Vibration-Based Damage Detection in a Beam Structure with Multiple Damage Locations
Abstracts of the International Conference “Aviation 2009” 2009
Sandris Ručevskis, Miroslaw Wesolowski, Andris Čate

During the last 2 decades, structural damage identification using the dynamic parameters of the structure has become an important research area for civil, mechanical, and aerospace engineering communities. The basic idea of the vibration-based damage detection methods is that damage as a combination of different failure modes in the form of loss of local stiffness in the structure alters its dynamic characteristics, i.e., the modal frequencies, mode shapes, and modal damping values. A great variety of methods have been proposed for damage detection by using dynamic structure parameters; however, most of them require modal data of the healthy state of the structure as a reference. In this paper, a vibration-based damage detection method that uses mode shape information determined from only the damaged state of the structure is proposed. To establish the method, two aluminium beams containing different sizes of mill-cut damage at a single location as well as two aluminium beams containing different sizes of mill-cut damage at multiple locations are examined. Experimental modal frequencies and corresponding mode shapes for the first fifteen flexural modes are obtained by using a scanning laser vibrometer with a PZT actuator. From the mode shapes, mode shape curvatures are obtained by using a central difference approximation. In order to exclude the influence of measurement noise on the modal data and misleading damage indices, it is proposed to use the sum of mode shape curvature squares for each mode. With the example of beams with free-free and clamped boundary conditions, it is shown that the mode shape curvature squares can be used to detect damage in the structures. The extent of mill-cut damage is identified via the modal frequencies by using mixed numerical-experimental technique. The method is based on the minimization of the discrepancy between the numerically calculated and the experimentally measured frequencies. The numerical frequencies are calculated by employing a finite-element model for beam with introduced damage. Further, by using the response surface approach, a relationship (second-order polynomial function) between the modal frequencies and the extent of damage is constructed. The extent of damage is obtained by solving the minimization problem


Keywords
Damage detection, dynamic response, mode shape curvature, scanning laser vibrometer

Ručevskis, S., Wesolowski, M., Čate, A. Vibration-Based Damage Detection in a Beam Structure with Multiple Damage Locations. In: Abstracts of the International Conference “Aviation 2009”, Lithuania, Vilnius, 16-16 April, 2009. Vilnius: VGTU, 2009, pp.21-21.

Publication language
English (en)
The Scientific Library of the Riga Technical University.
E-mail: uzzinas@rtu.lv; Phone: +371 28399196