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Abstract—This paper presents an inverse modelling approach 

for deriving equivalent thermal parameters of buildings. A 

simplified thermal network based on electrical analogy was 

developed to replicate building thermal dynamics and model 

residential heat demand. The study employs data driven black-

box modelling based on the measured indoor and outdoor 

temperature. To validate the proposed method, virtual and 

physical experiments were conducted and performance of the 

simplified thermal network model was compared to two more 

complex RC models and measurements in an existing building. 

The simplified model was able to replicate the thermal dynamics 

of the complex models and the building with a high accuracy at 

the same conditions under which model parameters were 

estimated implying that for accurate modelling a large amount of 

experimental data obtained under various conditions is required. 

Such data will be gathered in the upcoming studies from 50 

buildings in Latvia. The obtained data will then be used to model 

the aggregate heating demand at a national scale for assessment 

of the impact of smart electric thermal storage appliances on the 

overall power system. 

Keywords—inverse modelling; RC model; thermal network, 

thermal storage 

I.  INTRODUCTION 

Dissemination of intermittent renewable energy sources 
(RES) such as wind, wave and solar power presents new 
challenges for the power systems. In order to reduce the 
curtailment of renewables and efficiently accommodate the 
distributed and variable RES across the power system, energy 
storage has become a necessity. Various forms of energy 
storage include mechanical energy storage (hydropower, 
compressed air, flywheel), electrochemical batteries, power to 
gas storage, electric and magnetic energy storage (capacitors 
and supercapacitors, superconducting materials) and thermal 
energy storage. 

While there are mature and long-known technologies for 
large-scale energy storage such as pumped-storage 
hydropower, which is the mostly used storage option in the 
power sector worldwide, many efforts are devoted to 
development of small-scale energy storage primarily for use in 
the residential sector. One of such technologies is smart electric 
thermal storage with household appliances for space heating 
and hot water heating [1]. It is a sensible heat storage 

system [2] which consumes electricity and is able to store it in 
the form of thermal energy for a long time to be used later just 
when it is needed. Thus the power demand of the heating 
system is decoupled from the time of thermal energy end-use 
by the domestic customer. 

Electric thermal storage heaters have been in use for 
decades especially in countries where two-tariff electricity 
pricing is applied to households. The conventional thermal 
storage heaters had a limited controllability due to relatively 
low heat retention rate. However, for the newest generation of 
smart electric thermal storage (SETS) system, the heat 
retention rate is significantly improved and the recent advances 
of information and communication technologies have allowed 
a significant technological development of the storage heaters. 
SETS devices are now equipped with smart control at the 
aggregate electric power system level while ensuring that 
individual household space and water heating end-use 
requirements are maintained [1]. It allows to decouple the 
electricity demand from the expected heat output and deliver 
electricity to the SETS virtually at any time while consuming 
the heat at any other time when it is needed. Consequently, the 
whole electricity supply chain, including generation, 
transmission, distribution and consumption, can potentially 
benefit from SETS. 

SETS can provide overall societal benefits such as cost 
savings to the customers and RES curtailment reduction, 
whereas the aggregated load can offer a number of services to 
the power system such as demand shifting and demand 
response, ancillary services (frequency response, reserves 
provision), congestion management and deferral of capital 
investments into the network. 

It is estimated that by retrofitting all existing night storage 
heaters in the European Union, SETS could introduce a 
controllable load of 55 GW (37 GW for all traditional night 
storage heaters and 18 GW for hot water) and, consequently, 
save 7.4 TWh of heating energy per year and avoid 3 million 
tons of CO2 emissions per year compared to conventional 
storage heaters [3]. 

While the SETS technology and appliances are in place 
already [1], the power systems are not yet in a position to 
integrate them and there are various ongoing studies on how to 
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facilitate this process. One of the problems to be solved 
includes co-optimisation of the electricity system scheduling 
together with requirements of the electric heating demand [2]. 
The modelling and optimisation environment for electrical 
power systems should endogenously represent the local small-
scale thermal storage devices, including their technical 
characteristics and thermal energy end-use requirements. 

