Strong-stability-preserving, One-step, 9-stage, Hermite–Birkhoff–Taylor, Time-discretization Methods Combining Taylor and RK4 Methods
2012
Truong Nguyen-Ba, Abdulrahman Karouma, Thierry Giordano, Rémi Vaillancourt

The ODE solver HBT(12)4 of order 12 (Can. Appl. Math. Q. 16(1) (2008) 77–94), which combines a Taylor series method of order 9 with a Runge–Kutta method of order 4, is expanded into optimal, one-step, 9-stage, explicit, strongstabilitypreserving (SSP), Hermite–Birkhoff–Taylor methods, HBT(p), of orders p = 6, 7, . . . , 12, with nonnegative coefficients. These methods are constructed by combining Taylor methods, T(p − 3), of orders p − 3 with a 9-stage Runge–Kutta method, RK(9, 4), of order 4. Several new one-step SSP methods arise with higher order than those appearing in the recent literature. The Shu– Osher form of RK methods is extended to the above combined methods. Compared to Huang’s k-step hybrid methods, HM(k, p), of the same order, the new HBT(p) generally have larger effective SSP coefficients and larger maximum effective CFL numbers on Burgers’ equation, independently of the number k of steps of HM(k, p). The new HBT(p) are listed in their canonical Shu–Osher form in the appendix.


Atslēgas vārdi
Strong stability preserving; Hermite–Birkhoff- Taylor method; SSP coefficient; time discretization; method of lines; comparison with other SSP methods

Nguyen-Ba, T., Karouma, A., Giordano, T., Vaillancourt, R. Strong-stability-preserving, One-step, 9-stage, Hermite–Birkhoff–Taylor, Time-discretization Methods Combining Taylor and RK4 Methods. Datormodelēšana un robežproblēmas. Nr.51, 2012, 43.-45.lpp. ISSN 2255-9124. e-ISSN 2255-9132.

Publikācijas valoda
English (en)
RTU Zinātniskā bibliotēka.
E-pasts: uzzinas@rtu.lv; Tālr: +371 28399196