identifiable 
parameters), therefore there is reason to believe that this drawback of inverse 
metamodeling is not particularly significant for most practical tasks. Ambiguous 
inverse relation may indicate an error in measurements, in the mathematical 
model or a possibility that the problem may exist in the formulation of the task. 

 
 Model parameters

Mathematical model

Natural experiments

Inverse metamodel

g=f(x)

x

y+e

x=z(g)

x+e=z(y+e)  
Figure 3. Scheme for the inverse metamodeling method 

 
Second, it is impossible to plan the calculated responses, therefore when 

creating inverse metamodels the experimental points do not uniformly cover the 
research region. For this reason, one must deal with singular matrices, by using 
polynomials for approximation whose coefficients are determined with the least 
squares method. For this case the quasi-inversed matrix approach with Singular 
Value Decomposition method is recommended. 

The inverse metamodeling method, in contrast to the discrepancy method, 
allows directly evaluate the quality of the solution by determining the accuracy 
of the metamodel, using the cross-validation. The estimation of the quality of 
inverse solutions is very significant in practical tasks. The second main 
advantage of inverse metamodeling is the fact that, using polynomial 
approximations, it is possible to directly evaluate the influence (significance) of 
the various outputs on the inputs. 

The fourth chapter tests the proposed experimental design and 
approximation methods, using various 2, 3 and 5 factor test tasks for various 
numbers of experimental points. Test functions described in the literature were 
used to compare the effectiveness of the CV and MLL criteria for the 
determination of covariance function hyperparameters. Approximations for all 
test functions were made using both the CV and the MLL method. The 
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covariance function parameters were determined in two ways. In the first 
approach, m+1 (m – number of factors) hyperparameters were determined: one 
power hyperparameter and m distance deviation hyperparameters (distance 
deviation hyperparameters that correspond to each input factor). In the second 
approach, two hyperparameters were determined: power hyperparameter p and 
one distance deviation hyperparameter that is common to all the input factors. 
For almost all of the test tasks, the best approximation accuracy was obtained 
using the CV criterion and determining m distance deviation hyperparameters. 

In this chapter, the accuracy of kriging approximations was compared for 
two, three and 5 factor test tasks with first and second order polynomial and 
locally weighted first and second order polynomial approximations. For the 
kriging covariance function, m+1 hyperparameters were determined using the 
CV criterion. It was concluded that in the majority of two factor tasks and in all 
of the considered three and 5 factor test tasks the kriging method gives higher 
approximation accuracy (see Figure 4). 
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Figure 4. Comparison of test function approximations, using various methods and various 

numbers of points (figure a – 3 factor test tasks, figure b – 5 factor test tasks) 
 

In the fifth chapter, the developed methods of design of experiments, 
approximation and software were applied for the solution of practical 
engineering design problems – optimization of sandwich panels and the 
identification of elasticity parameters for thin-wall composite construction 
elements. 

The first of the considered practical problems is the approximation and 
optimization of the strength calculations of metal I, C, O, Oc, Z and V type core 
sandwich panels (see Figure 5). 

 



Development and Application of Metamodeling Methods for Analysis and Optimization of Mechanical Systems 

 
 17 

 
Figure 5. Schemes of metal sandwich panels of various core types 

 
For the design of numerical experiments, a 6 factor LH experimental design 

was employed that was optimized according to the MSE criterion, using the 
algorithm proposed in the second chapter. For the creation of the metamodel, 
250 experimental points were used and other 250 experimental points were used 
for the validation of the obtained metamodels. The numerical experiments for all 
profile type sandwich panels were conducted in cooperation with the leading 
researcher of the RTU Institute of Materials and Constructions Kaspars Kalnins, 
creating the finite element model using the ANSYS software (see Figure 6). The 
panels were loaded with a uniformly distributed 3 kPa load, supplementing it 
with concentrated 1kN force in the center of the panel.   

 

 
Figure 6. I core sandwich panel deformation 

 
In this thesis, 7 responses were measured and approximated. For the 

approximation of sandwich panel calculation, the kriging method turned out to 
be the most effective, determining the covariance function distance deviation 
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hyperparameters for each factor and using the CV criterion for the evaluation of 
the accuracy of approximation prediction (see Figure 7). 
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Figure 7. Approximation error for various responses for the I core panel in 250 test points, 

using kriging, polynomial and locally weighted polynomial approximations 
 
It was determined that the quality of approximation of the sandwich panel 

plate deformations could be improved by introducing an additional variable that 
is inverse proportional to the second moment of inertia of the panel cross-
section. 