To assess the potential cost savings to the customers when 
using SETS with dynamic pricing under conditions of a 
liberalised electricity market, the variable electricity prices 
need to be considered with appropriate temporal resolution 
(e.g., hourly resolution for the Nord Pool day-ahead market 
prices). Consequently, thermal energy end-use should also be 
modelled with an hourly resolution. 

This paper is focused on modelling the residential heating 
energy demand. We propose an approach based on physical 
experiments and virtual simulations to obtain the equivalent 
thermal characteristics of the building which can then be used 
for modelling the thermodynamics of the building under 
different weather conditions.  

The approach presented in this paper will serve as basis for 
our further studies involving physical experiments in 
50 different buildings in Latvia to derive their thermal 
characteristics and heating energy requirements. The 
consumption of individual buildings will then be scaled to a 
national aggregate level. The aggregated electric load of local 
small-scale thermal storage will be integrated into the overall 
power system models to assess the impact of storage devices 
on power system planning, unit commitment and dispatch of 
energy and reserves, distribution network congestion, power 
system reliability etc. While that will be presented in our future 
publications, this paper is focused solely on modelling of 
heating energy demand in buildings. 

SETS technology and equipment is presented in section II 
followed by an overview of heat demand modelling approaches 
in section III with a focus on the experimental approach used in 
our study. Next, the results of virtual simulations and physical 
experiments are provided by comparing the simplified model 
with two complex models in section IV. Finally, conclusions are 
drawn. 

 

Fig. 1. SETS for space heating [1] 

II. SMART ELECTRIC THERMAL STORAGE TECHNOLOGY 

SETS is a decentralised space heating and hot water system 
with energy storage and up to 20% efficiency gains compared 
to traditional night storage heaters [1]. It consists of electric 
space heating radiators with an insulated thermal mass for 
storing heat (Fig. 1) and a hot water cylinder (Fig. 2). 

SETS space heaters contain a highly insulated solid thermal 
energy storage core of bricks which enables the conversion of 
electrical energy into thermal energy for use at a later time [1]. 
The heat is released into the room by radiation and convection. 
Modern dynamic electric storage heaters are equipped with a 
fan which blows warm air from the core of the heater into the 
room. This allows for a more precise heat distribution control 
as compared to conventional static storage heaters without a 
fan blower [2]. 

Recent developments of material and electronic control 
technologies have enabled storage heaters to provide the 
householder with time and temperature control comparable 
with direct electric heating technologies. Additionally these 
devices can be managed remotely so that they can be charged 
flexibly at a time when it best suits the electricity system 
without jeopardising householder comfort [1]. 

The application range of dynamic electric storage heaters 
with a fan is typically 2–7 kW with a storage capacity of 16–
56 kWh per charge cycle. The application range of static 
electric storage heaters is typically 0.75–3 kW with a storage 
capacity of 8–24 kWh. The maximum core temperature is 
about 700 °C [2]. 

SETS water cylinders use the same basic principle, except 
that the energy is stored in water rather than a solid medium. 
Both systems share the same communications and control 
architecture and can therefore be managed in a unified manner 
[3]. 

SETS includes advanced electronic command and control 
capabilities such as an automated input control with adaptive 
learning function to determine how much heat will be needed 
on a particular day, while accounting for prevailing weather 
conditions. 

 

Fig. 2. SETS for hot water heating [1] 
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This daily energy requirement is calculated using an 
algorithm based on the residual stored energy, the rate of 
change in room temperature after the evening heating period, 
as well as user-programmed heating requirements. SETS uses 
ICT to enable flexible tariff regimes, to support integration of 
renewable energy resources at any time, allowing time of use 
tariff schemes to be integrated in the operation of SETS [3]. 

