Bio-Based Rigid High-Density Polyurethane Foams as a Structural Thermal Break Material
Construction and Building Materials 2020
J. Andersons, M. Kirpļuks, P. Cābulis, Kaspars Kalniņš, U. Cābulis

Sustainable development of building industry implies increasing usage of green materials. With this aim and for the intended application as a structural thermal break material, rigid high-density polyurethane foams have been manufactured using polyols derived from renewable resources - tall oil fatty acids. Thermal conductivity, compressive strength and stiffness of the foams of density ranging from ca. 100 to 680 kg/m3 have been determined. Comparison of the bio-based foams with reference foams derived from petrochemical resources demonstrated similar performance characteristics thus suggesting that bio-based foams can also serve as structural thermal break materials. Analytical models are shown to enable estimation of density dependence of the thermal and mechanical properties of foams using the respective experimentally determined characteristics of the monolithic polyurethane polymer.


Keywords
Mechanical properties; Polyurethane foams; Thermal break; Thermal conductivity
DOI
10.1016/j.conbuildmat.2020.120471
Hyperlink
https://www.sciencedirect.com/science/article/pii/S0950061820324764?via%3Dihub

Andersons, J., Kirpļuks, M., Cābulis, P., Kalniņš, K., Cābulis, U. Bio-Based Rigid High-Density Polyurethane Foams as a Structural Thermal Break Material. Construction and Building Materials, 2020, Vol. 260, Article number 120471. ISSN 0950-0618. Available from: doi:10.1016/j.conbuildmat.2020.120471

Publication language
English (en)
The Scientific Library of the Riga Technical University.
E-mail: uzzinas@rtu.lv; Phone: +371 28399196