As the cooling requirement and the energy prices are increasing rapidly across the world, the need to develop highly efficient cooling equipment is rising as well. Adiabatic cooling employs evaporation to pre-cool the air flowing through a closed-loop coil. This study examines various adiabatic evaporative cooling pads in terms of their pre-cooling potential and advantages over currently available technological solutions through isolating three cross-sectional metal cooling pad shapes (W, Z and Z1). The results of the study suggest that the correlation between Δt↓ and RH↑ is somewhat close in all three cases; however, a slightly higher temperature drop is observed when using a W-shaped metal sheet. Pressure drop variability was negligible under current cooling pad configurations and experimental boundary conditions. Further studies focusing on measurement continuity, longevity and boundary conditions’ variability are recommended.