SETS facilitates the decoupling of energy production from 
energy consumption, so that renewable energy can be 
converted into heat and offers control over when this heat is 
released. This allows low carbon space heating and hot water to 
be deployed when the end user desires it [3]. 

III. HEAT DEMAND MODELLING 

A. Review of Modelling Approaches 

Mathematical models for simulating building energy 
systems and consumption can be of theoretical and 
experimental type [4]. Theoretical models are described by 
mathematical equations derived from physical laws, whereas 
experimental models are devised empirically by measuring 
input and output signals of the system and evaluating the 
system’s response. 

Modelling structure for any energy system consists of three 
main blocks: input variables, output variables and the system 
itself (Fig. 3) [4]. During the modelling we need to determine 
one of the three building blocks when adequate information 
about the other two blocks is available. Consequently, the 
energy models are classified as white-box, black-box or grey-
box models. 

White-box models are highly accurate and use forward 
approach to predict the output variables based on a detailed 
structure and parameters of the model subjected to specific 
input variables [4]. To employ this approach, it is assumed that 
all the thermal and geometric building characteristics are well-
known, which is usually the case for building design but is 
much difficult and expensive to obtain for already existing 
buildings [5]. 

Black-box models use a data driven approach to develop 
the model based on the knowledge of the input and output data 
acquired through experiments [4]. Black-box approaches often 
employ statistical or machine learning to derive a prediction 
model from a database, e.g., actual or forecasted energy 
consumption of a building [5]. When experimental data us 
obtained within the building, it is done either in an intrusive or 
a non-intrusive manner [4].  

Grey-box or hybrid modelling involves formulating a 
physical model and identifying important and aggregated 
parameters and characteristics by statistical analysis which 
requires a high level of expertise [4]. Whereas black-box 

models don’t need a detailed description of the building 
geometry, they require a large amount of training data over an 
exhaustive period of time. In contrast, for grey-box models a 
small amount of data for training is necessary with a rough 
description of the building geometry. As opposite to white-box 
and grey-box models the results of which can be interpreted in 
physical terms, black-box model results can be difficult to 
interpret in physical terms [5], [6]. However, automatic 
parameter estimation using a black-box model has a significant 
advantage over white-box models having a small setup cost 
and little computational effort [7]. 

In our study, we employ an experimental black-box 
modelling approach by using the outside temperature and 
heating consumption of the building as input data and the room 
temperature as output data. Based on this data, thermal 
parameters of the building are obtained which are then used to 
estimate the heating consumption under different weather 
conditions at various time scales, e.g., hourly, daily, weekly or 
yearly.  

This approach is also referred to as the inverse problem 
whereby the physical characteristics of a building are acquired 
given the actual performance data [8]. That is a classical 
problem known as parameter estimation or system 
identification problem [9]. The building is considered as a 
black box the characteristics of which are derived from 
temperature measurements and energy consumption data [8]. 
Mathematically, the thermodynamics of the building can be 
described by a differential equation with unknown parameters. 
Using the measured values of input and output, the best or 
optimal estimate of these parameters is obtained. 

A similar approach is implemented in [10], where a model 
of the space heating and cooling load is proposed to study its 
behaviour during cold load pickup after a power outage. The 
model is able to capture the thermal characteristics of a house 
at a thermostat without modelling all the details of the house. 
Since a detailed simulation model for the house 
thermodynamics used traditionally for the thermal design 
studies of the building is not practical for modelling a system-
level heating load, the authors have minimised the data and 
computation requirements while making a maximum use of the 
available data. Yet, the model is accurate enough for the study 
of cold load pickup. The parameters for the model can be 
obtained very easily through simple measurements: the authors 
use only the thermal characteristics as observed at the 
thermostat, i.e., the room temperature. A simple model is 
derived based on the assumption that the thermostat condenses 
building thermal characteristics (including the effects of 
weather conditions and resident lifestyle) into two variables—
on-duration for heating and off-duration for cooling between to 
setpoints of the thermostat. The parameters of the model are 
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Fig. 3. Modelling structure of a building energy system [4] 
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obtained through simple experiments by turning the heater off 
and on for a definite time and measuring the temperature at the 
thermostat. Finally, after additional simplifications and 
approximations all the dynamic characteristics of the house are 
summarized into a single parameter (harmonic constant), which 
is independent of weather and internal heat source. To find this 
constant, only the on/off-durations are required. 