The created metamodels were used to find optimal I core panel variants. 
During the optimization process, three discrete parameters and one continuous 
parameter were varied. The panel length and width were fixed, assuming that 
they were given from the design specification. The boundaries used in the 
optimization procedure were chosen on the basis of the guidelines of the 
certifying organization Det Norske Veritas [DNV Technical report (2003)] for 
the certification of ship deck panels. For the finding of Pareto optimums, three 
criterion functions were chosen: panel mass, relation of panel length to bottom 
plate deflection and the panel production costs that were obtained with the 
formula 

 
 ( )LttttnyC 4)(500)(1057.0 2121

5
7 ++−+×+= ,  (5) 

 
where y7 – panel mass, n – number of ribs, t1 – thickness of top and bottom plate, 
t2 – core support thickness, L – panel length [Farkas (2003)]. 

Figure 8 shows the obtained Pareto optimal points.  
The obtained Pareto optimal solutions were validated with the FE calculation 

model and it was concluded that the metamodels have sufficiently high accuracy 
in the optimum points. For example, the relative error of panel deformation is 
2.61%. 

It was concluded that the developed methods of design of experiments and 
approximation may be applied for the creation of high-accuracy metamodels and 
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approximation of FE calculations of various core type metal sandwich panels. 
The obtained solutions may serve as a basis for the acceleration of design 
processes and improvement of manufacturing effectiveness 
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Figure 8. Pareto points for I core sandwich panel 

 

In the second section of the fifth chapter, the inverse metamodeling method 
proposed in the third chapter was used for the identification of elasticity 
properties of a ribbed carbon-epoxy plate. The obtained results were compared 
with the results of the discrepancy method.  

In this task, FE element calculations were used. The transverse, axial and 
shear modules of elasticity were used as the inputs of FE model and 
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eigenfrequencies as outputs. In the identification task, the first 7 physically 
measured resonant frequencies were used to identify three elasticity modules. 
The inverse metamodels were obtained with a low CV error and the inverse 
metamodeling method gave similar results in comparison with the results of the 
discrepancy method. It was concluded that the inverse metamodeling method 
may be used both as an alternative of the discrepancy method, and as a 
supplementary tool. In further tasks, it is recommended to use both methods to 
increase and control the accuracy of identification. The inverse metamodeling 
method allows to identify the significance of parameters and to determine 
eigenfrequencies that influence the identifiable parameters the most. The 
question of frequency choice is still to be studied, and in further experimental 
measurements it is necessary to eliminate the influence of external factors as 
much as possible. In the given task, it is also necessary to increase the number of 
natural experiment measurements, in order to be able to evaluate the dispersion 
of the frequency measurements. 

 

CONCLUSIONS 
 
1. In the promotion thesis, an exhaustive literature analysis has been conducted 
on the metamodeling of mechanical systems, including design of experiments, 
analysis and optimization. 
2. Metamodeling methods have been developed for the design of mechanical 
systems that include optimization of designs of computer and natural 
experiments, improved non-parametrical result approximation methods as well 
as a new inverse metamodeling method. 
3. For the optimization of designs of computer experiments, a coordinate 
exchange algorithm is proposed in combination with regulated permutation and 
multiple start global optimization method. The proposed optimization algorithm 
has been implemented in computer software. Internet database of experimental 
designs has been created, where the obtained experimental designs have been 
published. 
4. It has been shown that space-filling experimental designs that are optimized 
according to the MSE criterion are effective for the creation of metamodels of 
mechanical systems. 
5. In the dissertation thesis, kriging hyperparameter determination method has 
been developed using the cross-validation criterion that increases the accuracy of 
metamodels. An algorithm is proposed for the effective application of the 
kriging method in the case of several responses. 
6. The higher prediction accuracy of the kriging method has been 
experimentally proven, in comparison with other parametrical and non-
parametrical approximation methods. 
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7. An inverse metamodeling method is proposed that allows to solve inverse 
engineering design tasks, including parametric identification, as well as evaluate 
the adequateness of the solutions. 
8. The effectiveness of the developed algorithms, methods and software has 
been proven in generally accepted analytical test tasks and practical tasks of 
optimal construction design and parametric identification. 
9. Future work directions – improvement of inverse metamodeling, 
development of sequential experimental designs and multiobjective 
experimental optimization methods. 
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