Network Traffic Classification for Anomaly Detection: Fuzzy Clustering Based Approach
2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
2015
Jūlija Asmuss,
Gunārs Lauks
In this paper we develop network traffic classification and anomaly detection methods based on traffic time series analysis using fuzzy clustering technique. The effectiveness of fuzzy and possibilistic algorithms is compared on generated traffic data with and without traffic attack components.
Atslēgas vārdi
traffic classification; anomaly detection; fuzzy clustering; validity indices
DOI
10.1109/FSKD.2015.7381960
Asmuss, J., Lauks, G. Network Traffic Classification for Anomaly Detection: Fuzzy Clustering Based Approach. No: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Ķīna, Zhangjiajie, 15.-17. augusts, 2015. Piscataway, NJ: IEEE, 2015, 313.-318.lpp. ISBN 978-1-4673-7681-5. e-ISBN 978-1-4673-7682-2. Pieejams: doi:10.1109/FSKD.2015.7381960
Publikācijas valoda
English (en)