The objective of [10] has been to provide a quantitative 
method to predict the magnitude and duration of the overload 
following an outage. We suggest that a similar approach can be 
used to model the various effects on the power system of 
dissemination of a large amount of smart electric thermal 
storage appliances. 

B. Building Thermal Models Based on Electrical Analogy 

For modelling thermodynamics of buildings, RC-diagrams 
are often used based on electrical analogy where each element 
of the building can be represented with resistors and capacitors 
as lumped parameters [11]–[15]. Such thermal network models 
have advantages of simplicity, transparency and low 
computational effort [12]. 

 

 
 

Fig. 4. The complex thermal network used for virtual experiments (CVHT—

convective heat transfer, CDHT—conductive heat transfer, RHT—radiative 

heat transfer, TM—thermal mass) 

 

 
 

Fig. 5. The simplified thermal network used for inverse modelling 

Theoretically, the simplest network might consist of one 
resistance and one capacitor [8]. However, this is practically 
and physically unrealistic, therefore usually more elements are 
used. E.g., [12]–[14] use second-order models that describe 
construction elements by three resistances and two 
capacitances. In [14], this reduced-order model is devised from 
a 20th-order model through nonlinear constrained optimisation 
and is given preference over an even simpler first-order model 
since the latter showed considerable performance differences 
from the high-order model unlike the second-order model. This 
approach is further improved in [12] by using a multi-objective 
function search algorithm and reporting a large number of 
results for various construction elements. 

In our study, we use a thermal network model as presented 
in Fig. 4. Since we employ inverse modelling, we need to use 
equivalent thermal parameters to obtain a simple network [8]. 
Therefore we have devised a simplified model (Fig. 5) based 
on the complex one. The complex model is built in Simscape 
which allows to easily create models of physical systems and 
perform simulations on them using MATLAB Simulink. The 
output data of simulations are then used for parameter 
estimation of the simplified model. We should note that, at this 
stage, we have assumed there are no heat losses and gains from 
infiltration or solar gains. However, later on as we develop our 
study, these gains will also be accounted for. 

Additionally, in section IV, we have compared the 
capability of the inverse modelling approach to replicate 
performance of an even more complex thermal network 
calibrated with an EnergyPlus building model. 

 

 
 

Fig. 6. Flowchart for parameter estimation of the simplified thermal network 
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C. Model Parameter Estimation 

Equivalent thermal parameters R1, R2, C1 and C2 (Fig. 5) 
were estimated according to the algorithm shown in Fig. 6. 
Model parameters were generated randomly employing Monte 
Carlo sampling and then applied to the simplified thermal 
network for simulation. The output of the model (energy 
consumption) was compared with measurements of virtual or 
physical experiments using mean square error. The sampling 
was repeated for 100n times, where n = 4 is the number of 
unknown parameters. The parameters which provided the most 
accurate performance of the model were saved. This approach 
comprises a partial enumeration with a high accuracy thanks to 
the Monte Carlo random sampling, which allows to select a 
result close to the global minimum avoiding local minima. The 
model with its tuned parameters can then be used for building 
heating energy demand modelling at the individual and 
aggregate level. 

IV. RESULTS AND DISCUSSION 

In order to estimate building parameters (Fig. 5), we 
performed several virtual and physical experiments employing 
the simplified model to simulate thermal dynamics of the 
building in subsection A. Besides that, we also compared 
performance of the simplified model with a complex one in 
subsection B. 

A. Employment of the Simplified Model 

1) Virtual Experiments 
For virtual experiments, we selected three types of 

buildings with the same geometry, but different insulation 
levels (house 1 having the least insulation and house 3 with the 
best insulation; all the parameters of buildings are presented in 
Table I). 

We used the complex model (Fig. 4) to simulate the 
performance of each building (namely, heating energy 
consumption) under different weather conditions. Using the 
data of outside temperature, heat energy consumption and room 
temperature obtained from simulations of the complex model, 
we then estimated the corresponding thermal parameters for the 
simplified model of the building. 

Fig. 7 illustrates the performance errors of the simplified 
model for House 1 with estimated parameters at the outside 
temperature of 0 °C. While there is no energy consumption 

error at the outside temperature of 0 °C, the accuracy 
significantly decreases up to error of 9% at other outside 
temperatures which were not used for parameter estimation of 
the model.  

Consequently, we expanded the range of experiments for 
parameter estimation with more outside temperatures, namely:  
-10, -5, 5 and 10 °C. Model performance errors with the 
estimated parameters for House 2 and 3 are presented in Fig. 8–
Fig. 10. 

As shown in Fig. 8–Fig. 9, energy consumption errors are 
zero at the outside temperatures which were used for parameter 
estimation (circle markers). At other temperatures (diamond 
labels) errors tend to increase for longer simulations of energy 

consumption (compare Fig. 9 for 72 hours versus Fig. 8 for 
48 hours). 

TABLE I.  BUILDING PARAMETERS FOR VIRTUAL EXPERIMENTS 

Parameter 
Building Construction Element 

Walls Windows Roof 

Area (m2) 320 6 601 

Thickness (m) 0.2 0.01 0.2 

Convective heat transfer coefficient 
with indoor air (W/(m2·K)) 

24 25 12 

Convective heat transfer coefficient 
with atmosphere (W/(m2·K)) 

34 32 38 

Specific heat capacity (J/(kg·K)) 835 840 835 

House 1    

Thermal conductivity (W/(m·K)) 0.038 0.78 0.035 

Mass (kg) 122 880 162 3845 

Density (kg/m3) 1920 2700 32 

House 2    

Thermal conductivity (W/(m·K)) 0.0038 0.0078 0.0035 

Mass (kg) 122 880 243 7680 

Density (kg/m3) 1920 4050 64 

House 3    

Thermal conductivity (W/(m·K)) 0.0019 0.0038 0.00185 

Mass (kg) 245 760 486 38450 

Density (kg/m3) 3840 8100 320 

 

For House 3, errors were zero for energy consumption over 
48 hours, while the errors increased for a simulation of 
150 hours (Fig. 10). 

These errors are mostly due to the delay or advance of the 
signal representing the thermodynamics of the house in relation 
to the actual signal (Fig. 11). 

2) Physical Experiment 
Additionally, we conducted a physical experiment on a real 

residential building by measuring its room temperature and the 
corresponding outside temperature during heating and cooling 
of the building in winter (i.e., with the heater turned on or off) 
(Fig. 12). As previously, we used the measured inside 
temperature and information on the outside temperature to 
estimate the thermal characteristics of the building. As shown 
in Fig. 12, the derived model exhibits a high performance 
accuracy as compared to the experimental data. 

Besides the temperature measurements, energy 
consumption of the building was recorded. Knowing the 
heating demand of representative individual buildings, we will 
be able to calculate the aggregated heating load of SETS in our 
further studies. 
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Fig. 7. Energy consumption errors for House 1 at different outside 

temperatures for model with parameters estimated at the outside temperature 
of 0 °C (circle marker) 

 
Fig. 8. Energy consumption errors for House 2 over 48 hours at different 

outside temperatures for model with parameters estimated at the outside 
temperature of -10, -5, 5 and 10 °C (circle markers) 

 
Fig. 9. Energy consumption errors for House 2 over 72 hours at different 

outside temperatures for model with parameters estimated at the outside 
temperature of -10, -5, 5 and 10 °C (circle markers) 

 
Fig. 10. Energy consumption errors for House 3 over 150 hours at different 

outside temperatures for model with parameters estimated at the outside 
temperature of -10, -5, 5 and 10 °C (circle markers) 

 

 
 

Fig. 11. Virtual experimental data of room temperature and the corresponding 

model performance as estimated for a constant outside temperature of 0 °C 
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Fig. 12. Physical experiment data of room temperature and the corresponding 

model performance 
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Fig. 13. The complex thermal network [15] used for comparison with the simplified model: Cewo, Cewi—thermal capacitance of the outer and inner portion of 

the external wall, respectively; Ci, Ciw —thermal capacitance of the inside zone of the building and the internal wall; Ic, Im—cooking and metabolic heat gain; 

Ise, Isi—solar gain on external and internal building elements; Iv— heat exchange through ventilation (with external environment); Rc&f, Rg&d—combined 

thermal resistance of ceiling and floor, glazing and doors; R’ewi, R’ewo—half of the thermal resistance of the inner and outer portion of the external wall; R’iw—
half of the thermal resistance of the internal wall; Rse—external surface resistance; Rsiew, Rsiiw—internal surface thermal resistance, external and internal wall; 

Te—external temperature evolution; xewo, xewi—temperature of the outer and inner portion of the external wall; xi—temperature of indoor environment; xiw—

temperature of the internal wall. 

B. Comparison of the Simplified Model with an EnergyPlus 

calibrated model 

We compared the performance of the simplified model 
(Fig. 5) to a more complex thermal network model (Fig. 13) by 
running simulations on both models. The complex RC model is 
based on [15] with a few modifications. 

The complex model presents one of the residential building 
archetypes (a mid-floor apartment) in Ireland initially 
developed in EnergyPlus simulation platform with a very high 
granularity of data [16]. Then, the reduced-order thermal 
network model (Fig. 13) was derived by calibration based on 
the detailed EnergyPlus archetype model output. Solar gains 
and ventilation losses were calculated based on weather data of 
one year with an hourly resolution. 

The reduced-order RC model is necessary for modelling the 
aggregated electric load of heaters with an affordable 
computational effort to integrate it into power system models. 
This is the subject of our upcoming studies in modelling the 
large-scale impact of smart electric thermal storage. 

Using the derived thermal network model, simulations were 
performed on it at the outside temperature of 0 °C. Fig. 14 
shows the indoor air temperature dynamics for a single day. By 
using the output of the complex EnergyPlus calibrated model, 
we estimated the parameters for the corresponding simplified 
model (Fig. 5) and run simulations on it at the same outside 
temperature. As shown in Fig. 14, the simplified model was 
able to replicate the temperature dynamics of the complex 
model with a high accuracy. This implies that the simplified 

model should also be able to accurately model the heating 
demand characteristics of the building. 
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Fig. 14. Comparison of room temperature as per the complex EnergyPlus 

calibrated model and the simplified model 
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V. CONCLUSIONS 

The simplified thermal network model was able to capture 
the thermal dynamics of the building by using only the 
measured inside and outside temperature. The simplified model 
was obtained through inverse black-box modelling and 
exhibited a high accuracy as compared to performance of two 
more complex models in virtual experiments and an existing 
building in a physical experiment. It will serve as the first stage 
of modelling aggregate residential heat demand having a small 
setup cost and little computational effort in comparison to other 
approaches of building thermal modelling. 

This research will be continued by employing physical 
experiments in 50 buildings in Latvia and obtaining 
temperature measurements of these buildings over an extended 
period of time. Using the experimental data, we will derive 
thermal characteristics for various types of buildings. Thus, we 
will be able to calculate the heating demand of representative 
individual buildings and extrapolate it to a national scale to 
further assess the impact of a large amount of smart electric 
thermal storage appliances on the power system. 
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